
COMPARISON OF LOW-COST COMMERCIAL UNPILOTED DIGITAL AERIAL 

PHOTOGRAMMETRY TO AIRBORNE LASER SCANNING ACROSS 

MULTIPLE FOREST TYPES IN CALIFORNIA 

 

By 

 

James E. Lamping 

 

 

A Thesis Presented to 

The Faculty of Humboldt State University 

In Partial Fulfillment of the Requirements for the Degree 

Master of Science in Natural Resources: Forestry, Watershed & Wildland Sciences 

 

Committee Membership 

Dr. Harold Zald, Committee Chair 

Dr. Jim Graham, Committee Member 

Dr. Buddhika Madurapperuma, Committee Member 

Dr. Erin Kelly, Program Graduate Coordinator 

 

May 2021 

  



 

ii 

ABSTRACT 

COMPARISON OF LOW-COST COMMERCIAL UNPILOTED DIGITAL AERIAL 
PHOTOGRAMMETRY TO AIRBORNE LASER SCANNING ACROSS 

MULTIPLE FOREST TYPES IN CALIFORNIA 
 

James E. Lamping 

 

Science-based forest management requires quantitative information about forest 

attributes traditionally collected via sampled field plots in a forest inventory program. 

Remote sensing tools, such as active three-dimensional (3D) Light Detection and 

Ranging (lidar), are increasingly utilized to supplement and even replace field-based 

forest inventories. However, lidar remains cost prohibitive for smaller areas and repeat 

measurement, often limiting its use to single acquisitions of large contiguous areas. 

Recent advancements in unpiloted aerial systems (UAS), digital aerial photogrammetry 

(DAP) and high precision global positioning systems (HPGPS) have the potential to 

provide low-cost time and place flexible 3D data to support forest inventory and 

monitoring. The primary objective of this research was to assess the ability of low-cost 

commercial off the shelf UAS DAP and HPGPS to create accurate 3D data and 

predictions of key forest attributes, as compared to both lidar and field observations, in a 

wide range of forest conditions in California, USA. A secondary objective was to assess 

the accuracy of nadir vs. off-nadir UAS DAP, to determine if oblique imagery provides 

more accurate 3D data and forest attribute predictions. UAS DAP digital terrain models 

were comparable to lidar across sites and nadir vs. off-nadir imagery collection, although 
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model accuracy using off-nadir imagery was very low in mature Douglas-fir forest. 

Surface and canopy height models were shown to have less agreement to lidar, with high 

canopy density sites captured with off-nadir imagery showing the lowest amounts of 

agreement. UAS DAP models accurately predicted key forest metrics when compared to 

field data and were comparable to predictions made by lidar. Although lidar provided 

more accurate estimates of forest attributes across a range of forest conditions, this study 

shows that UAS DAP models, when combined with low-cost HPGPS, can accurately 

predict key forest attributes across a range of forest types, canopies densities, and 

structural conditions throughout California. 
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INTRODUCTION 

Sustainable forest management and conservation requires inventory and monitoring 

programs that provide timely and verifiable information on forest conditions (i.e. canopy 

cover, stand height, biomass, etc.). Traditionally, forest inventory and monitoring programs 

use field plots with detailed measurements of forest composition and structure, from which 

sample-based estimates are calculated (Bechtold and Patterson, 2005; Gillis et al., 2005; 

Tomppo et al., 2010). However, incomplete spatial coverage and lengthy re-measurement 

intervals can limit the effectiveness of field plots in quantifying forest change and 

providing timely estimates of forest conditions, especially for remote unmanaged regions 

and small areas, both of which often lack adequate plot sampling to support traditional 

sample-based estimation (Rao, 2017; Wulder et al., 2004). 

For large-scale regional and national objectives, sample-based field inventories are 

often integrated with remotely sensed data such as multispectral satellite imagery to 

generate spatially complete estimates of forest conditions (Ohmann and Gregory, 2002; 

Tomppo et al., 2008; Wilson et al., 2013). Imagery from the Landsat and Sentinel 2 

missions are especially attractive for integration with forest inventory programs, due to 

their spectral and spatial compatibility with many vegetation attributes, open imagery 

archives, global coverage, and frequent repeat cycle (Drusch et al., 2012; Kennedy et al., 

2014; Wulder et al., 2012a). However, passive optical sensors have known saturation and 

sensitivity limitations (Lu, 2006; Turner et al., 1999), posing problems for predicting 
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attributes such as biomass, stand density and vertical forest structure (Eskelson et al., 2012; 

Pierce et al., 2009; Zald et al., 2014). 

Compared to passive optical sensors, light detection and ranging (lidar) is well 

suited to characterize the three-dimensional structure of forests (Dubayah and Drake, 2000; 

Lefsky et al., 2002; Reutebuch et al., 2005). Lidar is increasingly integrated with sample-

based forest inventory plots to generate spatially complete estimates of forest conditions, 

as well as a sampling tool for large-area estimation (Andersen et al., 2012; Wulder et al., 

2012b). Despite declining costs, airborne lidar is still only cost effective for large 

continuous areas or strip sampling, limiting its applicability when frequent repeat data is 

required, or for small forest parcels and landowners for which lidar acquisition is cost 

prohibitive. 

 An emerging alternative to lidar is three-dimensional (3D) data derived from digital 

aerial photogrammetry (DAP). 3D DAP (also known as Structure from Motion (SfM), and 

colloquially as “phodar”) uses overlapping images from a passive optical sensor to 

calculate a point’s position in space (Ota et al., 2015; Shin et al., 2018a; Swetnam et al., 

2018). 3D DAP applications include large-scale integration with sample-based inventory 

plots (Strunk et al., 2019) as well as small-scale prediction using 3D DAP collected from 

unpiloted aerial systems (UAS) (Iizuka et al., 2018; Puliti et al., 2015; Swetnam et al., 

2018). Due to its ability to acquire highly flexible user-defined acquisition locations and 

frequency, UAS DAP is especially attractive for small landowners, photo plots in a sample-

based inventory, and frequent remeasurement. 
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 Despite the potential of UAS DAP, there remain multiple issues to address for it to 

become a broadly useful tool for forest inventory and monitoring. The majority of studies 

using UAS DAP have relied on expensive survey grade UAS platforms carrying fixed high-

resolution cameras and associated high precision global positioning systems (HPGPS) 

(Alonzo et al., 2018; Iizuka et al., 2018; Shin et al., 2018b). HPGPS has been a prerequisite 

for UAS DAP to ensure accurate georeferencing of imagery and co-registration with field 

plots and other geospatial data sources. Low-cost commercial-grade UAS with high-

resolution optical sensors and integrated GPS systems are now available in small and 

affordable all-in-one solutions capable of conducting aerial surveys out of the box. 

However, DAP models that are both correctly scaled and spatially accurate require the 

addition of individual photo locations (Bryson et al., 2010). Utilization of HPGPS systems, 

either within a survey grade UAS that creates accurately geotagged photos, or in the 

acquisition of ground control points (GCPs) placed throughout the study area, can greatly 

increase the spatial accuracy of DAP models (Sanz-Ablanedo et al., 2018). Traditionally, 

HPGPS systems can be both expensive to purchase and technical in their use, leaving them 

out of reach for small scale projects, however, the recent introduction of significantly less 

expensive HPGPS, that have both a user-friendly interface and a growing online support 

community, has increased the access to this technology. The use of these more-affordable 

HPGPS systems in UAS DAP studies are needed to show the benefits of their use while 

also helping understand their potential limitations. Specifically, integration of HPGPS 

GCPs with low-cost UAS could provide easy to acquire 3D DAP for a fraction of the cost 

of survey grade systems. 
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Additionally, many studies using UAS DAP for obtaining forest data have focused on 

individual forest types (Fankhauser et al., 2018; Navarro et al., 2020; Puliti et al., 2015; 

Shin et al., 2018b; Wallace et al., 2016). The absence of an assessment of DAP across a 

wide range of forest types and conditions has hindered the development of best practices 

and the widespread application of UAS DAP in forest inventory and monitoring. 

Furthermore, standard practices of UAS DAP data acquisition typically include only 

collecting images at nadir, yet multi-angle DAP has potential in improving characterization 

of vertical forest structure (Fankhauser et al., 2018). By including off-nadir imagery in a 

DAP dataset, the image sensor has an increased view of the sides of the forest canopy, 

allowing the photogrammetry algorithm the ability to create a more “complete” model of 

the whole canopy than with nadir imagery alone. An example of this can be seen in Figure 

1, where the 3D DAP model generated with multi-angle imagery includes more of the 

lower tree canopy than nadir imagery alone. In combination, low-cost commercial-grade 

UAS, low-cost and user friendly HPGPS, and multi-angle (on and off-nadir) imagery have 

the potential for UAS DAP to be an affordable alternative to lidar for forest inventory but 

have been largely unexplored. 
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Figure 1. Comparison of one 0.05 ha plot within Sierra Nevada mixed-conifer (MC) site 
for lidar, nadir DAP and off-nadir DAP. Red arrow denotes missing structural 
elements in the lower canopy in a nadir DAP model. 

This study investigated if low-cost UAS DAP combined with low cost HPGPS could 

generate digital surface models and predictions of select forest attributes with accuracy 

comparable to that of lidar. Specifically, three-dimensional point clouds were developed 

from imagery collected from a common low-cost commercial-off-the-shelf UAS platform 

and georeferenced the imagery with ground coordinates collected with low-cost HPGPS. 

Study locations were selected to coincide with recent lidar data collection across multiple 

forest types and structural conditions in California, USA. DAP imagery was collected at 

nadir and 30 degrees off-nadir to assess the value of multi-angle DAP image collection. 

DAP was compared to lidar derived digital terrain models (DTMs), canopy height models 

(CHMs), and digital surface models (DSMs). Additionally, I developed and compared 
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DAP versus lidar modeled forest attributes based on field plot data. Specifically, I posed 

three research questions; (i) can low-cost UAS DAP imagery, combined with low-cost 

HPGPS, accurately predict key forest metrics (aboveground biomass, stem density, 

quadratic mean diameter, and mean tree height); (ii) how well does UAS DAP work in 

modeling forest structure across a wide range of forest conditions found throughout 

California; and (iii) can the introduction of off-nadir imagery improve the ability for UAS 

DAP to accurately model forest vegetation structure. I expected that UAS DAP would be 

able to create accurate predictions of forest attributes (such as aboveground biomass, trees 

per hectare, basal area, etc), although not as accurate as predictions made with lidar, and 

that UAS DAP will show less accuracy in more dense forest canopies, where the terrain 

beneath the canopy has increased occlusion from the image sensor of the UAS. It is also 

expected that the addition of off-nadir imagery would consistently increase the accuracy of 

UAS DAP due to its potential to better more completely characterize forest canopy 

structure. 
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MATERIALS AND METHODS 

Study Area 

 Study sites were selected based on availability of recent lidar in the State of 

California, desire to assess UAS DAP across a wide range of forest types and structural 

conditions, and access of property for research activities. Study sites required available 

lidar data collected within two years prior to UAS imagery acquisition, restricting the 

wide of range locations to those with available lidar data collected during 2017-2019. 

Sites also had to cover a range of forest conditions, including conifer and hardwood 

dominated sites, stand ages, and varying levels of canopy structural complexity. Lastly, 

sites had to be accessible, with landowners giving permission for research activities that 

included monumentation of plots and HPGPS base stations. Within these constraints, six 

different sites within California were chosen: northern California dense mature hardwood 

(HC), northern California dense mature Douglas-fir conifer (DF), Northern California 

young conifer plantation (YC), Sierra Nevada foothill oak woodland (OW), old-growth 

Sierra Nevada mixed-conifer (MC), and a managed (thinned and burned) Sierra Nevada 

mixed-conifer forest (MCtb) (Figure 2). Both the DF and HC sites are located within the 

L.W. Schatz Demonstration Tree Farm, which is managed by Humboldt State University. 

HC and DF are comprised of single and multi-aged patches with moderately tall trees, 

and high density canopies with few openings. The DF site is an approximately 40–60-

year-old naturally established stand dominated by Douglas-fir (Pseudotsuga menziesii), 



8 
 

  

with lesser components of grand fir (Abies grandis), and tanoak (Notholithocarpus 

densiflorus). The HC site is dominated by naturally established mature (over 80 years 

old) tanoak and California bay (Umbellularia californica), with less numerous Douglas-

fir and grand fir. Both HC and DF overstories also include lesser amounts of Oregon ash 

(Fraxinus latifolia), red alder (Alnus rubra), big-leaf maple (Acer macrophylla), and 

pacific madrone (Arbutus menziesii). Understories for both HC and DF consist of 

younger cohorts of overstory conifers and hardwoods, along with smaller hardwood tree 

and shrub species such as pacific dogwood (Cornus nuttallii), willow (Salix spp.), and 

poison oak (Toxicodendron diversilobum). The young conifer plantation (YC) is owned 

and managed by Green Diamond Resource Company, has a low canopy characterized by 

even spacing between trees, and is dominated by even-aged < 20-year-old planted 

Douglas-fir, with lesser components of naturally regenerated red alder, Oregon ash, grand 

fir, and tan oak and an understory consisting of brush and woody slash left over from a 

pre-commercial thinning conducted in 2017. The oak woodland site (OW) is located 30 

miles north of Fresno, CA within the San Joaquin Experimental Range, operated by the 

USDA Forest Service Pacific Southwest Research Station. The OW site is dominated by 

naturally established blue oak (Quercus douglasii) and interior live oak (Quercus 

wislizeni), with a minority component of foothill pine (Pinus sabiniana) and California 

buckeye (Aesculus californica). OW can be characterized as open canopy with clumps of 

broad canopy hardwoods arising from multiple stems sprouting from common bases and 

a grassy understory. Both Sierra Nevada mixed-conifer forest sites (MC and MCtb) are 

naturally established mixed conifer forests within Teakettle Experimental Forest, 
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operated by the USDA Forest Service Pacific Southwest Research Station, and are part of 

a long running thinning and prescribed fire experiment, established in 1997, and 

described in North et al., 2002. Both sites primarily consist of old-growth white fir (Abies 

conclor), incense-cedar (Calocedrus decurrens), sugar pine (Pinus lambertiana), and 

Jeffrey pine (Pinus jeffreyi) in the overstory. The oldest overstory pines can exceed 400 

years old and majority of shade tolerant fir and incense-cedar were established since the 

last recorded wildfire in 1865 (North et al., 2007). Understory consists of younger cohorts 

of overstory species, along with bitter cherry (Prunus emarginata). MC is an unharvested 

old-growth forest state and comprises of a moderately open canopy with tall uneven-aged 

conifers, with high vertical and horizontal canopy complexity and large canopy gaps. The 

MCtb site was thinned from above in 2001, removing trees greater than 25 cm in 

diameter while retaining approximately 22 regularly spaced large diameter trees (> 100 

cm) trees per hectare, resulting in a largely open canopy, low density of tall, large 

conifers, and dense shrub cover up to 2 m tall. MCtb was also treated with prescribed 

burning in the fall of 2001 and fall of 2018 (North et al., 2002). 
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Figure 2. Study site locations across California with associated UAS DAP images for 

each site. 

Field Data 

 In this study I collected tree measurements in large stem maps, starting in the 

summer of 2019, to reduce the overall area for image acquisition, increase design control 

over forest composition and structural conditions, and to support a companion study 

assessing individual tree segmentation methods using 3D DAP. For each site, a 4-ha stem 

map was established with the exception of the YC and HC sites. The YC site was limited 

to 2.3 ha due to the size of the continuous forest type and terrain surrounding the area. 
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Due to the smaller patches of dense hardwood canopy at the HC site, I established two 

individual stem maps sites of approximately 2 ha each, and subsequently analyzed the 

data as one 4 ha area. In each stem map, all trees at least 5 cm diameter at breast height 

(DBH, 1.37 m) were located, measured, and permanently monumented with numbered 

aluminum tags. Geographic coordinates of measured trees were collected at all but the 

MC and MCtb sites using low-cost ($1,598 USD) Emlid RS+ real time kinematic (RTK) 

GPS receivers (Emlid	Ltd,	St.	Petersburg,	Russia). The two sites located within 

Teakettle Experimental Forest are part of an ongoing study with previously published 

stem maps generated using a surveyor total station (North et al., 2007; Steel et al., 2021). 

The species, status (live versus standing dead snag), DBH, height, and crown class 

(dominant, co-dominant, intermediate, and suppressed) were recorded for each tree. 

Within each stem map, a minimum of twenty 12.62 m radius (0.05 ha) fixed area plots 

were systematically sampled using a hexagonal lattice, with a minimum distance between 

plot centers of 26.9 m to avoid tree stem overlap. Live trees were extracted for each plot, 

and density (TPH), basal area (BA, m2), quadratic mean diameter (QMD, cm), Lorey’s 

mean height (LHT, m), and aboveground biomass (AGB, Mg/ha) calculated for each plot 

(Table	1). Aboveground live biomass was calculated using generalized biomass 

equations (Chojnacky et al., 2014) 
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Table 1. Summary statistics of plot-level forest attributes at each site. 

Attribute Site n plots Mean Range SD 
AGB MC 20 536.8 108.9 - 1340.6 356.1 
(Mg/ha) MCtb 22 127.4 0.17 - 668.4 192.9 
  OW 23 47.8 0.22 - 178 40.3 
  DF 20 385.6 137 - 650.7 127.5 
  HC 22 322.3 95.4 - 556.1 124.4 
  YC 21 79.0 30.7 - 345.7 83.0 
TPH MC 20 241.0 60 - 520 137.0 
(Trees/ha) MCtb 22 144.6 20 - 400 98.9 
  OW 23 221.7 20 - 540 155.1 
  DF 20 403.0 260 - 640 114.5 
  HC 22 754.6 200 - 1620 342.3 
  YC 21 741.0 420 - 1580 279.4 
BAH MC 20 53.3 13.59 - 111.26 25.3 
(m2/ha) MCtb 22 13.1 0.09 - 47.36 14.9 
  OW 23 7.5 0.13 - 22.79 5.4 
  DF 20 55.0 22.37 - 85.62 16.5 
  HC 22 62.3 23.89 - 104.72 21.9 
  YC 21 14.9 7.06 - 48.29 10.8 
QMD MC 20 57.8 29.6 - 93.28 16.2 
(cm) MCtb 22 28.8 6.26 - 80.55 20.6 
  OW 23 21.9 9.1 - 42.7 8.1 
  DF 20 41.8 33.1 - 57.82 5.9 
  HC 22 62.3 23.89 - 104.72 21.9 
  YC 21 15.6 11.45 - 29.76 3.9 
LHT MC 20 37.6 19.41 - 59.07 9.9 
(meter) MCtb 22 16.8 2.68 - 49.86 13.6 
  OW 23 17.0 2 - 26.55 6.5 
  DF 20 33.0 25.23 - 39.1 3.4 
  HC 22 21.3 11.19 - 30 4.1 
  YC 21 13.9 10.16 - 26.71 4.9 

* AGB = Above ground biomass, TPH = Trees per hectare, BAH = Basal area per 
hectare, QMD = Quadratic mean diameter, and LHT = Lorey’s mean height 
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Lidar Data 

Lidar data was collected for all study sites in 2018 and 2019. Lidar for MC, 

MCtb, and OW sites were collected in the summer of 2018 by the National Ecological 

Observatory Network Airborne Observation Platform (NEON AOP, 

https://www.neonscience.org/data/airborne-data). Lidar for the YC site was collected by 

Quantum Spatial (https://quantumspatial.com/) in the summer of 2018 as part of a larger 

data acquisition for Green Diamond Resource Company. Lidar data for the DF and HC 

sites was collected in the Fall of 2019 by Access Geographic 

(http://accessgeographic.com/) as part of a larger acquisition for the cities of Eureka and 

Arcata, California. Lidar data was collected with different sensors and acquisition 

parameters, resulting in dramatically different point densities (Table 2). To reduce the 

potential impact of differing point cloud densities, lidar point clouds were filtered to be 

comparable with our lidar point clouds with the lowest point densities using the 

decimation function and the homogenize algorithm in lidR (Roussel and Auty, 2020), 

resulting in point cloud densities 5.4 – 12.3 pts/m2. 
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Table 2. Site specific lidar acquisition specifications. 

Parameter  Sites  

 MC, MCtb, OW DF, HC YC 

Vendor NEON Access Geographics Quantum Spatial 
Scanner Optech Gemini Leica City Mapper Riegl VQ-1560i 
Field of View 0-50° 40° 58.5° 
Flight Altitude 1000 m AGL 1500 m AGL 1306 m AGL 
Pulse Rate 33-167 kHz 2000 kHz 2,000 kHz 
Scan Angle (Degrees) 18.5° 20° 29.25° 
Pulse Wavelength (nm) 1064 nm 1064 nm 1064 nm 
Point Density (Pre-filtered) MC = 7.7 pts/m2 DF = 57.4 pts/m2 110.8 pts/m2 

  MCtb = 5.4 pts/m2 HC = 37.2 pts/m2   
  OW = 6.9 pts/m2     
Point Density (Post-filtered) MC = 7.7 pts/m2 DF = 9.7 pts/m2 12.3 pts/m2 
  MCtb = 5.4 pts/m2 HC = 9.7 pts/m2   
  OW = 6.9 pts/m2     

 

UAS DAP Data 

UAS DAP imagery was collected in the summer of 2019 from a DJI Mavic 2 Pro 

(DJI, Shenzhen, China, $1500 USD). The Mavic 2 Pro has an 1" CMOS image sensor 

that collects high-resolution still images (5472 x 3648 pixels) in the red, green, and blue 

(RGB) visual light spectrum with a field of view of 77 degrees. The camera is attached to 

the UAS by a 3-axis gimbal, allowing control of the angle at which the images are taken. 

UAS flights were planned using flight planning software Map Pilot version 4.0.1 (Drones 

Made Easy, CA, USA), and geotagged images were taken along the flight paths using the 

internal GPS within the UAS. Although Map Pilot has the ability to use terrain models 

developed from a previous lidar acquisitions to create missions that follow the elevational 
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profile of the terrain, a major objective of this study was to assess low-cost DAP for 

locations that had no previous lidar data collected. Missions were flown 120 m above 

terrain level using the 30 m digital elevation model from the Shuttle Radar Topography 

Mission (SRTM, NASA). Flight paths were set with 85% front and 85% side overlap 

between adjacent images. Mission boundaries were set approximately 20 m outward from 

site boundaries to avoid edge effects. Two missions were flown over each site, one with 

images taken at nadir and the other with images taken 30 degree off nadir. 

UAS imagery was processed to generate 3D point clouds using Agisoft 

Metashape Professional version 1.5.4 (Agisoft LLC, St. Petersburg, Russia). This 

program utilizes the SfM method for 3D reconstruction of overlapping photographs. The 

initial image alignment was done using the “High” accuracy setting, allowing the 

program to use the full resolution of each photo when selecting matching points. Each 

image taken from the UAS image sensor was geospatially tagged by the drones internal 

GPS. This GPS data is utilized to assist in the image alignment process, but due to the 

low accuracy of the internal GPS, UAS images were georectified using ground control 

points (GCPs, 12-inch-wide black and white tiles) placed throughout the flight area, with 

their coordinates precisely measured with an HPGPS. Once the initial image alignment 

was completed, the UAS GPS data was no longer referenced and only the GCPs were 

used to georeference the generated models. A dense point cloud was then generated using 

the “High” accuracy setting allowing the use of each image’s full resolution when 

locating matching points between photos. This resulted in a high-density point cloud of 

approximately 250 pts/m2. Due to high computational requirements associated with such 
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high point cloud densities, point clouds were filtered to a voxel spacing of 0.05 m3 

between points, resulting in densities of approximately 50 pts/m2 without degrading 

structural characteristics in the point clouds. 

Lidar and DAP Point Cloud Processing 

 Lidar and DAP derived point clouds were processed using the lidR package 

(Roussel et al., 2020) in R (R Development Core Team 2020). All point clouds were 

clipped to the boundaries of the sites plus a 20 m buffer to avoid edge effects during 

processing. Ground points were classified using the cloth simulation filter (csf) algorithm 

(Zhang et al., 2016). Digital terrain models (DTMs) were generated from classified 

ground points using a Delaunay triangulation algorithm (Kim and Cho, 2019). Digital 

surface model (DSMs) were generated using the pitree algorithm (Khosravipour et al. 

2014). Point clouds were then normalized using the generated DTM’s made for the given 

model at each site. Canopy height models (CHMs) were then generated from the 

normalized point clouds using the same pitree algorithm as for the DSMs. All DSMs, 

DTMs, and CHMs were regenerated as rasters with a 1 m resolution. 

 For predicting forest attributes, the normalized point clouds were clipped to the 

same 0.05 hectare fixed-area plots previously described in Field Data section above. 

Next, structural metrics were extracted from the point cloud for each plot. These metrics 

included max height (zmax), mean height (zmean), standard deviation of height (zsd), 

skewness of height distribution (zskew), kurtosis of height distribution (zkurt), entropy of 

height distribution (zentropy), percentage of returns above mean height (pzabovemean), 
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percentage of returns above 2 m (pzabove2), quantiles of height from 5 to 95 in 5% 

increments (zq5-95), and the cumulative percentage of returns (zpcum1-9). 

Statistical Analyses 

 All statistical analyses were conducted in R (R Development Core Team 2020). 

For each gridded surface model (DTM, DSM, and CHM) we compared both UAS DAP-

derived (nadir and off-nadir) pixel values for the model against the lidar-derived version 

for each site separately. In this study, the use of the term accuracy is utilized when 

describing how close models and predictions from UAS DAP compare to predictions and 

observations made by the collection methods most commonly used in forest inventory. 

For 3D data products, such as digital surface models, lidar is the most common source 

whereas ground collected field data from fixed or variable radius plots are used in the 

collection of forest structural attributes, such as tree heights and basal area. To determine 

how accurately the UAS DAP predictions and models were to these standard method of 

collecting similar data types this study followed many of the accuracy assessment 

protocols for continuous variables as described by Riemann et al., 2010. R-squared, root 

mean square deviation (RMSD), normalized RMSD (nRMSD), agreement coefficient 

(AC), systematic agreement coefficient (ACsys) and unsystematic agreement coefficient 

(ACuns) were calculated between UAS DAP and lidar derived surface models. 

 For prediction of forest attributes, plot values of AGB, BAH, TPH, QMD, and 

LHT were predicted using the structural metrics from lidar and DAP models for each 

plot. This was accomplished using a linear regression for each forest attribute for all plots 
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across sites. The forest attribute variables were checked for linearity and normality using 

histograms and Q-Q plots, resulting in ABG data being cube root transformed, while 

BAH, TPH, QMD, and LHT were square root transforms. The leaps package in R 

(Lumley and Miller, 2020) was used to determine the best subsets of predictor variables 

for regression models for each forest attribute. Following the rule of thumb of no more 

than one predictor variable per 20 sample units, the maximum number of predictor 

variables in a model was set to five, and the best model from candidate models was 

determined by adjusted R2 and BIC values. These models were then used to predict plot-

level AGB, TPH, QMD, and LHT using the derived structural metrics from lidar and 

DAP models for each plot at each site using leave one out cross validation (LOOCV) 

with the caret package (Kuhn, 2020). Cross-validated predictions of plot-level forest 

attributes made by each best fit model were compared to that of observed forest 

attributes. 
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RESULTS 

Accuracy of UAS DAP Surface Models 

 Digital terrain models (DTMs) derived from DAP displayed high correlation 

compared to those derived from lidar, with R2 values ranging from 0.74 to 0.99 (Figure 2, 

Figure 3 and Figure 4). The exception was the DTM using off-nadir imagery at the 

Douglas-fir (DF) site, with an r2 of only 0.01 compared to the DTM from lidar. 

Accuracies suffered in DAP DTMs in sites with denser canopy cover and areas of 

rougher terrain. DTMs derived from nadir imagery performed best when compared to 

terrain models from lidar in terms of agreement, with ACsys values above 0.8 and ACuns 

above 0.85. DTMs from nadir imagery also showed the highest amount of agreement 

when compared to DTMs from lidar, with normalized RMSD values below 0.16 (Figure 

4).  

 DSMs and CHMs from UAS DAP tended to show less agreement with lidar 

compared to DTMs, however, both nadir and multi-angled models performing well, while 

off-nadir models were shown to have best results at the more open MC, MCtb and OW 

sites. Models utilizing only angled imagery in sites with dense canopy cover showed less 

correlation and lower levels of agreement when compared to models generated from 

lidar. DAP CHMs showed the least amount of correlation with lidar data, showing 

poorest results at sites with tall, dense canopies, and this was especially problematic 

when using off-nadir imagery (Figure 3 and Figure 5). 
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Figure 3. Comparison of site-specific digital surface models (DSM) generated from UAS 

DAP (nadir, angled, and multi-angled) versus lidar. Geometric mean fit regression 
line in red, 1:1 line in black, points are colorized by density with lighter regions 
(yellow) indicating greater density and darker regions (blue) being less dense. 
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Figure 4. Comparison of site-specific digital terrain models (DTM) generated from UAS 
DAP (nadir, angled, and multi-angled) versus lidar. Geometric mean fit regression 
line in red, 1:1 line in black, points are colorized by density with lighter regions 
(yellow) indicating greater density and darker regions (blue) being less dense. 
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Figure 5. Comparison of site-specific canopy height models (CHM) generated from UAS 
DAP (nadir, angled, and multi-angled) versus lidar. Geometric mean fit regression 
line in red, 1:1 line in black, points are colorized by density with lighter regions 
(yellow) indicating greater density and darker regions (blue) being less dense. 
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Accuracy of UAS Forest Attribute Predictions 

 Best-fit plot-level regression models show that both DAP and lidar point cloud 

metrics can be used to accurately predict forest structural metrics (Table 4 and Figure 6). 

DAP models had similar prediction accuracy to lidar-based predictions, with the 

exception of the off-nadir DAP models prediction of QMD (R2 = 0.45). The strongest 

predictor variables used when estimating AGB, TPH, BAH and LHT tended to be zmean, 

zsd, and pzabove2 while models predicting QMD tended to rely on quartile metrics. All 

model predictions showed moderate to high correlation (R2 = 0.53 – 0.84) to observed 

values of AGB, THP, BAH, and LHT. Overall, regression models using lidar derived 

predictor variables were more accurate than models of the same response variables using 

DAP derived predictors, with the exception of the model of QMD using nadir DAP 

predictor variables (R2 = 0.70). DAP models containing off-nadir images (both off-nadir 

and multi-angled models) tended to have marginally higher correlation values and 

marginally lower RMSD and nRMSD values, compared to nadir based models.  

 When comparing predicted forest attributes for all sites between the different 

remote sensing models (ie. the different DAP models against lidar), all DAP predictions 

were highly correlated with lidar predictions (Table 5). DAP models containing only off-

nadir images were shown to have the highest correlations with lidar-based predictions (r2 

= 0.75 – 0.85), with the exception of QMD predictions. Multi-angle models containing 

both nadir and off-nadir images had slightly poorer performance when compared to lidar, 

with r2 values ranging from 0.66 to 0.83. 
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Table 3. Summary of plot-level regression models of forest attributes using lidar and 
DAP predictor variables. 

Attribute Model Type Predictor Variables R2 

AGB Lidar zmean + zskew + zq35 + zq65 + zq75 0.79 

  DAP Nadir zmax + zmean + pzabove2 + zq25 + zpcum1 0.80 

  DAP Angle zsd + pzabove2 + zq15 + zq60 + zpcum1 0.81 

  DAP Multi zsd + zentropy + pzabovezmean + zq25 + zq70 0.80 

TPH Lidar pzabove2 + zq5 + zq85 + zpcum1 + zpcum2 0.72 

  DAP Nadir  zsd + pzabove2 + zpcum2 + zpcum4 + zpcum5 0.61 

  DAP Angle pzabove2 + zq80 + zpcum1 + zpcum3 + zpcum4 0.64 

  DAP Multi zsd + pzabove2 + zpcum2 + zpcum7 + zpcum9 0.61 

BAH Lidar zmax + zmean + zsd + zskew + zq25 0.86 

  DAP Nadir zmean + pzabove2 + zq25 + zq95 + zpcum9 0.83 

  DAP Angle zsd + zentropy + pzabove2 + zq15 + zq60 0.82 

  DAP Multi zsd + pzabovezmean + pzabove2 + zq25 + zq70 0.82 

QMD Lidar zskew + zq35 + zq65 + zpcum1 + zpcum2 0.67 

  DAP Nadir zq20 + zq85 + zpcum1 + zpcum2 + zpcum6 0.68 

  DAP Angle  zq35 + zq40 + zq45 + zq60 + zq65 0.45 

  DAP Multi zskew + zq50 + zq55 + zq60 + zpcum1 0.67 

LHT Lidar  zskew + zentropy + zq70 + zq75 + zpcum1 0.67 

  DAP Nadir zmean + zskew + pzabovezmean + zq85 + zpcum6 0.66 

  DAP Angle zsd + zentropy + pzabovezmean + zq20 + zq60 0.69 

  DAP Multi  zmean + zq70 + zq75 + zq85 + zpcum6 0.62 
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Table 4. Comparisons of plot-level observed forest metrics to predictions made by lidar 
and UAS DAP models. 

Model Type AGB TPH BAH QMD LHT 
  R2 nRMSD R2 nRMSD R2 nRMSD R2 nRMSD R2 nRMSD 

Lidar 0.74 0.10 0.68 0.11 0.84 0.10 0.68 0.12 0.75 0.10 
Nadir 0.66 0.11 0.53 0.14 0.77 0.12 0.70 0.11 0.70 0.11 
Angled 0.69 0.11 0.60 0.13 0.76 0.13 0.67 0.11 0.74 0.10 
Multi-angled 0.69 0.10 0.53 0.13 0.77 0.12 0.67 0.12 0.74 0.11 

 

Table 5. Comparisons of plot-level forest metric predictions made by lidar to those of 
UAS DAP. 

Model Type AGB TPH BAH QMD LHT 
  R2 nRMSD R2 nRMSD R2 nRMSD R2 nRMSD R2 nRMSD 

Nadir 0.81 0.07 0.74 0.12 0.81 0.11 0.82 0.08 0.78 0.10 
Angled 0.85 0.07 0.78 0.11 0.84 0.10 0.75 0.09 0.83 0.07 
Multi-angled 0.80 0.08 0.68 0.13 0.83 0.11 0.66 0.11 0.79 0.09 
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Figure 6. Observed vs. predicted plot-level estimates of AGB, THP, BAH, QMD, and 

LHT. Solid line displayed is the 1:1 line. Plots color coded by site. 



27 
 

  

DISCUSSION 

Through the development and comparison of UAS DAP and lidar surface models 

and plot-level forest metric predictions, this study shows that UAS DAP models, when 

combined with low-cost HPGPS, can accurately predict key forest metrics across a wide 

range of forest types and conditions. However, the accuracy of surface models can vary 

based on site forest structural characteristics and surface model type generated (DSM, 

DTM, or CHM). In contrast to surface models, less variability was observed in UAS 

DAP predictions of plot-level forest attributes. This study shows that the addition of 

angled imagery only provided marginal improvements of UAS DAP surface models and 

predictions of forest attributes, and in the case of tall and dense canopies can negatively 

affect the model results. Below, the possible causes of variability in DAP generated 

digital surface models and predicted forest attributes are discussed, followed by 

suggestions of how UAS DAP can be utilized in forest inventory and monitoring based 

on these findings. Lastly, I discuss potential limitations and future questions resulting 

from this study. 

UAS Surface Models 

In previous studies, UAS DAP models were aided by supplementing previously 

collected elevation datasets, such as lidar generated terrain models, to normalize the DAP 

point clouds and create CHMs (Dandois et al., 2015; Fankhauser et al., 2018; Iglhaut et 

al., 2019; Jayathunga et al., 2018; Puliti, 2017; Strunk et al., 2019). This, however, means 
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that the low-cost DAP still required a much higher cost lidar acquisition, leaving this 

method out of reach for smaller studies sites and small landowners who have never had 

the ability to acquire lidar data. In this study, surface models generated from UAS DAP 

were found to have high levels of agreement when compared to those generated from 

lidar, with decreased levels of accuracy in DSMs, DTMs and CHMs at sites DF and HC, 

whose forests had few canopy gaps, resulting in the occlusion of the terrain from the 

UAS passive optical sensor, leaving larger data gaps with increasing canopy density 

above the modeled terrain (an important element when generating accurate CHMs). This 

is supported by visualizations of the UAS DAP and lidar point clouds in Figure 7, where 

there were fewer classified ground points in locations with dense canopies, consistent 

with observations made in previous studies (Belmonte et al., 2020; Dandois and Ellis, 

2010; Wallace et al., 2016). This became most problematic with off-nadir DAP models 

with dense canopies as can be seen at the DF site, where due to heavy occlusion, there 

were not enough matched ground points to accurately model the terrain, resulted in an R2 

value of 0.17 when compared to the terrain model generated from lidar (Figure 4). 

Accuracy of UAS Forest Metric Predictions 

 When comparing UAS DAP versus lidar predictions of plot-level forest attributes, 

lidar-based models consistently had the highest overall accuracy, while UAS DAP based 

models had comparable, results with slightly lower accuracies. It was expected that 

models generated with only off-nadir imagery would show poorer results in predicting 

forest metrics due to the relatively lower levels of agreement found in the surface model 
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comparisons, however, angled models were shown to have equal, and in some cases 

marginally better, performance than nadir and multi-angled DAP model predictions of 

AGB, THP, and LHT. A possible explanation for these accurate plot-level forest attribute 

predictions without having and accurate terrain model comes from  the research of 

Giannetti et al., 2018. In their research, accurate forest structural attributes were predicted 

through the training of point cloud metrics that were independent of normalization by a 

DTM, such as standardized height, intensity, and reflectance values. Their results show 

that accurate predictions of forest metrics can be made from UAS DAP without the need 

for point cloud normalization from a DTM. Regardless, when off-nadir DAP model 

predictions were compared to lidar model predictions, they only showed marginal 

performance improvements over nadir and multi-angled models for all metrics with the 

exception of QMD. All UAS DAP model predictions, however, were shown to have a 

high correlation to lidar predictions.  

Value of Off-nadir Imagery in DAP Surface Models and Forest Attribute Predictions 

  In the plot-level predictions, off-nadir imagery developed models that were 

marginally better able to predict forest attributes. This was most apparent comparing 

angled DAP versus lidar based model predictions. Nadir DAP sometimes omitted trees at 

sites characterized by open canopies and large isolated trees (Figure 1 and Figure 7). At 

the MC and MCtb site, nadir DAP omitted parts of taller tree canopies and tall snags, and 

at the OW site large portions of tall oak canopies also failed to be included. The inclusion 

of angled imagery included some of the structural information that the nadir DAP missed, 
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as seen in the comparison of a MC subplot between models in Figure 1. However, it was 

also apparent that for off-nadir imagery for sites with dense canopies (DF, HC), the 

ground was completely occluded in most images, resulting in very few ground points 

being generated. This also suggests very few tie points between GCPs and images, 

potentially leading to higher georeferencing error. This was improved with the re-

introduction of nadir images in the multi-angled model, but multi-angle imagery did not 

increase in the accuracy of surface models or prediction accuracy of forest attributes, 

compared to models based on nadir DAP. Given the marginal gains of angled imagery, 

and the time required for data collection and processing of both angles and nadir imagery, 

this study indicates nadir imagery should be the default for UAS DAP surface model 

generation and forest attribute prediction, with angled image collection restricted to 

forests with open canopy conditions that are not prone to occlusion of the terrain form the 

image sensor. 
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Figure 7. Point clouds from lidar, nadir DAP and angled DAP shown as 70 m transects 

for each site and colored by classification. The different sites are shown on the 
vertical axis with different model types on the horizontal axis. Arrows show 
where there is missing canopy structural data. 
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Limitations  

The agreement between UAS DAP and lidar CHMs and DSMs showed poorer 

results (Figure 3 and Figure 5). This may be caused by slight shifts in modeled vegetation 

location rather than missing or erroneous values. While coupling our UAS DAP models 

with low-cost HPGPS to increase spatial accuracy of our models, high canopy cover and 

density increased the amount of HPGPS error when averaging the location of the ground 

control points. This, and the distances between the control points themselves, may have 

shifted the UAS DAP coordinates, lowering the overall agreement between 1 m pixels. 

Another source of potential error in CHMs and DSMs can be seen in UAS DAP 

modeling of vegetation in sites with open canopy (OW, MC and MCtb). It was expected 

that these sites would perform well given better performance of passive optical sensors 

with reduced canopy cover and terrain occlusion. However, DAP models of these sites 

had missing canopy structural data (Figure 1 and Figure 6). One cause for this could be 

the use of aggressive depth filtering in photogrammetric processing to remove outlier 

point observations resulting from poor imagery or bad alignment issues. Recent research 

suggests the use of aggressive depth filtering in the generation of UAS DAP point clouds 

may lead to the filtering of segments of the forest canopy as noise and that lower depth 

filtering settings should be used when modeling forest canopies, allowing the point 

clouds to contain more detail (Tinkham and Swayze, 2021). 

In this study, lidar outperformed UAS DAP when predicting plot-level forest 

attributes. Lidar is the preferred remotely sensed data for characterizing ground terrain 
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and vertical forest structure in support of forest inventory and monitoring. However, 

airborne lidar data is cost prohibitive for small areas and frequent data collection and 

based on the results of this study, low-cost UAS DAP can generate similar data products 

to lidar in a less expensive, flexible, and rapidly deployable manner. Land managers can 

utilize UAS DAP in forest inventory and monitoring to generate high resolution imagery, 

3D models, and forest attribute prediction without the need for previously collected 

DTMs from lidar.  

UAS DAP has also been shown to have limitations due to its use of passive RGB 

imagery. DTMs generated from UAS DAP in dense, closed canopy forest conditions, 

such as the DF and HC sites found in this study, show lower levels of agreement than in 

sites with more open conditions. Although we show that DAP can make accurate 

predictions of forest attributes, the spatial variation and bias in DAP surface models at all 

sites suggests that UAS DAP should not be used when doing pixel-to-pixel level change 

detection from repeated measurements. It also suggests that utilizing lidar generated 

DTMs when normalizing UAS DAP DSMs in dense canopy conditions might still be 

necessary to create an accurate CHM. Also, current methods of using lidar and UAS DAP 

point clouds in forest inventory lack the ability to determine species level data. 

Photogrammetric point clouds can, however, integrate spectral information from the 

image sensors into the generated point clouds. This added spectral information could 

allow for additional predictive power in UAS DAP by allowing it to make predictions on 

species and forest health as well as forest structural attributes, but more research is 
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needed in the use of multi and hyper-spectral UAS DAP in forest inventory (Iglhaut et 

al., 2019). 
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CONCLUSION 

 This study demonstrates that low-cost, commercial-grade, UAS DAP coupled 

with new-to-market, low-cost HPGPS can generate comparable data products and 

predictions to lidar and in-field observations of forest attributes across a wide range of 

forest sites and conditions. The addition of off-nadir imagery into UAS DAP models only 

marginally affects the accuracy of surface model and forest attribute predictions. 

Comparisons of UAS DAP versus lidar based surface models indicates that the need for 

previously acquired lidar terrain models may not be necessary to achieve accurate CHMs 

from photogrammetry models, and for all forest types UAS DAP generates predictions of 

forest attributes comparable to lidar.  

This study shows that UAS DAP can be both an affordable and accurate remote 

sensing tool in forest inventorying and monitoring, and that forest managers should 

consider the structural characteristics of the forest of interest when determining whether 

to include off-nadir images in their UAS data acquisition. For use in continuous forest 

inventory and monitoring programs, UAS DAP can make accurate predictions of forest 

stand metrics, however, it may not have the spatial accuracy to make direct comparisons 

of generated surface models between data collection periods depending on forest canopy 

type. The research presented here shows that low-cost UAS, when combined with low-

cost HPGPS, can be an accurate and affordable alternative to lidar in forest inventories, 

increasing access to high quality spatial information that can lead to cheaper and more 

informed management decisions.  
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