Graduation Date

Spring 2023

Document Type

Thesis

Program

Master of Science degree with a major in Biology

Committee Chair Name

Joe Tyburczy

Committee Chair Affiliation

HSU Faculty or Staff

Second Committee Member Name

Eric Bjorkstedt

Second Committee Member Affiliation

HSU Faculty or Staff

Third Committee Member Name

Frank Shaughnessy

Third Committee Member Affiliation

HSU Faculty or Staff

Fourth Committee Member Name

Frederick Zechman

Fourth Committee Member Affiliation

HSU Faculty or Staff

Keywords

Pacific oyster, Zostera, Eelgrass, Seagrass, Crassostrea gigas, Magallana gigas, Ocean acidification, Substrate, pH

Subject Categories

Biology

Abstract

Worsening ocean acidification (OA), resulting from ongoing absorption of atmospheric carbon dioxide (CO2) by the oceans, threatens marine life globally. Calcifying organisms, especially their early life stages, are particularly vulnerable; this includes the economically important Pacific oyster, Magallana (Crassostrea) gigas. Uptake of dissolved CO2 through photosynthesis by seagrasses, like eelgrass (Zostera marina), may benefit calcifying organisms by increasing pH and carbonate availability. I conducted laboratory and field experiments to quantify carbonate chemistry modification by eelgrass and potential mitigation of OA impacts on growth in juvenile Pacific oysters. In the laboratory experiment, daytime net photosynthesis by eelgrass increased seawater pH, while nighttime net respiration reduced pH though to a lesser extent; both effects grew stronger as the pH of incoming seawater decreased. This is consistent with the expectation that eelgrass will benefit from increased aqueous CO2 levels and suggests that the importance of carbonate chemistry modification by eelgrass and its role as a refugium may increase as OA proceeds. Under the conditions tested, however, eelgrass effects on pH were modest and did not affect oyster growth in the lab or field. In the lab, oysters settled on shell flour grew faster than those on shell chunks, but unlike those on chunks, the growth rate of oysters on flour decreased significantly in low pH treatments. One hypothesis consistent with these results is that the boundary layer around shell chunks may have slowed oyster growth by limiting food availability but that it also reduced sensitivity to low pH via enhanced carbonate saturation.

Citation Style

APA

Share

Thesis/Project Location

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.