Graduation Date
Spring 2020
Document Type
Thesis
Program
Master of Science degree with a major in Environmental Systems, option Environmental Resources Engineering
Committee Chair Name
Peter Alstone
Committee Chair Affiliation
HSU Faculty or Staff
Second Committee Member Name
Arne Jacobson
Second Committee Member Affiliation
HSU Faculty or Staff
Keywords
HPWH, ERWH, Electrification, Demand response, Renewable energy, California building climate zones, Building energy modeling
Subject Categories
Environmental Resources Engineering
Abstract
Water heating in residential buildings, also known as domestic hot water (DHW), is the third largest use of energy after appliances and space conditioning. About 90% of the residential buildings in the state use natural gas fueled water heaters, 6% use electricity, and a small percent use liquefied petroleum gas (LPG) or solar water heaters. The current energy use associated with residential water heating is small relative to the total amount of energy consumption in the residential building sector, but it is still a contributor of greenhouse gas (GHG) emissions. Improving hot water systems can be beneficial for bill customer savings, energy use, and water savings.
Heat pump water heaters (HPWH) can function as grid batteries by using the water tank capability of thermal storage. The use of aggregated electrical DHW systems to store extra electricity during peak generation times or during low utility time of use (TOU) rates has the potential to alleviate some of the curtailed renewable energy power generation sources in the California grid while reducing carbon emissions and customer cost.
Water heating technology was simulated using the Building Energy Modeling software California Building Energy for Code Compliance (CBECC-Res) and the California Simulation Engine (CSE). Different climate zones were explored to compare the electricity needed for a water heater operation given the same input parameters of water draw profiles and building envelope. The results show the feasibility of using HPWH and ERWH technology to participate in demand response management programs. The demand response capability of HPWH and ERWH show that they could be useful tools to accommodate surplus energy from solar generation during the solar peak hours. Whether the demand response is implemented using traditional HPWH or ERWH units, the capability of the technology to act on control signals is a necessary condition for a successful program.
Citation Style
APA
Recommended Citation
Cervantes, Alejandro, "Electrification of domestic hot water to aid the integration of renewable energy in the California grid" (2020). Cal Poly Humboldt theses and projects. 369.
https://digitalcommons.humboldt.edu/etd/369
Included in
Energy Systems Commons, Environmental Engineering Commons, Heat Transfer, Combustion Commons, Thermodynamics Commons