Graduation Date

Fall 2020

Document Type

Thesis

Program

Master of Science degree with a major in Natural Resources, option Forestry, Watershed, & Wildland Sciences

Committee Chair Name

Lucy Kerhoulas

Committee Chair Affiliation

HSU Faculty or Staff

Second Committee Member Name

Rebecca Hewitt

Second Committee Member Affiliation

Community Member or Outside Professional

Third Committee Member Name

Jasper Oshun

Third Committee Member Affiliation

HSU Faculty or Staff

Subject Categories

Forestry

Abstract

Water is often the most limiting resource in a plant’s environment. Plants that can maximize their ability to acquire water improve their chances of success. Outside of the traditional soil-plant-atmosphere continuum, plants can alternatively acquire water via foliar uptake of water and hydraulic redistribution (HR) of deep water. This study used greenhouse-based experiments to investigate water use and physiology in four conifer species native to the western U.S.: Picea sitchensis (Bong.) Carriére (PISI), Pseudotsuga menziesii (Mirb.) Franco (PSME), Sequoia sempervirens (D. Don) Endl. (SESE), and Thuja plicata Donn ex. D. Don (THPL). First, this work investigated the capacity for foliar water uptake using two different measurement methods (submersion in water versus exposure to water vapor in a fog chamber). Second, mesocosms were used to evaluate the capacity for HR of water and the possible effects of HR water on tree physiology. Analyses found that foliar uptake rates measured using a fog chamber were roughly three times greater than uptake rates measured using the submersion method. All species were capable of foliarly absorbing water; PSME generally had the greatest foliar uptake values while THPL had the lowest uptake capacity. Findings also suggested that PISI and SESE are capable of hydraulically lifting water and that this HR water can sustain plant water potential and stomatal conductance during drought, even for neighboring trees. Collectively, this work provides a methodological comparison of two commonly-used methods to measure foliar water uptake capacity and also demonstrates that two important western conifer species (PISI and SESE) are capable of hydraulically redistributing water to enhance physiology (water potential and stomatal conductance) in the trees lifting water as well as in neighboring trees. The use of waters that have been foliarly absorbed and/or hydraulically lifted and redistributed may become increasingly important for trees in the western U.S., as climate models project that this region will likely continue to warm and dry in the coming decades.

Citation Style

Oecologia

Share

Thesis/Project Location

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.