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ABSTRACT 
	

 
NONINVASIVE GENETIC SAMPLING WITH A BAYESIAN SPATIAL CAPTURE-

RECAPTURE ANALYSIS TO ESTIMATE ABUNDANCE OF ROOSEVELT ELK 
(CERVUS CANADENSIS ROOSEVELTI) 

 
 

Makenzie Henk 
 
 

Determining abundance of Roosevelt elk (Cervus canadensis roosevelti) in 

central Humboldt County, California has presented a unique challenge to wildlife 

managers due to the dense forest habitat and the animals’ elusive behavior. As the elk 

population has increased, so has human-wildlife conflict, and wildlife agencies need 

efficient and repeatable methods for determining abundance to inform management 

decisions. Traditional monitoring methods such as helicopter surveys are ineffective due 

to low sighting probability and strong behavioral responses to the aircraft. They also 

often lead to biased sex ratios when the distribution of males and females varies across 

the landscape. Non-invasive genetic sampling combined with spatial capture-recapture 

(SCR) is an alternative approach to monitoring populations that are difficult to observe 

directly. This study combined a Bayesian SCR with a binomial point process modeling 

approach and an unstructured single survey search method to estimate elk abundance. We 

aimed to increase the count of males by using a detection dog to search forested areas, 

and searched open grassy hillsides for cow-calf groups. Additionally, GPS collar data 

were used to quantify cohesion of movement among elk through a spatiotemporal 

analysis of home ranges. Over two seasons, we genotyped 436 unique individuals (326 
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females, 110 males). For the SCR analysis, we used sex and survey effort as covariates in 

detection probability, and used a “trap”-level random effect to account for the 

overdispersion in the count data from the herding behavior of elk. The population 

estimate in the study area was 618 ± 36.34 individuals (95% BCI 551-693) with a density 

of 1.09 ± 0.06 elk per km2. This study demonstrated a reliable way to obtain a biological 

reasonable population estimate for elk in an area that is not conducive to traditional 

monitoring methods.  
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INTRODUCTION 
	

Effective management of recovering species is dependent on an understanding of 

their population dynamics and distribution. Many stakeholders such as wildlife managers, 

conservationists, and private land owners, rely on accurate population estimates to make 

fundamental management decisions on hunting and fishing quotas, land use practices, 

and to mitigate human-wildlife conflict (Gibbs 2000, Goode et al. 2014). Therefore, it is 

necessary for managers to devise efficient and repeatable methods for monitoring 

recovering species (Reed et al. 2011). However, this can be challenging for elusive and 

wide-ranging species that occupy habitats that are difficult to reach due to steep 

topography, dense vegetation, or restricted access.  

 Ungulate populations are frequently of great interest to a broad range of 

stakeholders because they are popular for wildlife viewing, hunting tags can bring in 

revenue for natural resource departments, and ungulates can be a source of human-

wildlife conflict through property damage and vehicle collisions (Donovan and Champ 

2009, Goode et al. 2014). Many ungulate species such as elk (Cervus sp.) and deer 

(Odocoileus sp.) present a unique challenge for population monitoring because 

individuals are rarely uniquely identifiable and can have large home ranges. Aerial 

surveys have been the primary method of obtaining spatially robust count data for wide-

ranging ungulates (Lubow and Ransom 2016). However, these data can be biased even 

after being corrected with a sightability model if sighting probability was low or the 

helicopter/aircraft provoked a strong behavioral response (Lubow and Ransom 2016). 
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Further, bias in estimated sex ratios can occur when the distribution of males and females 

varies across the landscape (McCorquodale 2001). For instance, in most elk populations, 

a proportion of males live primarily alone or in small bachelor herds and are rarely 

available for visual detection. Movement data from telemetered males may be necessary 

to correct such biased estimates for sex differences in detection probability (Griffin et al. 

2013). Bias in aerial survey data is especially common for populations that are difficult to 

observe directly due to dense forest that easily provides cover when individuals are 

spooked. 

Camera traps are an emerging alternative for estimating abundance of more 

elusive populations of ungulates, but many analyses that do not require individual 

identification such as Random-Encounter Models (REM) and Time-to-Event Models 

(TTE) require auxiliary information on movement rate (Rowcliffe et al. 2008, Moeller et 

al. 2018). This necessitates capturing and collaring a sufficient number of individuals to 

obtain movement data that can be generalized to the entire population. This process can 

be time and resource intensive and reduces the non-invasive aspect of camera trapping 

preferred by many wildlife professionals. N-mixture models from camera data are 

another method for inferring abundance from count data. However, their reliability has 

been called into question under field conditions where probability of detection cannot be 

fully explained by covariates, and when closure cannot be assumed from sampling 

occasion to occasion (Barker et al. 2017). 

Recently non-invasive genetic sampling methods have been increasingly used for 

studying ungulate populations (Harris et al. 2010, Poole et al. 2011, Lounsberry et al. 
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2015, Woodruff et al. 2016). Individual genotypes derived through DNA microsatellite 

analysis from scat or hair can provide reliable information on individual identity, sex, and 

relatedness, which are valuable demographic parameters (Palsbøll et al. 1997, Kohn et al.

1999, Woods et al. 1999, Lukacs and Burnham 2005). Non-invasive genetic sampling is a 

useful tool to generate spatial encounter data for spatial capture-recapture (SCR) 

modeling. This approach builds on traditional capture-recapture (CR) data by linking the 

encounter data with the location of the detections through a spatial point process as well 

as to describe realized density in the model state-space (Royle et al. 2013). This process 

allows researchers to better estimate the effective sampling area, a problem that plagues 

CR studies where the estimated population size is not associated with a particular area 

(Royle et al. 2013). The SCR approach can also increase sampling efficiency by allowing 

for recaptures to occur either across time or across space in a single survey method 

(Royle et al. 2013).  

Many ungulate species are not exclusively solitary and do not move fully 

independently of each other, which violates assumptions of the homogeneous binomial or 

Poisson point process (Royle et al. 2013). Sampling these species that cluster or have 

dependent movements, i.e., cohesion, can lead to overdispersed count data where the 

variance in number of individuals captured per trap is larger than the expected variance 

(Bischof et al. 2020). Previous simulation studies have found that SCR abundance 

estimates are robust to the violation of model assumptions caused by low levels of 

grouping and cohesion. However, even in simulated populations with groups of only 

eight individuals, such as wolf (Canis lupus) packs, SCR based on the Poisson point 
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processes can yield biased abundance estimates (López-Bao et al. 2018, Bischof et al. 

2020). These simulations assumed that all groups were the same size with the same level 

of cohesion, which may not capture the heterogeneity of herding behavior in elk, and the 

impact that behavior ultimately has on SCR population estimates.  

This study used non-invasive genetic sampling with fecal DNA to conduct a 

single survey SCR analysis on Roosevelt elk (Cervus canadensis roosevelti) in central 

Humboldt County, California. Roosevelt elk populations in California were decimated in 

the late 1800s, but the population size has been increasing along the North coast since the 

1970s (CDFW 2018). The coastal elk population has recently expanded into central 

Humboldt County and has been increasing in size over the last decade (CDFW, 

unpublished data). However, population monitoring has been difficult in this area due to 

steep terrain and restricted access. As human-elk conflict has increased, management 

agencies aim to better estimate elk population numbers to increase hunting opportunities 

while also maintaining a healthy population (CDFW 2018). Elk in this area form groups 

of varying sizes from small bachelor groups of a few all-male individuals to larger 

primarily cow-calf groups of 100 or more (CDFW, unpublished data). Cohesion of 

movement among elk can vary by individuals, group, and throughout the year, but is 

generally highest during the winter months (Franklin et al. 1975). This study attempted to 

measure the levels of cohesion among elk through a spatiotemporal analysis of collar data 

and to limit the impact of overdispersion caused by social grouping behavior on the SCR 

model’s abundance estimate. The overall objectives of this study were 1) to provide a 

precise abundance estimate for the elk population in central Humboldt County; 2) to 
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evaluate a potentially reliable and repeatable method of estimating elk abundance in 

dense forest and open grassy habitats; 3) to increase the count of males through an 

unstructured search method that targets those habitat types.  
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METHODS 

	
Study Area 

	
The study area was located in the Northern Coastal Mountains of central 

Humboldt County, California (Figure 1). Humboldt County has a maritime climate 

characterized by cool wet winters and warm dry summers with annual rainfall averaging 

between 178 and 205 cm (Sugihara et al. 1987). Snow-fall in the winter is common at the 

higher elevations, but rarely persists on the ground all season (Kolbe and Weckerly 

2015). The study area was approximately 329 km2 bordered by Hwy 299 to the north and 

the Mad River along the west and south. The topography ranges from around 60 to 1200 

m and is composed of steep grassy hillsides and dense forest (Google Earth 2018). The 

landscape is a patchwork of private land managed primarily for timber, followed by 

private cattle ranches and scattered farms. The vegetation is a mix of fir forests 

(Pseudotsuga menziesii) and annual grassland/pasture, with scattered pine (Pinus sp.) and 

redwood (Sequoia sempervirens) forest (Humboldt County 2002).  
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Figure 1. Study area for the fecal DNA collection of Roosevelt elk (C. c. roosevelti) 

during January through March of 2019 and January and February of 2020 in 
Humboldt County, California, USA.  
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2019 Fecal Collection 

	
A preliminary field season took place from 4 January to 13 March, 2019. The 

mid-winter season was chosen to avoid the influx of males during rut in the late summer 

and fall and the dispersal of females for parturition in the spring and early summer. All 

collection methods described below were approved by Humboldt State University’s 

Institutional Animal Care and Use Committee (Protocol # 18/19.W.65-E).  

During the 2019 field season, myself and a group of volunteers sampled from 4 

collared elk groups which each had 1 to 2 collared cows. Cow elk were captured between 

2018 and 2019 by the California Department of Fish and Wildlife using free range darting 

and chemical immobilization with 2 ml of BAM (27.3 mg of butorphanol tartrate, 9.1 mg 

azaperone tartarte and 10.9 mg medetomidine HCL) and then fitted with a GPS collar 

(CDFW, unpublished data). The elk groups with collared cows were sampled 1-4 times by 

2-4 surveyors on days without rain and minimal rain the day before. We used recent GPS 

collar points to determine locations to search for fresh fecal pellets (0-6 days old), 

characterized by being moist with a mucus sheen, and odorous with limited 

decomposition by insects (Weckerly et al. 2004). We collected 6 pellets from each pellet 

group with a pair of fresh nitrile gloves and stored them in 50 ml conical tubes (Goode et 

al. 2014). To avoid sampling from >1 individual per vial, we defined a group of pellets as 

>10 pellets within 0.1 m2 from each other (Harris et al. 2010, Månsson et al. 2011). We 

also collected from the center of each pile, and each pellet group was destroyed and 

covered with leaf litter, grass or dirt to prevent resampling. Upon returning from the field 
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the tubes were filled with 95% ethanol for DNA preservation (Lounsberry et al. 2015). 

These data were not used for the subsequent SCR analysis but were combined with the 

2020 genotypes to determine a minimum population count.  

 

2020 Fecal Collection 

	
The 2020 field season was conducted from 6 January to 29 February. We chose 

surveying locations from a grid of 9 km2 cells transposed over the study area. The cell 

size was chosen because it was small compared to the average home range size (32.13 

km2) estimated from 7 collared elk, but provided sufficient search area and habitat 

variability. Cells were categorized based on habitat suitability and property access (see 

Appendix for details).	Previous work on habitat suitability for female elk determined 

forest edge and grassland were highly suitable habitat, with tracts of continuous forest 

classified as lower suitability (Mohr 2020). Further, since male elk can differ in their 

spatial and temporal use of habitat, we prioritized cells with a mix of habitat types to 

target both cow-calf groups and male bachelor groups (Weckerly et al. 2004, Bliss and 

Weckerly 2016). The cells were surveyed in random order except when property access 

was limited to a short period of time.  

Each cell was searched via 2 simultaneous surveys. A detection dog team (dog 

and handler) searched forest and edge habitat, and a separate team composed of a 

researcher (self) and technician searched the open grassy hillsides. Both surveys were 

structured by a path predetermined using Google Earth to control for spatial coverage, 
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length and elevation gain. The path was adjusted in the field depending on time, terrain, 

and fecal pellet locations. The same dog and handler were used for each survey to reduce 

bias (Dahlgren et al. 2012). The starting location for each survey depended on ease of 

access; as a result, some surveys started outside the cell. Likewise, the routes searched 

would stray outside the cell if there was not sufficient forest or grassland accessible for 

surveying from the starting point. Each surveyor and the detection dog had a GPS tracker 

to measure search effort, and we collected GPS waypoints for all fecal piles from which 

samples were collected. Collection and storage were conducted using the same protocol 

as in 2019.  

 

Genetic Analysis 

	
Fecal pellets were processed for microsatellite markers to determine individual 

identity and sex at the University of California, Davis Mammalian Ecology and 

Conservation Unit of the Veterinary Genetics Laboratory using a process described in 

Lounsberry et al (2015). Briefly, epithelial cells were washed from the surface of the 

fecal pellets using an ATL (Qiagen) buffer. The DNA was then extracted from the 

resulting solution of suspended epithelial cells, and the microsatellite markers were 

amplified using a Qiagen multiplex polymerase chain reaction (PCR) kit (Lounsberry et 

al. 2015). Twelve microsatellite and a sex marker developed for Tule elk (Cervus 

canadensis nannodes) were used for individual genetic profiles and sex determination 

(Sacks et al. 2016). The DNA-determined individual identities were used in subsequent 
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analyses if at least 11 out of 12 microsatellites plus the sex marker successfully 

amplified.  

 

Spatial Capture-Recapture Analysis  

	
We estimated elk population size within the buffered study area using a spatial 

capture-recapture modeling approach with a homogenous binomial point process. We 

modeled the baseline encounter probability, p0ij, using a linear mixed effects function 

which included a covariate, sex, for each individual i and a spatial covariate, effort, for 

each cell j with β1 and β2 as the parameters to be estimated. We defined effort as the linear 

distance searched in each cell in kilometers. Further, the baseline encounter probability at 

cell j was treated as a normally distributed random variable to reflect differences in 

detection probability among cells unmodeled by the other covariates:  

𝑝%&' = 	𝛼' +	𝛽- ∗ 𝑆𝑒𝑥& +	𝛽2 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡'			 

The spatial component of SCR allows the model to simultaneously estimate 

population size along with home range centers, also referred to as the individual’s activity 

center, as a latent variable (Royle et al. 2013). This modeling approach allowed for a 

heterogeneous probability of detection that decreased as the distance between the location 

of the individual’s latent activity center and the ‘trap’ location increased. The decline in 

probability of detection with increasing distance from an individual’s activity center was 

measured as a scale detection parameter (σ), which was related to the estimated home 

range size (Royle et al. 2013). For this analysis, the spatial component contained σ and 
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dij, the distance between the latent activity centers and the traps, in a logistic link function 

with the baseline encounter probability: 

𝑙𝑜𝑔𝑖𝑡 𝑝&' = 	𝑝%&' −
1
2σ2

𝑑&'2  

We used an unstructured search method with only a single survey per location; no 

physical traps were used. Instead, traps were defined as the centroid of each grid cell. 

Genotyped individuals were assigned to the trap(s) for the cell(s) they were sampled in, 

and could be assigned to multiple traps if they were found in multiple grid cells. 

However, individuals could not be counted more than once per cell, and thus only be 

‘caught’ once per ‘trap’ (Royle et al. 2013). As it was not possible to accurately age 

genotyped fecal pellets, the search occasions were collapsed into a single occasion 

represented with a bi-dimensional matrix (i x j). Therefore, the probability of detecting 

individual i in cell j, pij, was defined by a binomial distribution: 

𝑦&'	~	𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝&') 

We used grid sizes of 1 km2, 4 km2, and 9 km2 to test the effect of spatial 

resolution on σ. The study area was buffered by 4.5 km using the ‘zeros trick’, because 

grid cells were distributed in a non-rectangular array (R.B. Chandler, pers. comm.). This 

buffer size was slightly larger than twice the estimate for the scale detection parameter, 

and therefore reduced the probability of detecting an elk with an activity center outside 

the state space to near zero (Royle et al. 2013). We also ran a model with a buffer of 10 

km to test the sensitivity of the density estimate and the estimates for the baseline 

encounter probability covariates, sex and effort, on the size of the state space. We 
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conducted all analyses using the package jagsUI v1.5.1 in R (Kellner 2019, R Core Team 

2020).  

We used parameter-expanded data augmentation to estimate the number of 

individuals that were not captured by adding 461 all-zero capture histories (for a total of 

750 possible individuals) to the capture history matrix, and modeling the probability an 

unobserved encounter history was included in the population as the parameter Ψ (Royle 

et al. 2013). This amount of augmentation was large enough that the distribution of the 

posterior density estimate was not truncated or limited by the number of individuals 

(Royle et al. 2013). We used minimally informative priors for all model parameters. The 

priors used for β1 and β2 were normal(0, 0.01), and gamma(0.001, 0.001) for σ. The prior 

for the random effect was normal(mu, tau) with mu defined as normal(0, 0.01) and tau as 

uniform(0,10). Models were run for 50,000 iterations with a burn-in period of 25,000. 

Markov Chain Monte Carlo (MCMC) convergence was assessed through the R-hat 

statistic and visual inspection of the plots. R-hat values less than 1.1 were accepted as 

indicating convergence (Gelman et al. 2014). We assessed goodness of fit by evaluating 2 

fit statistics from Royle et al. (2013) using the Bayesian P-value approach. Briefly, the 

first fit statistic tests individual encounter frequencies, and the second fit statistic tests 

trap-encounter frequency. A Bayesian P-value near 0.50 indicated a good model fit.  
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Cohesion and Home Range Analysis 

	
We attempted to quantify cohesion through a spatiotemporal comparison of GPS 

collar data for pairs of collared elk whose home ranges overlapped and were believed to 

belong to the same group. To do this, we created a minimum convex polygon (MCP) for 

every point taken within a 24-hour period during January and February of 2019 and 2020 

for each of the 6 collared elk using the R package adehabitatHR v 0.4.18 (Calenge 2006). 

The collars were set to take points every 4 hours, so each MCP included up to 6 points. 

Any 24-hour periods with fewer than 3 points could not be turned into MCPs and were 

not used for the analysis. We calculated the percent overlap of the MCPs in the same 24-

hour period for each of the 3 pairs of elk, which was used as a proxy for how cohesive or 

dependent the pairs’ movements were. For simplicity and ease of comparison, elk pairs 

were considered to have high cohesion when the MCPs overlapped >75%, medium 

cohesion when overlap was between >25-75%, and low cohesion when overlap <25%. 

We also created 25% and 50% KDE home ranges for these elk to represent ‘core’ areas 

of use; these were compared for overlap and compared to the density map of latent 

activity centers. 

Additionally, we created home ranges using a 95% kernel density estimate (KDE) 

with plug-in method for the 6 collared elk used in the cohesion analysis plus an additional 

elk collared in the study area. These home ranges were made using points overlapping the 

study period (January and February 2020) and points between February 2019 to February 

2020 for a yearly home range (Walter et al. 2011, Walter and Fischer 2016). We 
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compared these to the home range estimate derived from the SCR model using σ and the 

mean baseline probability of detection in the hra function from Royle et al. (2013) 

adjusted to include the logistic distribution.  

The collar data were also used to make a rough approximation of σ by calculating 

the standard deviation of the coordinates for each collared elk, then taking the mean of 

the standard deviations weighted by the number of points for each elk. This was done 

using only the points overlapping the study period (𝜎hr) as well as the full year of points 

(𝜎hr2).  
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RESULTS 

	
Fecal Collection and Genotyping 

	
We surveyed for fecal pellets on 13 days across 30 cells. The minimum amount of 

survey effort in a cell was a search track of 8.6 km; however, all other cells had at least 

10 km of survey effort with a mean of 29.6 km (Figure 2). We collected a total of 886 

samples in 2019 and 1020 samples in 2020. The success rate of the microsatellite 

genotyping was 95% (n = 841) in 2019 and 78.3% (n = 798) in 2020. The fecal DNA 

analysis genotyped 230 individuals (197 females, 33 males; 100 females:17 males) in 

2019 and 289 individuals (202 females, 87 males; 100 females:43 males) in 2020. There 

was a significant proportion of males genotyped in 2020 compared to 2019 

(X2
1,519=17.887, p<0.001). Of the 2020 individuals, 18 males and 7 females were only 

’captured’ by the detection dog, which increased the number of males detected by 20%.  

Eighty-three individuals (73 females, 10 males; 36% of 2019 individuals, 29% of 

2020 individuals) were caught both years, giving a minimum count of 436 elk (326 

females, 110 males; 100 females:34 males) summed over the 2 sample years. We believe 

this was an appropriate estimate for minimum count because visual counts in this area 

suggested a growing population and the mild climate led to high survival rates among 

yearlings and adults (Nigon 2020, CDFW, unpublished data).  

The sex ratios above were adjusted to remove calves by using calf:cow ratios 

obtained from visual counts of collared elk herds across Humboldt County. These counts 

were obtained from December 2020 through February 2021 when a concerted effort was 
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made to obtain accurate calf:cow ratios. The average ratio from these visual counts was 

28 calves:100 cows. Assuming a 50:50 sex ratio for calves, there was an average of 14 

male and 14 female calves for every 100 cows. After we subtracted the proportional 

number of calves from the 2020 genotypes, the remaining counts were 174 females and 

59 males for a sex ratio of 100 females:34 males. The new sex ratios for the 2019 

individuals and the combined 2019 and 2020 individuals were 100 females:3 males and 

100 females:23 males, respectively. The resulting 2020 and combined 2019-2020 

estimated sex ratios were still above the average ratio (100 females:19 males) from the 

visual observation counts and the 2020 ratio was larger than the highest sex ratio obtained 

for any herd through visual counts conducted during that season (100 females: 33 males). 
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Figure 2. Map of area surveyed in January and February 2020 for Roosevelt elk (C. c. 

roosevelti) in Humboldt County, California, USA. The 9 km2 grid is shown with 
spatial ‘traps’ represented by yellow “+”, and each cell is colored based on 
intensity of search effort in km walked.  
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Spatial Capture-Recapture 
	
 

From the 2020 SCR analysis, the average number of spatial captures for the 9 km2 

grid per individual was 1.64 (females = 1.67, males = 1.56), with 154 individuals 

captured once, and 94, 33 and 8 individuals caught 2, 3, and 4 times for a total of 473 

captures (Figure 3). The mean of the posterior probability distribution of abundance from 

the SCR model was 618 ± 36.34 individuals (95% BCI 551-693) (Table 1). The density 

of the buffered study area was 1.09 ± 0.06 elk per km2 (Figure 4). The R-hat values 

suggested MCMC convergence (< 1.1) for all model parameters.  

The mean of the posterior of the scale detection parameter using the 9 km2 grid 

was 2.04 ± 0.10 km (95% BCI 1.85-2.25), which was consistent with models using 

different grid sizes (1 km2 = 2.07 ± 0.10 km; 4 km2 = 1.99 ± 0.10 km), suggesting that 

grid resolution did not influence σ. Therefore, the model with a 9 km2 grid was used for 

the remaining model for computational efficiency. The parameter estimates for the 

probability of detection function did not change dramatically between different buffer 

sizes, suggesting the model estimates were robust to changes in size of the state space 

(Table 1). The estimate for the covariate sex showed a slight increase in detection 

probability for females and the estimate for effort showed a slight increase in detection 

with increased effort.  

Previous studies have shown a negative bias in models that do not relax the 

assumption of equal probability of detection at each trap when sampling from grouping 

species (López-Bao et al. 2018, Bischof et al. 2020). In this study, the model that did not 
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relax this assumption through a “trap”-level random effect produced a smaller population 

estimate of 512.94 ± 26.06 (95% BCI 464-567). This model also showed only a moderate 

fit with the individual encounter frequency goodness-of-fit test (P = 0.678), and a lack of 

fit with the trap-encounter frequency (P = 0.000). After adding the random effect, the 

estimate increased to 618 ± 36.34 individuals and the Bayesian P-values for the two 

goodness-of-fit tests were 0.478 and 0.478, respectively, suggesting an adequate model 

fit.  
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Figure 3. Map of area surveyed in January and February 2020 in Humboldt County, 

California, USA. A 9 km2 grid is shown with spatial traps represented by blue 
“+”, and the size of the yellow circles is proportional to the proportion of 
Roosevelt elk (C. c. roosevelti) ‘captured’ in that cell through fecal DNA.  
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Figure 4. A density map of the posterior mean density of latent activity centers for 

genotyped Roosevelt elk (C. c. roosevelti) per km2 in central Humboldt County, 
California, USA in January and February 2020. The 50% KDE with plug-in home 
ranges of the 6 collared cow elk are shown as black lines transposed over the 
density map. The high density area on the east side of the map suggests the 
presence of at least one group without a collared member. 
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Table 1. Posterior density estimates for Roosevelt elk (C. c. roosevelti) from a spatial 
capture-recapture model with a binomial point process with buffers of 4.5 km and 10 km. 
The estimated parameters are the covariates in the baseline encounter function: sex (𝛽-) 
and effort (𝛽2), scale detection parameter (σ), abundance (N), and density (D). All 
estimates are shown with ± standard deviation. Models used a logit detection function 
and were run for 50,000 iterations with a burn in of 25,000 and 3 chains for a total of 
75,000 posterior samples.  

 
 4.5 km 10 km 
𝛽- 0.011 ± 0.01 0.018 ± 0.23 
𝛽2 0.048 ± 0.04 0.043 ± 0.04 
σ 2.04 ± 0.10 2.03 ± 0.10 
N 618 ± 36.34 1294.05 ± 90.08 
D 1.09 ± 0.06 1.12 ± 0.08 
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Cohesion and Home Range 

	
A spatiotemporal analysis of select cow elk MCPs showed a wide range of daily 

overlap between elk pairs that varied by pair, month, and year (Figure 5). Present in both 

years, pair 1 had a mix of low, medium, and high overlap in 2019 (mean overlap = 

42.9%), but showed a dramatically different pattern in 2020 when the cows had no 

overlapping MCPs in January, then overlap increased in February (mean overlap = 

63.7%). Pair 2 had consistently high overlap (mean overlap = 82.6%) that decreased 

slightly over the 2020 study period. Conversely, pair 3 had consistently low overlap 

(mean overlap = 3.8%), with the amount of overlap increasing slightly from January to 

February in 2020. Due to the overall low overlap by pair 3, but roughly overlapping 

ranges for Pairs 1 and 3, I compared one cow from pair 1 to one cow from pair 3 for 

overlap during February 2020. These two cows exhibited high daily overlap for 42.3% of 

the MCPs with an average overlap of 65.6%.  

The variability in overlapping home ranges is further demonstrated by the 25% 

and 50% KDE home ranges for these six collared cows (Figure 6). Pair 2 (not shown in 

Figure 6) represented a relatively distinct elk group with high cohesion and little overlap 

with any other collared individuals. Pair 1 (light and dark blue) and pair 3 (light and dark 

red) have almost entirely overlapping 25% KDEs, but the difference in their home ranges 

is more apparent when the 50% KDEs are compared. These KDEs suggests that the pairs 

may share parts of their core home range but have different movement and space use 

patterns on a larger scale. Pairs 1 and 3 were originally thought to belong to distinct elk 
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groups, but may instead represent a larger elk group with a range of cohesion levels 

between individual elk pairs through time.  

The average home range size for the 7 collared cows in this study was 14.52 km2 

for the study period and 32.13 km2 for the year. However, there was a wide range of sizes 

for the yearly home ranges with the smallest being 14.6 km2 and the largest 93.9 km2. 

The estimate for 𝜎hr was 1.59 km (study period) and 2.21 km for 𝜎hr2 (full year); 𝜎hr2 fell 

within the 95% Bayesian credible interval. Our estimated home range from the hra 

function was 78.32 km2, which is large compared to the average yearly home range, but not 

unreasonable. This estimate was more similar to the yearly home range size derived from 

minimum convex polygons (MCP) with a mean of 65.10 km2. Overall, these results 

suggest a relatively good biological performance of the model with a potentially slight 

overestimation of average space use. 
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Figure 5. The proportion of overlapped minimum convex polygons (MCPs) that were 

within each percent overlap range: low (0-<25%), medium (>25-75%), high (>75-
100%). The MCPs were created for each 24-hour period for three pairs of collared 
cow Roosevelt elk (C. c. roosevelti) in Jan and Feb of 2019 and 2020 in central 
Humboldt County, California, USA using the R package adehabitatHR v 0.4.18.  
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Figure 6. Kernel density estimate (KDE) with plug-in home ranges for Roosevelt elk (C. 
c. roosevelti) pair’s 1 and 3 in Humboldt County, California, USA. The KDE 
home ranges only include points taken during the study period, January and 
February 2020. Each pair of elk from the same group are represented by the same 
color of different shades: pair 1 (light and dark blue) and pair 3 (light and dark 
red). Map A (left) shows the 50% KDE home ranges and map B (right) shows the 
25% KDE home ranges. 
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DISCUSSION 

	
Monitoring the Roosevelt elk population in central Humboldt County presents a 

unique challenge for wildlife managers. Previous work has shown the dense forest in 

Northern California makes traditional monitoring techniques ineffective (Weckerly and 

Kovacs 1998). This project used non-invasive genetic sampling combined with SCR 

modeling to obtain an abundance estimate of elk herds that were difficult to observe 

directly. Our density estimate of ~ 1 elk per km2 was comparatively smaller than other 

estimates of Roosevelt and Tule elk in Northern California (Howell et al. 2002, Weckerly 

et al. 2004). However, elk populations throughout North America are notorious for 

dramatically different density estimates ranging from <1 elk per km2 to estimates greater 

than 18 elk per km2 (Stewart et al. 2009, Proffitt et al. 2015).  

Our 2020 field methods allowed us to improve the count of male elk and the 

accuracy of the sex ratio estimate. However, the sex ratios from the fecal DNA included 

calves that are generally not included in sex ratio estimates used by wildlife managers. 

After removing the estimated average number of calves, the resulting sex ratio from the 

2020 genotypes (100 females:34 males) was larger than the average sex ratio for the 

herds in Humboldt County (100 females: 19 males) from visual counts in 2021, 

suggesting that even repeated visual counts of some of the more highly visible herds may 

be undercounting bulls and yearling males. The adjusted ratio from 2019 genotypes 

produced a particularly low sex ratio, indicating targeted fecal sample collection of herds 
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using cow collar data may produce ratios with a strong bias against adult and yearling 

males.  

The dramatic sex ratio differences in 2019 and 2020 may be due to some males, in 

particular yearlings, continuing to associate and move with cow-calf groups, and the 

unstructured search method enabled sampling from more groups, and therefore, more 

males. Likewise, by targeting the forested areas with the detection dog team, we further 

increased the number of unique male elk genotyped and increased recaptures of males, 

likely mature bulls, which were important for convergence of the SCR model parameter 

estimates (Furnas et al. 2018). We had similar recapture rates for both males and females 

and the baseline encounter probability parameter showed little difference in probability of 

detection between the sexes. This suggests that our field methods with SCR modeling 

were robust to the differences in distribution and behavior of males and females that can 

bias estimates from traditional monitoring methods.  

The herding behavior of elk creates a unique challenge for SCR models with a 

homogeneous point process because it violates the assumption of independence between 

individual detections leading to overdispersed count data and negatively biased 

population estimates (Bischof et al. 2020). We believe this study minimized the bias from 

grouping behavior by relaxing the assumption of equal detection probability within each 

cell, and through spatially robust sampling with a high search effort. 

Previous studies have shown that error in density estimates from SCR was 

reduced when all of the possible habitat was surveyed, and enough fecal pellets were 

successfully genotyped to result in sufficient unique individuals and spatial recaptures 
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(Brazeal and Sacks 2018, Bischof et al. 2020). In a study of an enclosed elk population of 

known size that followed similar field methods to this study, SCR predicted population 

estimates with relatively high precision and accuracy despite ignoring the grouping 

behavior of elk (Brazeal et al. 2018). Grouping should not be ignored in wild settings 

where elk have larger more heterogeneous home ranges than in limited free-range 

settings; however these studies collectively suggest that non-invasive genetic sampling 

with SCR can be a reliable method even with grouping species if search effort and spatial 

sampling is sufficiently high.  

In our study area, we searched in targeted habitats across 30 cells, which 

encompassed ~80% of the study area. This spatially robust sampling with an unstructured 

survey design led to collecting from most, possibly all, the herds in the area. This 

potentially reduced the bias associated with grouping species and led to strong biological 

performance of the model. However, the model without the “trap”-level random effect 

still produced a much smaller estimate than the model with the random effect, this 

reflects a similar pattern found in previous work that demonstrated a slight negative bias 

with lower levels of grouping of less than 10 individuals (López-Bao et al. 2018). 

Therefore, relaxing the assumption of equal probability of detection within each cell 

potentially minimized the negative bias commonly associated with SCR and highly 

cohesive, grouping species.  

Few SCR studies have looked at cohesion of movement among individuals and its 

impact on parameter estimates. This study presents one simple way to quantify cohesion 

among pairs in the same group, demonstrating that cohesion can vary considerably 
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between pairs and over time. The spatiotemporal analysis of cow elk MCPs indicated that 

some individuals in the same group moved semi-independently of each other while 

staying within the larger group home range. The elk pairs with high movement cohesion 

may have underlying bonds such as high genetic relatedness. Future studies could 

integrate relatedness into SCR modeling as a covariate to help explain why some 

individuals are ‘captured’ together more than others, which could be used to inform 

probability of detection or heterogeneity in density of activity centers. Similarly, it would 

be beneficial to measure cohesion and grouping within the SCR model itself, which will 

better measure the impact of those factors on SCR parameter estimates.  

One of the benefits of SCR modeling is the use of spatial capture information on 

estimated home range centers and the scale detection parameter (Royle et al. 2013). The 

model’s estimate of home range size was large compared to the home ranges from the 

collar data. However, it is important to be cautious when comparing these two different 

methods of estimating home range size. The method from Royle et al. (2013) assumed a 

circular home range that is independent from other individuals, neither of which is true 

for elk. These assumptions make this method more akin to the MCP home range method, 

which gave a more similar estimate. Conversely, the KDE method allowed for 

fragmented space use, which created more conservative home ranges. One of the other 

limitations of this comparison was the lack of GPS collar data for bull elk. We had little 

information on bull elk space use in this area, but when we compared σ for males and 

females in a SCR model, the estimates were within 0.1 km of each other suggesting 

similar home range sizes.  
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The latent activity centers from the model lined up well with the core home 

ranges of the collared elk groups during the study period. The high-density areas on the 

east side of the study area included at least one known group of elk with no collared 

individuals (Figure 4). Therefore, SCR analysis can be used to estimate the density of 

home range centers in the study area during the surveying time frame, which can be used 

to inform potential locations of human-wildlife conflict and predict home range locations 

of uncollared elk groups.  

This study has demonstrated an efficient and reliable way to monitor elk 

populations where traditional methods such as aerial surveys are ineffective. 

Unstructured searches in high quality habitats captured more groups of elk and gave a 

more balanced sex ratio, circumventing the need to place collars on elk in remote areas to 

facilitate sampling. By combining the unstructured search method with an SCR model, 

this study obtained a reasonable estimate of the elk population size that can be used by 

wildlife management agencies to inform hunting quotas and future management plans. 
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MANAGEMENT IMPLICATIONS 

	
The unstructured search method used in this study was an efficient and effective 

way to survey large areas for a species with high heterogeneity in density and 

distribution. It also reduced the need to spend time delineating transects in the field and 

allowed for the flexibility to change course when areas of high use by elk were found. 

This study showed that an unstructured search method, in combination with the use of a 

detection dog, can help to increase the count of bull elk who may have different 

spatiotemporal habitat use patterns than the cow-calf groups.  

We chose to sample in the winter months to avoid immigration during rut in the 

fall and emigration during parturition in the spring. The mild climate in Humboldt 

County leads to high survival of adult elk, and by starting surveys in January, we avoided 

the first 14 weeks after most parturition events when calf mortality is highest (Nigon 

2020). Winter was also a beneficial time to sample due to decreased space use by elk, 

which increased the chances of capturing samples from the greatest number of unique 

individuals. On the other hand, winter months can be a hindrance to successful sampling 

due to increased precipitation, especially in the Pacific Northwest, which can wash off 

fecal DNA and reduce genotyping success from fecal pellets (Brinkman et al. 2010). 

There was a decline in the genotyping success rate between 2019 and 2020, which is 

likely due to the targeted sampling of recent collared elk locations in 2019 increasing the 

proportion of fresh samples collected. This may indicate that more samples will be 

needed using the unstructured method to obtain a similar number of captures and 
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recaptures as the targeted sampling. Overall, this study avoided sampling on days of rain 

and maintained a relatively high genotyping success rate in 2019 and 2020, which was 

found in a similar study that also sampled during the winter months (Mena 2019). 

Therefore, the benefits from sampling during the rainy season greatly outweighed the 

negative impacts of inclement weather.  

We recommend keeping the study area small enough that the majority of suitable 

habitat can be surveyed. This is important to increase the probability of sampling from all 

elk groups in the area and reduce the bias associated with grouping behavior. Targeting 

both open grassy habitat and forested habitat was also important for increasing unique 

genotypes and recaptures. However, there were fewer than expected unique individuals 

found only in the forest, suggesting an equal search effort in both forest and open habitat 

may not be necessary. We recommend focusing efforts on the open grassy areas of high 

habitat suitability, and adding forested habitat if concerted effort is made to focus on bull 

elk in the region.  

Lastly, the overdispersion in the count data from grouping behavior cannot be 

overlooked. This study found that relaxing the assumption of equal probability of 

detection within each cell increased goodness-of-fit and reduced the negative bias 

incurred from grouping behavior. However, some bias from the dependent nature of elk 

movement likely still impacts the results and further research is needed to better account 

for the highly social behavior of Roosevelt elk.  
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APPENDIX 
	

The quality of habitat in each cell was calculated based on a habitat suitability 

model developed for elk in this region (Mohr 2020), and the range of suitability values 

within each grid cell was compared to the frequency those values were used by 19 

collared cows in Humboldt County and 14 collared cows in Del Norte County. Based on 

the distribution of GPS points, habitat values less than the 1% quantile (-2.094) were 

considered unsuitable habitat, values between -2.094 and 0.317 were considered low 

habitat suitability, and values 0.317 or greater were considered high habitat suitability 

(Figure A1). Cells were unavailable for surveying if more than 25% of their area was 

unsuitable habitat, or less than 5% of the area was classified as high habitat suitability.  
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Figure A1. Distribution of habitat suitability values at GPS points from all collared cows 
(n = 33) in Humboldt and Del Norte counties, California, USA from 2018 to 
2020. The blue dash represents the bottom 1% of points (x = -2.094) and the 25% 
quantile (x = 0.317).  

 

 


