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ABSTRACT 

SPECIES DISTRIBUTION MODELS FOR THREE DEEP-SEA CORAL AND 

SPONGE TAXA IN THE SOUTHERN CALIFORNIA BIGHT 

 

Nissa Kreidler 

Deep-Sea Coral and Sponge (DSCS) species are signature taxa of deep-water habitats, 

however understanding the ecological mechanisms that drive their geographic 

distributions can be difficult to uncover due to the challenges of surveying deep-water 

ecosystems. A recent study on benthic assemblages in Southern California revealed 

statistical associations between several DSCS and demersal fishes, many of which are 

important to management agencies due to commercial or conservation concerns. Maps 

that predict where these DSCS may occur are needed for the management and protection 

of these DSCS taxa and the fauna that rely on them for habitat. In this thesis, I develop 

predictive models and maps for three DSCS in the Southern California Bight, Antipathes 

dendochristos, Plumarella longispina, and an unidentified Porifera sponge. Two of the 

taxa, P. longispina and Porifera have been identified to be associated with young-of-the-

year rockfish in a previous study. Predictive maps were created using species distribution 

models developed with habitat-related variables (e.g. food availability, depth, and 

bathymetry). Generalized Additive Models (GAMs) were created using the best practices 

for developing DSCS species distribution models, which includes accounting for spatial 

auto-correlation and model uncertainty. I provide a comparison of how these model 

results differ from the results of a commonly used modeling approach, Maxent, that relies 
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on presence-only data. Both GAMs and Maxent models performed well when predicting 

known occurrences, but the variables deemed most important in those models differed. 

Predictions using GAMs found that all three taxa were distributed in patches across the 

study region and that the covariates that predicted species distributions were similar 

between the three taxa. Specifically, species distributions primarily relied on depth, 

northern currents, and eastern currents. Maxent predictions were much more constrained 

throughout the study area, with high suitability found mostly on the fringes of the islands 

off the coast, and covariates relationships were more variable between species. When the 

GAMs were constrained to the areas where the model had low uncertainty (Bayesian 

credible interval ranges < 0.25), the predicted species distributions were more similar 

between the two modeling methods. High probability of DSCS occurrence exist both 

inside and outside the Channel Islands National Marine Sanctuary (CINMS), with large 

areas occurring beyond sanctuary boundaries, mostly north of Santa Barbara Island, 

around Santa Catalina and San Clemente Islands, and along the coast near San Diego. 

These areas may be important for future explorations and conservation considerations.  

  



 

iv 

ACKNOWLEDGEMENTS 

Many wonderful people made this thesis possible. Thank you to my advisors for 

the continued support throughout my master’s program. Mark, you were there from the 

inception of this project and committed your time and resources to seeing it through. 

Thank you for paving the way through the Bayesian models, as the concept to use this 

approach and all coding were provided by you. Andre, you have been one of the best 

teachers I have ever had and have a true skill for conveying extremely complex statistics 

in a way anyone can understand. You also have the gift of giving true compliments and 

know how to encourage someone through their hardest moments.  

Thank you to my committee members, Brian Tissot and Tim Bean. Brian, you 

have been so willing to share your love and knowledge of the deep-sea world with me 

and had a strong influence in the way this project was interpreted. Tim, you have given 

me a peek into the complicated box that is Maxent, completely transformed my spatial 

data analysis skills, and have created a love for squirrels that I did not know I had. 

 Thank you to the Nancy Foster scholarship for financial support in funding my 

Master’s program. More importantly, thank you to Kate Thompson and to Seaberry 

Nachbar for the mentorship over the last three years, and to the greater Nancy Foster 

community. I am so lucky to have had you all from the time I started my graduate work, 

to finishing, and now looking forward as a professional in the community.  

I am so thankful for the many people in the deep-sea coral and sponge community 

that have shared their expertise and knowledge with me. Everyone at Marine Applied 



 

v 

Research and Exploration, especially Andy Lauermann for sharing your knowledge of 

deep-sea coral with me, and to Heidi and Greta for forever listening to me talk about my 

thesis. Thank you to Chris Caldow and Lizzie Duncan at the Channel Islands National 

Marine Sanctuary for discussing the project with me and “deepening” my appreciation 

for deep-sea corals. 

Lastly, thank you to my family and friends. My Kreidler-States family has 

provided unending support and love and I could not have done this work without you. 

Most of all, thank you to Jack for always being there and bringing home the chicken 

wine, and to our fur child, Sir Toddrick, who was a daily reminder that life is better at the 

beach. 

  



 

vi 

TABLE OF CONTENTS 

 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF APPENDICES ..................................................................................................... x 

INTRODUCTION .............................................................................................................. 1 

Deep- Sea Coral and Sponge Ecology ............................................................................ 2 

Advantages of Mapping and Modeling .......................................................................... 6 

Species Distribution Modeling ....................................................................................... 7 

Research objectives and value ........................................................................................ 8 

MATERIALS AND METHODS ...................................................................................... 10 

Study Site ...................................................................................................................... 10 

Data Acquisition ........................................................................................................... 12 

Environmental Variables .............................................................................................. 12 

Screening of Variables .................................................................................................. 19 

Maxent Species Distribution Modeling ........................................................................ 19 

Generalized Additive Models ....................................................................................... 21 

Suitable Habitat Within CINMS Waters ...................................................................... 26 

RESULTS ......................................................................................................................... 28 

Species Occurrences ..................................................................................................... 28 

Environmental Variables .............................................................................................. 32 



 

vii 

Maxent Results ............................................................................................................. 32 

GAM Results ................................................................................................................ 40 

Suitable Habitat Within National Marine Sanctuary Waters ........................................ 54 

DISCUSSION ................................................................................................................... 57 

Summary of project goals and results ........................................................................... 57 

Model Comparison ....................................................................................................... 57 

Environmental Predictors ............................................................................................. 59 

Suitable Habitat Within National Marine Sanctuary Waters ........................................ 65 

Management Implications and Future Research ........................................................... 66 

REFERENCES ................................................................................................................. 70 

Appendix A ....................................................................................................................... 83 

Appendix B ..................................................................................................................... 103 

 



 

viii 

LIST OF TABLES 

Table 1. Thirteen DSCS and associated Sebastes taxa with percent increase in the 

probability of fish  .. presence with one standard deviation increase in DSCS density based 

on the logistic regression  models of Henderson et al. (2020). Sebastes taxa of 

management and conservation concern are identified in bold. ........................................... 4 

Table 2. Environmental variables used in quantitative models. Asterisk denotes final non-

collinear variables used in model fitting. .......................................................................... 14 

Table 3. Beta multiplier selection table for A. dendrochristos, P. longispina, and Porifera 

sp.. All four models include northward and ...................................................................... 33 

Table 4. Maxent variable contributions for Antipathes dendrochristos, Plumarella 

longispina, and Porifera sp.. Percent contribution is estimated by the increase in 

regularized gain for each training iteration. Permutation importance is percent change to 

the original AUC when the variable  values are randomly permuted. Values above 20% 

Percent Contribution are highlighted in bold. ................................................................... 34 

Table 5. Maxent variable contributions for Antipathes dendrochristos, Plumarella 

longispina, and Porifera sp.. Percent contribution is ........................................................ 41 

Table 6. Final variables for best GAM models for Antipathes dendrochristos, Plumarella

........................................................................................................................................... 45 

Table 7. Cross validation results for Antipathes dendrochristos, Plumarella longispina, 

and ..................................................................................................................................... 48 

Table 8. Proportion of total Channel Islands National Marine Sanctuary (CINMS) and the 

Southern California Bight (SCB) that are predicted to be suitable habitat for three DSCS 

taxa, based on  GAM and Maxent models. CINMS Suitable Habitat is the area of the 

CINMS predicted to be  suitable habitat (at the stated threshold) divided by the total 

CINMS area between 50-500 m depth  (2679 km2), expressed as a percentage. SCB 

Suitable Habitat is calculated in the same fashion, the total study area between 50-500 m 

in SCB is 15,437 km2. DSCS Habitat Protected by  CINMS is the proportion of total SCB 

suitable habitat area that is located within the CINMS, expressed as  a percentage. GAM 

results were subsetted to only include areas of high certainty (with a CrI range <0.25), 

and the same process was repeated and reported here as GAM*. .................................... 55 



 

ix 

LIST OF FIGURES 

Figure 1. Study site in the Southern California Bight, bound by Pt Conception in the 

north and San Diego in  the south. Dive sites are denoted by orange dots, National Marine 

Sanctuary boundaries outlined  in black.  Dive sites= 164. .............................................. 11 

Figure 2. Maxent model predictions for Antipathes dendrochristos (n=674) in the 

Southern California Bight. Model predictions used a beta multiplier of 0.5. ................... 29 

Figure 3. Maxent model predictions for Plumarella longispina (n=606) in the Southern 

California Bight. Model predictions used a beta multiplier of 0.5. .................................. 30 

Figure 4. Maxent model predictions for Porifera sp (n=1403) in the Southern California 

Bight. Model predictions used a beta multiplier of 0.5..................................................... 31 

Figure 5. Response plots for Antipathes dendrochristos, Plumarella longispina, and 

Porifera sp. full maxent  models. All models were made with a beta multiplier value of 0.5 

and bootstrapped with 100  samples. Y axis for all plots is habitat suitability. ................ 36 

Figure 6. Response plots for predicted probability of occurrence for Antipathes 

dendrochristos,.................................................................................................................. 43 

Figure 7. GAM model predictions for Antipathes dendrochristos (n= 674) in the Southern

........................................................................................................................................... 50 

Figure 8. GAM model predictions for P. longispina (n=606) in the Southern California 

Bight. The  .... best  model included depth, slope, eastern currents, and northern currents as 

predictive variables and a  spatial random effect. Lower plot excludes areas where 

predictions had a high degree of  uncertainty. .................................................................. 51 

Figure 9. GAM model predictions for Porifera sp (n=1403) in the Southern California 

Bight. The  ...... best  model included depth, slope, FBPI, and a tensor between eastern, and 

northern currents as  predictive variables and a spatial random effect. Lower plot 

excludes areas where predictions had  a high degree of uncertainty. ............................... 52 

 

 

  



 

x 

LIST OF APPENDICES 

Appendix A: Supplemental Figures .................................................................................. 83 

Appendix B: Supplemental Tables ................................................................................. 103 

 

 



1 

 

  

INTRODUCTION 

 Deep-Sea Coral and Sponge Species (DSCS) are some of the longest-lived marine 

species and their complex, three-dimensional structure provides habitat for demersal fish 

and other invertebrates (Fossa et al., 2002; Baillon et al., 2012; Stone, 2014). Due to their 

slow-growing and sessile nature, DSCS are highly susceptible to destructive fishing 

practices and climate change (Freiwald and Roberts, 2005; Dodds et al., 2007; Gugliotti 

et al., 2019). DSCS known occurrences, estimated distributions of their ranges, and 

biological requirements have become important to marine management and a focus for 

current research (Hourigan et al., 2017; Caldow et al., 2019; Winship et al., 2020). 

Studying DSCS is difficult due to the high cost of deep-sea surveying and their sensitivity 

to translocation (Boch et al., 2019), thus some of the biological needs and mechanisms of 

these organisms has been inferred from statistical models in addition to estimates of their 

distributions (Huff et al., 2013; Ross and Howell, 2013). In this study, I develop 

predictive models and maps for DSCS distributions off the coast of southern California 

and explore the relationships between these distributions and the environmental and 

habitat conditions that predict them. Special reference is made to the amount of habitat 

that occurs inside the Channel Islands National Marine Sanctuary (CINMS), and a 

comparison between the results of two different modeling methods.  
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Deep- Sea Coral and Sponge Ecology 

 Habitat requirements dictate where DSCS are found and are connected to 

biological processes. DSCS often occur in areas with enhanced currents that flush 

accreted sediment and deliver a reliable food supply (Freiwald and Roberts, 2005; White 

et al., 2005). As filter feeders, DSCS rely on organic matter and near surface 

phytoplankton and zooplankton that are delivered via currents to benthic habitats 

(Henrich et al., 1997; Mortensen, 2001; Duineveld et al., 2004; Kiriakoulakis et al., 2005; 

Davies et al., 2009). DSCS also require hard substrate to attach to and are found in waters 

between 4° and 12°C (Freiwald and Roberts, 2005).  

 DSCS act as habitat themselves, providing nursery grounds for rockfish and other 

demersal fishes (Fossa et al., 2002; Baillon et al., 2012; Stone, 2014). They have been 

shown to serve as habitat for eggs and juveniles of several fish species including 

commercially important rockfish species (Sebastes spp.) in Canada (Baillon et al., 2012), 

the Aleutian Islands of Alaska (Stone, 2014), the coast of Norway (Fossa et al., 2002), 

and California (Henderson et al., 2020). In Hawaii, the black coral Antipathes dichotoma 

was found to provide habitat for 40 fish taxa (Boland and Parrish, 2005). Rockfish in 

Cordell Bank, California were also found to be more frequently present with DSCS than 

not (Pirtle, 2005), which is similar to the association between DSCS and fish assemblages 

in the Southern California Bight (SCB) (Henderson et al., 2020). 

 Dense patches of DSCS can be hot-spots of biodiversity and provide important 

structures for fish habitat (Lumsden et al., 2007; Lessard-Pilon et al., 2010), and recent 
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research points to strong associations between fishes and DSCS in the SCB (Henderson 

et al., 2020). While empirical associations between fishes and DSCS populations are not 

always clear (Auster, 2005; Tissot et al., 2006), Henderson et al. (2020) show that some 

rockfish species, including the recovering Bocaccio rockfish (Sebastes paucispinis), are 

significantly associated with DSCS in the SCB. These findings are important for 

elucidating relationships between fishes and DSCS, which are both at risk due to 

anthropogenic disturbances. Henderson et al. (2020) identified 13 taxa of DSCS that 

increased the likelihood of 14 species of adult and young-of-the-year rockfish (Sebastes 

spp.) presence (Table 1). These results were based on logistic regressions that modeled 

the presence of fish species relative to biotic (e.g. DSCS presence and size) and abiotic 

(e.g. substratum and temperature) variables. For example, a one standard deviation 

increase in the presence of the flat sponge (Porifera #2), increased the presence of pygmy 

rockfish (Sebastes wilsoni) by 35% (Table 1) (Henderson et al., 2020).  
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Table 1. Thirteen DSCS and associated Sebastes taxa with percent increase in the probability of fish 

 presence with one standard deviation increase in DSCS density based on the logistic regression 

 models of Henderson et al. (2020). Sebastes taxa of management and conservation concern are 

 identified in bold.  

  

DSCS Type DSCS Species Associated Fish Species % increase 

Coral 

Acanthogorgia spp. Sebastes rufus 15% 

Adelogorgia phyllosclera 

Sebastes miniatus 

Sebastes wilsoni 

Sebastes umbrosus 

12% 

11% 

10% 

Eugorgia rubens                 Sebastes chlorstictus 11% 

Farrea occa                             Sebastes simulator  14% 

Plumarella longispina 
 Sebastes spp. YOY 

Sebastes rufus  

7% 

9% 

Plumerella longispina Sebastes spp. YOY 9%  

        

Sponge 

Haliclona (gellius) 

Sebastes rufus 

Sebastes ensifer 

Sebastes wilsoni 

12% 

12% 

10% 

Plexauridae #1  Sebastes semicinctus 31% 

Porifera sp. #1 

Sebastes miniatus 

Sebastes ovalis 

Sebastes wilsoni 

20% 

23% 

29% 

Porifera sp. #2 

Sebastes spp. YOY 

Sebastes levis 

Sebastes simulator 

Sebastes constellatus 

Sebastes hopkinsi 

Sebastes wilsoni 

15% 

16% 

11% 

20% 

28% 

35% 

Porifera sp. #3 

Sebastes spp. YOY 

Sebastes rufus 

Sebastes levis 

Sebastes miniatus 

Sebastes rubrivinctus 

9% 

12% 

13% 

22% 

14% 

Porifera sp. #5 Sebastes jordani 26% 

Rhabdocalyptus dawsoni 
Sebastes rufus  

Sebastes ensifer 

24% 

7% 
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 Protecting DSCS and their habitat may be critical to sustain the overall health of 

the SCB ecosystem, but DSCS are highly sensitive to destructive fishing practices such as 

bottom trawling (Freiwald and Roberts, 2005; Heifetz et al., 2009; Pham et al., 2014; 

Yoklavich et al., 2018). In Alaska, surveys found that 14% of corals and 21% of sponges 

were damaged and that disturbance to the seafloor from fishing gear was widespread 

(Heifetz et al., 2009). Likewise, 45% of bamboo corals showed signs of trawling damage 

along the northern California border (Yoklavich et al., 2018). The SCB is a similarly 

disturbed ecosystem characterized by heavy coastal development, runoff, and a history of 

overfishing (Love et al., 1998, 2009). DSCS that are present off the coast of southern 

California may be important to the recovery and persistence of fish and other deep-sea 

fauna, given the role of DSCS as benthic fish habitat (Etnoyer and Warrenchuk, 2007).  

 Many commercial fisheries rely on the SCB as it is the boundary for many 

northern and southern fish ranges (Moser et al., 2000); however, overexploitation of the 

SCB has led to the collapse of multiple fisheries (Dayton et al., 1998; Erisman et al., 

2011). Efforts have been put forward to conserve these fisheries, including marine 

protected areas and a widespread ban on bottom trawling. For example, the Channel 

Island National Marine Sanctuary (CINMS) was created in 1980, and is managed by the 

National Oceanic and Atmospheric Association’s (NOAA) Office of National Marine 

Sanctuaries (ONMS, 2009). In 2018, an amendment to Pacific Coast Groundfish Fishery 

Management Plan closed the majority of the SCB to bottom-contact fishing, such as 

bottom trawling (NMFS, 2019).  
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Advantages of Mapping and Modeling 

 Monitoring of deep-sea communities is important for conservation of biodiversity 

and essential fish habitat, but surveys are expensive and challenging. Due to difficulty in 

monitoring these habitats, standard sampling methods such as trawls, submersible and 

ROV dives have been used to obtain more detailed information on fish and DSCS 

abundance and distribution (Love and Yoklavich, 2008; Love et al., 2009). Extensive 

submersible dive trips over the last two decades have provided a wealth of information on 

the relationships between DSCS and their associated fauna (Yoklavich and Love, 2005; 

Love and Yoklavich, 2008; Love et al., 2009; Huff et al., 2013), but it is infeasible to 

survey the entire seafloor of the SCB. Surveying DSCS communities is a complicated, 

highly technical, and costly process (Yoklavich and O’Connell, 2008). Submersible 

operations can cost upwards of $11,000 per day (Yoklavich and O’Connell, 2008), which 

is generally prohibitive for conducting extensive surveys on deep-sea communities.  

Mapping the potential for DSCS habitat and their associated species can be a cost-

effective way to leverage existing data and provide information to natural resource 

managers without excessive field survey costs. The Magnuson-Stevens Fishery 

Conservation and Management Reauthorization Act of 2006 addressed the growing body 

of knowledge on DSCS as potential Essential Fish Habitat (EFH) by creating a program 

specific to DSCS (Lumsden et al., 2007), which explicitly identifies locating and 

mapping DSCS communities as a top priority. Predicting where corals may occur based 

on environmental parameters has been conducted regionally for the west coast of North 
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America (Bryan and Metaxas, 2007; Guinotte and Davies, 2014), east coast (Bryan and 

Metaxas, 2007) and globally (Tittensor et al., 2009; Davies and Guinotte, 2011; Yesson 

et al., 2012), but a local predictive model for multiple DSCS and sponge species does not 

yet exist for the SCB (Huff et al., 2013).  

Species Distribution Modeling  

Species Distribution Models (SDMs) are used to predict species occurrences 

across a landscape based on known occurrences and the environmental conditions at 

those locations. These models can then be used to predict occurrences in new areas, or 

make predictions of how species distributions may change based on projected changes in 

habitat conditions. Some models use presence and absence data using standard field 

surveys, whereas other models can be developed using presence-only data when absence 

data is lacking. SDMs have been used extensively in conservation management, 

including where to focus conservation efforts (Kariyawasam et al., 2017; Bazzichetto et 

al., 2018), making predictions for species distributions under future climate conditions 

(Nakao et al., 2013; Ohashi et al., 2016), and directing future research efforts (Huff et al., 

2013; Caldow et al., 2019). SDMs for predicting DSCS have become prevalent in the last 

ten years and will be critical in conservation and understanding DSCS moving forward 

(Hourigan et al., 2017; Winship et al., 2020). In this study I use SDMs to make 

predictions of where DSCS are likely to occur in the SCB, and compare two different 

SDM methods.  
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Research objectives and value 

In this thesis, I used species distribution models to make predictive maps for three 

DSCS in the Southern California Bight: the black coral Antipathes dendochristos, 

gorgonian Plumarella longispina, and an unidentified sponge species (also identified as 

Porifera #2 or “flat sponge” by the Southwest Fisheries Science Center. These taxa were 

selected for two main reasons: (1) P. longispina and Porifera sp. are significantly 

associated with young-of-year (YOY) rockfishes in Henderson et al., (2020) and (2) A. 

dendrochristos was modeled by (Huff et al. 2013). This previous model for A. 

dendrochristos used the same dataset the data in this study, which will allow for further 

comparison between our methods. Creating predictive maps for the taxa associated with 

YOY rockfish will provide important information on areas that are connected to the 

health and abundance of fisheries and the greater ecosystem. YOY are particularly 

important in defining Essential Fish Habitat and that is worth mentioning.  

Accordingly, the specific objectives of this study were to: (1) create species 

distribution maps of suitable habitat for these three taxa, (2) identify environmental 

variables that best predict their distribution, (3) compare differences in predicted 

distributions based on two modeling approaches, and (4) compare the amount of high 

suitability area inside and outside of the CINMS. CINMS has expressed a need to know 

where these DSCS species occur and providing predictions to them may help facilitate 

future research efforts (CINMS, 2012; Caldow et al., 2019). These models are the first 

SDMs to include DSCS food availability at depth, which was expected to be an important 
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factor for DSCS. Predictive maps help provide missing information on DSCS habitat 

suitability in the SCB. This work extends current knowledge of DSCS that are known to 

be associated with commercially important demersal fishes. These maps also provide 

baseline data on sensitive deep-sea habitat and reveal highly suitable areas that could be 

prioritized for future surveys and protection.  
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MATERIALS AND METHODS 

Study Site 

The Southern California Bight is an open embayment that extends from Point 

Conception to San Diego (approximately 121° W, 34.5° N to 117° W, 32° N) (Figure 1) 

and contains diverse habitats to over 500 species of fishes and 5000 benthic invertebrate 

species (Dailey et al., 1994). Several islands, basins, and ridges exist in the SCB that 

affect circulation patterns at all depths (Hickey et al., 2003). The southeastward 

California Current and Southern California Countercurrent create a cyclonic circulation 

pattern within the SCB that may enrich and retain the faunal communities in the SCB in 

addition to increasing upwelling created around the Channel Islands (Lynn and Simpson, 

1987). Generally strong upwelling occurs in winter and early spring, with some advection 

of nutrients and productivity from outside the SCB in summer and fall (Hickey, 1992).  
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Figure 1. Study site in the Southern California Bight, bound by Pt Conception in the north and San Diego in 

 the south. Dive sites are denoted by orange dots, National Marine Sanctuary boundaries outlined 

 in black.  Dive sites= 164. 

 

Multiple marine protected areas exist in SCB, including those managed by the 

state (CDFW) and federal (NOAA) governments. The CINMS is a federally protected 

area that encompasses San Miguel, Santa Rosa, Santa Cruz, and Anacapa Islands in the 

north and Santa Barbara Island in the south. CINMS covers about 3971 square 

kilometers, of which 2679 square kilometers (~67%) occurs between 50 – 500 m.   
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Data Acquisition  

This study used 11 years of video data collected using two occupied submersible, 

Delta and Dual Deepworker, from 1999 to 2010 in the SCB. A total of 164 dives were 

completed, both inside and outside of the CINMS (Figure 1). The average depth of dives 

was 194 m, with the minimum dive depth occurring at 24 m, and maximum depth at 867 

m. Data used for model construction was limited to dives between 50 m to 500 m to be 

consistent with the methods used in Henderson et al. (2020). The average depth of these 

restricted dives was 223 m. Two-meter-wide submersible transects were conducted 1 m 

off the seafloor at speeds roughly between 0.5 and 1 kt. Video footage was collected 

using a camera mounted outside the submersible, which was later analyzed by the Habitat 

Ecology Team at the Southwest Fisheries Science Center for species identification, count, 

and size. Data was stored and managed by the Habitat Ecology Team and has been 

utilized by multiple studies to address different research questions with different 

analytical methods (Tissot et al., 2006; Love and Yoklavich, 2008; Love et al., 2009; 

Huff et al., 2013; Henderson et al., 2020). 

Environmental Variables 

A total of nine environmental variables were explored for the SDMs because they 

have been hypothesized or documented to influence the distribution of DSCS taxa of 

interest. These variables include (1) northward and eastward bottom currents, (2) 

temperature, (3) dissolved oxygen, (4) diatom concentration, (5) detritus concentration, 
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(6) depth, (7) slope, (8) broad scale Bathymetric Position Index (BBPI), and (9) fine scale 

Bathymetric Position Index (FBPI) (Table 2).
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Table 2. Environmental variables used in quantitative models. Asterisk denotes final non-collinear variables used in model fitting. 

Variable Unit Definition  Source 

 

Depth* 

 

Meters Seafloor bathymetry based on multibeam sonar surveys 
California Relief 

Model 

 

BBPI* 

 

- 
Broad Bathymetric Position Index at 20 km. Difference between individual cell 

depth and the average depth of surrounding neighborhood.  

California Relief 

Model 

FBPI* - Fine-scale Bathymetric Position Index at 250 m 
California Relief 

Model 

Slope* Degrees Average difference between cell depth and nearest three neighbor cells (90 m) 
California Relief 

Model 

 

Diatom* 

 

mmol N 

per m ³ 

 

Average concentration of diatoms available at depth ROMS/NEMURO 

Detritus 

mmol N 

per m ³ 

 

Average concentration of detritus available at depth ROMS/NEMURO 

Temperature °C Average bottom temperature ROMS/NEMURO 

Dissolved 

oxygen 

mmol N 

per m ³ 
Average dissolved oxygen  ROMS/NEMURO 

Bottom 

currents* 

Velocity 

(m/s) 
Average northward and eastward current velocities ROMS/NEMURO 
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Environmental variables are difficult to obtain for the deep ocean, so this study utilized 

output from a biogeophysical model to estimate the environmental conditions at depth: 

the Regional Oceanographic Modeling System coupled with the North Pacific Ecosystem 

Model for Understanding Regional Oceanography (ROMS/NEMURO). The 

ROMS/NEMURO model provided three dimensional estimates of biogeophysical 

elements including current velocity, carbon and nitrogen concentration, and 

phytoplankton and zooplankton abundance (Moore et al., 2011; Edwards et al., 2015; 

Song et al., 2016). The California ROMS/NEMURO model estimates ocean conditions 

from 30° to 48° N, and from the coast to 134° W (Broquet et al., 2009; Veneziani et al., 

2009). Satellite sensors and in situ sources of assimilated data constrain the model, which 

adjusts the model to better reflect true ocean conditions (Broquet et al., 2009). The 

ROMS/NEMURO model has been used successfully to predict juvenile ocean salmon 

growth (Fiechter et al., 2015), explore effects of climate change to ocean ecosystems 

(Werner et al., 2007; Kishi et al., 2009, 2010), and examine many other oceanographic 

systems (Kishi et al., 2011). This study is the first to use phytoplankton and detritus 

concentrations from the ROMS/NEMURO model as covariates in DSCS species 

distribution models. These phytoplankton and detritus concentrations serve as estimates 

of food availability to DSCS at the depths that they inhabit, which was hypothesized (see 

below) to be a critical requirement for their occurrence. This may provide a means to 

more accurately predict the location of DSCS occurrences.  

Biogeophysical variables (northward and eastward current velocities, temperature, 

dissolved oxygen, diatom, and detritus concentrations) were obtained from the 
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ROMS/NEMURO model. The bottom vertical layer (with a resolution of ∼0.3–8 m off of 

bottom) was used from the ROMS/NEMURO model output for all variables. Monthly 

estimates from 1988- 2010 were provided by the models, which were averaged across all 

months and years, because seasonal averages were collinear with these overall averages. 

These climatological, multi-year averages were used due to the long-lived nature of 

DSCS, assuming their persistence is likely due to long-term patterns in availability of 

food and other habitat variables. The original horizontal resolution of 1/10° (~3 km) was 

rescaled to match the 30 m resolution provided by the digital elevation model used for 

bathymetric variables using inverse distance interpolation using R studio (R Core Team 

2018). 

Bottom currents have been shown to be significant factors in several DSCS 

habitat suitability models (Davies and Guinotte, 2011; Yesson et al., 2012; Tong et al., 

2013) and in particular were found to be significant for A. dendrochristos in the Southern 

California Bight (Huff et al., 2013). Bottom currents are important for delivery of food 

particles (Davies et al., 2009), preventing smothering of corals with sediment (White et 

al., 2005), and influencing larval settlement and dispersal. Huff et al. (2013) found that 

the minimum velocity of January northern currents was positively correlated with A. 

dendrochristos abundance, theoretically due to larval retention in suitable habitats where 

DSCS already occur.  

DSCS subsist on phytoplankton and detritus from primary productivity near the 

surface (Duineveld et al., 2004; Wagner et al., 2012) and rely on bottom currents to 

deliver these foods. Diatom, phytoplankton, and zooplankton concentrations were 
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considered as well as eastern and northern current velocities as covariates for the models 

(Table 2). This combination of both food abundance and current velocities at depth has 

been lacking in previous predictive models.  

Temperature is an important factor in DSCS habitat as it regulates biological 

processes and high temperatures can cause coral diseases and mortality (Rogers et al., 

2015; Gugliotti et al., 2019). Salinity and temperature have been shown to be important 

both on the regional (Guinotte and Davies, 2014) and global scale (Yesson et al., 2012). 

Although temperature was included in this study, salinity was not considered because the 

range of salinity at which DSCS were surveyed in this study was small (33.06-34.71), 

similar to Bryan & Metaxas (2006). 

Dissolved oxygen (DO) is an important factor in DSCS metabolism and may limit 

their distribution (Dodds et al., 2007). Deep-sea corals have been observed to process 20-

35% of total benthic respiration, which is critical for carbon and nitrogen mineralization 

(de Froe et al., 2019). DSCS have been shown to have high mortality at low DO 

concentrations, specifically in waters with less than ~1.5 mL L-1 which were shown to be 

fatal in the Gulf of Mexico (Lunden et al., 2014). DO has been considered in several 

other DSCS SDMs (Davies et al., 2008; Tittensor et al., 2009; Huff et al., 2013). 

DSCS require a hard substrate for attachment and are often found along canyon 

edges and sloping terrain (Freiwald, 2002). Variations in topographic features are thought 

to assist in food delivery via current acceleration over bathymetric highs (Dolan et al., 

2008), and thus are likely important in DSCS distributions. Bathymetric features such as 

slope, rugosity, and Bathymetric Position Index (BPI) have been significant variables in 
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previous DSCS SDMs (Yesson et al., 2012; Tong et al., 2013; Etnoyer et al., 2017). Here, 

depth, slope, and Bathymetric Position Index (BPI) at two scales were considered for 

model covariates.  

Bathymetric variables (depth, slope, and BPI) were acquired or derived from the 

30 m resolution digital elevation model available from the NOAA National Geophysical 

Data Center (Eakins, 2003). Spatial data manipulation, tabulation, and interpolation was 

implemented using ESRI™ ArcMAP® v.10. Slope was calculated as the average percent 

difference between the focal cell and the surrounding 24 cells (n= 3, 90 m radius).  

Bathymetric Position Index provides a measure of a location’s height relative to 

the surrounding area, with positive BPI values indicating higher areas and negative BPI 

values indicating relatively lower areas. This can be useful in DSCS SDMs as DSCS are 

known to occur in higher locations such as seamounts or ridges (Duineveld et al., 2004; 

Clark et al., 2006; Tittensor et al., 2009). BPI was calculated by comparing a focal cell’s 

depth value to the mean depth of a surrounding neighborhood of cells. FBPI and BBPI 

were calculated using an annulus format, such that the mean depth of the surrounding 

neighborhood was calculated by skipping an inner radius of cells around the focal cell (to 

avoid cells that are direct neighbors to the focal cell which would skew the mean) and 

calculating the mean depth for an outer radius of cells (Lundblad et al., 2006). FBPI was 

calculated using an inner radius of 30 m (n=1) and an outer radius of 240 m (n=8) and the 

broad scale BBPI was calculated using an inner radius of 300 m (n=10) and an outer 

radius of 20 km (n=666). These scales were chosen due to their ability to capture 
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geographic features, such as ridges and troughs at the 240 m scale and seamounts and 

canyons at the 20 km scale.  

Screening of Variables  

All variables were assessed for transformation requirements and collinearity. Any 

variable data with skewed distributions were log-transformed to create a more normal 

distribution, Pearson’s correlation coefficient (r) was used to identify highly correlated 

variables. Any sets of variables with r>0.7 were deemed collinear and one variable from 

the set was selected to use in the model selections process.  

Maxent Species Distribution Modeling 

SDMs of DCSC that use presence-only data is common due to the difficulty and 

cost of obtaining reliable absence data (Davies and Guinotte, 2011; Yesson et al., 2012). 

Presence-only data has been utilized in multiple habitat suitability modeling methods 

including Ecological-Niche Factor Analysis (ENFA) (Bryan and Metaxas, 2007; Dolan et 

al., 2008), Genetic Algorithm for Rule Set Production modeling (GARP) (Tong et al., 

2013), and Maximum Entropy modeling (Maxent) (Phillips et al., 2006; Davies and 

Guinotte, 2011; Yesson et al., 2012). Maxent is a machine learning technique that has 

become the preferred method for presence-only SDMs as it has consistently 

outperformed other methods through model comparison (Wang et al., 2010; Elith et al., 

2011). Conceptually, Maxent compares environmental conditions at known location 

occurrences to randomly selected environmental conditions throughout the study area 
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(referred to as “background” samples). Maxent fits a probability distribution with 

“maximum entropy” (i.e. maximum dispersion) for the taxa of interest across a 

landscape. This maximum entropy probability distribution is constrained by the 

relationship of the environmental covariates and the taxa’s presence data, where a 

distribution with “higher entropy” is less constrained. For example, a species distribution 

with “maximum entropy” would have a uniform distribution across all ranges for 

environmental variables, whereas a species that is constrained by environmental variables 

that may affect where it is found (such is the case for most species) would have “less 

entropy”.  

Performance of maxent models was based on Area Under the receiver operator 

Curve (AUC) score which is an indicator of how well the model predicts known 

occurrences. AUC is a discriminatory measure of how well a model predicts known 

presences and absences across all possible thresholds, and reports this as a score ranging 

from 0 to 1 (Fielding and Bell, 1997). In Maxent,  AUC scores are calculated by 

comparing predictions at known presences to the proportion of background points 

predicted as presences (Phillips et al., 2006). A Maxent model with an AUC score of 0.5 

is considered to predict presences no better than chance, and a score of 1 signifies all 

presences were predicted correctly (Phillips et al., 2006). Ten percent of the known 

occurrences were withheld from the model to use as test data, and AUC values for this 

test data were used for reporting.  

Confidence intervals were created by bootstrapping 100 samples for all models, 

and variable importance was assessed using Maxent’s Percent Contribution output. 
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Percent variable contribution was calculated by tracking gains to the penalized average 

log likelihood in each iteration of Maxent’s algorithm (Elith et al., 2011). In addition to 

percent contribution, each variable was separately permuted to assess the effect of that 

individual variable on the model. Permutation importance is calculated by randomly 

permuting presence and background for each variable in turn, and the resulting gain or 

loss to training AUC is tallied (Elith et al., 2011). A large decrease in training AUC 

would indicate that the variable in turn is important to the model (Elith et al., 2011). In 

addition to full models, single variable models were run to elucidate which variables are 

strong drivers in the full model. Varying levels of beta multipliers were tested for each 

model to determine the best constraints on variables as suggested by Warren and Seifert 

(2011). A larger beta multiplier value will have a more restricted range in variable values 

that are considered suitable habitat for the species (Warren and Seifert, 2011). Four beta 

values (0.5, 1, 2, 3) similar to those tested by Warren and Seifert (2011) were tested and 

ranked by Akaike’s Information Criteria corrected for small sample size (AICc). The 

most parsimonious Maxent model was then used to make predictions for the SCB. 

Maxent models were developed using the ‘dismo’ package in R (Hijmans et al., 2017; R 

Core Team, 2019).  

Generalized Additive Models 

When absence data is available and reliable, Generalized Additive Models 

(GAM) are a preferred method to predict taxa presence/absence or density (Elith et al., 

2011; Huff et al., 2013; Ross and Howell, 2013; Winship et al., 2020, 2020). GAMs are 
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generalizations of multiple linear regressions that can fit non-linear relationships between 

a dependent variable and multiple predictors in the same model (Zuur et al., 2009). Non-

linear relationships between a variable and a response are fit using a process known as 

“smoothing”, where unique equations are fit for windows of the variable range (Wood et 

al., 2016). GAMs have predicted known presences and absences well in other SDMs 

(Suárez‐Seoane et al., 2002; Drexler and Ainsworth, 2013; Grüss et al., 2014).  

GAMs were fit using an Integrated Nested Laplace Approximation (INLA) 

Bayesian approach due to its high processing speed and its reliable results (Rue et al., 

2009; Held et al., 2010; Zuur et al., 2017). Individual parameter estimates and their 

associated credible intervals (CrI) are approximated by taking integrals of the posterior 

joint distribution of the model (which includes all model parameter values) (Zuur et al., 

2017). A CrI is similar to the frequentist confidence interval in that a parameter whose 

CrI contains zero is not considered to be important in the model (Zuur et al., 2017). 

Preliminary frequentist GAMs that included a spatial error structure were fit using the 

‘mgcv’ package in R (Wood, 2019), however extended fit times (>15 hours) restricted the 

ability to perform model validation in a reasonable amount of time. This was the 

motivating factor for using the INLA approach. The modeling approach, model selection 

procedure, and all the code to fit the GAMs for this part of the project was developed by 

Mark Henderson, using the ‘R-INLA package’ (Lindgren and Rue, 2015).  

Models that include geographic data can often contain a form of 

pseudoreplication known as Spatial Autocorrelation (SAC), which can be addressed by 

adding a spatial dependency covariance structure (Zuur et al., 2017). Spatial 
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autocorrelation occurs when dependence exists between nearby sampling locations 

because locations near one another experience similar conditions, and this dependency 

can be observed as spatial patterns in the residuals (Zuur et al., 2009, 2017). Models that 

have SAC may underestimate prediction errors and have poor prediction accuracy 

(Gelfand et al., 2006), thus it is important to consider options that account for SAC. To 

reduce SAC in the model, R-INLA utilizes the Matérn correlation function to estimate a 

spatial covariance matrix (Zuur et al., 2017). The Matérn correlation function contains an 

unknown parameter, kappa, which is the range at which spatial dependency occurs; for 

larger values of kappa, the smaller the distance at which dependency occurs (Zuur et al., 

2017). R-INLA uses a Stochastic Partial Differential Equation (SPDE) to solve for this 

unknown range parameter as well as the unknown variance parameter as outlined in Zuur 

et al. (2017).  

To find the most parsimonious model with the best fit to the data, the R-INLA 

code included a model selection process aimed to assess (1) whether including a spatial 

dependency structure improved the model, and (2) which variables have a non-linear 

relationship with the response and should be smoothed. First, a global model with all 

noncollinear variables as linear terms (i.e. a Generalized Linear Model) was compared to 

a spatial global model, which was the same model with a spatial dependency structure. 

WAIC (Watanabe-Akaike Information Criteria) was used to determine whether to move 

forward with the spatial or non-spatial model. WAIC consists of two terms representing 

model fit and complexity (Watanabe, 2010), and is an improvement on other Bayesian 

model selection criteria (such as the Deviance Information Criterion) (Gelman et al., 
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2013).  For every model we also calculated the WAIC, which was the difference 

between a given model and the model with the lowest WAIC. The model with fewest 

linear covariates, and knots from smoothed parameters, with a WAIC of less than 5 was 

selected as the most parsimonious model to use for the analysis. Second, to reduce the 

total number of models tested in the model selection process, a two-stage process was 

carried out to determine which variables should be modeled using a smoothed 

relationship instead of a linear relationship. The first stage determined which of the four 

bathymetric variables (depth, slope, BBPI, and FBPI) should be smoothed. All 

biogeophysical variables (eastern currents, northern currents, food supply, temperature, 

and dissolved oxygen) were held linear during this stage. All combinations of smoothed 

and linear bathymetric variables were tested (e.g. the first model included depth as a 

smoothed term and all other variables were held linear, the second model included depth 

and slope as smoothed terms and the remaining variables were held linear, etc; see Table 

A1 for specific models tested). The model with the lowest WAIC score was chosen and 

whichever variables were selected to be smoothed from this stage were held smoothed in 

the second stage. The second stage involved repeating the same process for 

biogeophysical variables (currents and diatom concentrations). During this second stage, 

northern and eastern currents were tested as either stand-along smoother or linear 

variables, or as a tensor to account for the combined effects of the directional currents 

(see Table A2 for examples of specific models tested). The number of knots used for each 

variable during the smoother selection test was predetermined based on a non-spatial, 

frequentist GAM fit using the ‘mgcv’ package (Wood, 2019). The area surveyed within 
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each cell was used as an offset in all models. An offset is a known additive term (Zuur et 

al., 2009) that when applied in this manner can account for some of the bias of uneven 

survey areas across cells. This process was used for each taxa, and results from the final 

models were used to create response plots for each variable (all other variables were held 

at their mean) and to generate predictive species distribution maps for the SCB.  

Model uncertainty in the form of CrI range can provide information on the 

confidence of model estimates. I explored model uncertainty by inspecting the CrI range 

for predictions. Predictions of the probability of a species occurrence were made using 

the lower (5%) and upper (95%) credible interval, and the difference between the two 

was used to determine high levels of uncertainty. A credible interval range greater than 

0.25 probability for any location within the SCB was considered as having high 

uncertainty, and areas with this high uncertainty were masked in predictive maps to 

prevent the visualization of DSCS probabilities that were highly uncertain. 

The importance of model variables included for each taxa was assessed using 10-

fold cross-validation. Cross-validation was used to determine how often variables were 

selected as important (i.e. if it was selected as a smoothed variable or was a linear 

variable without zero in the CrI) in the final model and to determine how well the model 

preformed via AUC score. Ten percent of the model data was randomly selected and set 

aside as test data, while the remaining 90 percent was used to build a model using the 

steps described above. This was repeated 100 times and the results were summarized as 

how often each variable was important in the model (reported as a percent), and I also 
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tabulated the average WAIC scores for the global non-spatial model, global spatial 

model, and final model, as well as the test and training AUC scores. 

Suitable Habitat Within CINMS Waters 

To provide information on the extent of protected areas for highly suitable DSCS 

habitat within the Channel Islands National Marine Sanctuary (CINMS), predicted areas 

of suitable habitat both inside and outside the sanctuary were quantified. To do this, 

threshold values were created such that only areas above a specific value were considered 

suitable habitat. Two thresholds were used to consider areas of broadly suitable habitat: 

(1) a threshold of 0.5 habitat suitability (based on Maxent’s logistic output) or 0.5 

probability (based on the GAM’s probability of presence) indicated generally good) and 

areas of more restricted suitable habitat; and (2) a threshold of 0.75 habitat suitability or 

probability of presence indicated more restricted areas of better habitat. These threshold 

values were chosen to replicate the process done previously for determining the area of 

protected coral and sponge habitat along the west coast, including the SCB, by Guinotte 

& Davies (2014). This method is not ideal as threshold values may lack an ecological 

basis (Osborne et al., 2001), but it provides a rough estimation of where hot spots may 

occur. Maxent output provides information on the suitability of one area compared to 

another, and thus prediction values are somewhat arbitrary (Osborne et al., 2001). 

Probability of presence provides a more straightforward comparison between predicted 

cell values; thus a 0.5 threshold will represent a 50% probability of presence. All model 

predictions were mapped using ESRI™ ArcMAP® v.10 using a 240 m x 240 m 
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resolution fit to the extent of the SCB within 50 to 500 m depth. To calculate the total 

area for each threshold, prediction outputs were masked to only depict values greater than 

the given threshold, then the total number of cells not masked were multiplied by the area 

of the individual cells (0.0069 km2). These remaining areas were then compared to the 

total area of the SCB between 50 – 500 m and the total area in the CINMS between 50 – 

500 m, both of which were reported as a percent. Additionally, the areas of high 

suitability with the CINMS were compared to the area of high suitability across the SCB, 

which was also reported as a percent. 
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RESULTS 

Species Occurrences 

Line transects were conducted by submersible in 8415 cells (30 m x 30 m) within 

the SCB to assess the presence of the three DSCS taxa (A. dendrochristos, P. longispina, 

and Porifera sp. To put this in perspective, this means that of the 44 million 30 x 30 m 

cells in the SCB between 50 – 500 m, we surveyed only 0.0002% of them. The removal 

of deeper dives resulted in the loss of less than 3% of occurrences for each species (0.1%, 

0.3, and 2.4% of taxa occurrences for A. dendrochristos, P. longispina, and Porifera sp., 

respectively).  For the observations between 50-500m, Porifera sp. had the highest 

number of occurrences (n= 1403 cells), while A. dendrochristos (n=674 cells) and P. 

longispina (n=606 cells) had fewer. These observations occurred mostly south of Santa 

Cruz, San Clemente, and San Nicholas Islands, north of Santa Barbara Island, and along 

the coast (Figures 2, 3, & 4).
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Figure 2. Maxent model predictions for Antipathes dendrochristos (n=674) in the Southern California Bight. Model predictions used a beta multiplier 

 of 0.5. 
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Figure 3. Maxent model predictions for Plumarella longispina (n=606) in the Southern California Bight. Model predictions used a beta multiplier of 

 0.5. 
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Figure 4. Maxent model predictions for Porifera sp (n=1403) in the Southern California Bight. Model predictions used a beta multiplier of 0.5.
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Environmental Variables 

Seven of the original ten covariates were used for model fitting after elimination 

based on collinearity (Table 2). The final set of covariates used for model testing 

included (1) northward bottom currents, (2) eastward bottom currents, (3) average diatom 

concentration, (4) depth, (5) slope, (6) broad scale Bathymetric Position Index (BBPI) 

and (7) fine scale Bathymetric Position Index (FBPI). Diatom concentration, 

phytoplankton, zooplankton, detritus, temperature, and DO were all strongly correlated 

(Pearson’s correlation coefficient of 0.9 or above); therefore, diatom concentration was 

considered representative of all the collinear covariates, and the other covariates were 

excluded from consideration to avoid redundancy among variables.  

Maxent Results 

The best model for all three taxa used a beta multiplier of 0.5 (Table 3) and had 

average test AUC values of 0.916 (A. dendrochristos), 0.919 (P. longispina), and 0.831 

(Porifera sp.). Results for all three taxa were generally similar, specifically in terms of 

variable contributions.  Diatom concentration, BBPI, and depth were the greatest 

contributing variables for all models in this rank order, except for the sponge (with a 

ranking of Depth, Diatom, and BBPI) (Table 4). 
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Table 3. Beta multiplier selection table for A. dendrochristos, P. longispina, and Porifera sp.. All four models include northward and  
eastward bottom currents, diatom concentration available at depth, depth, broad scale Bathymetric Position Index, and fine scale Bathymetric 

Position Index as variables.  

 

 

 

Taxa Beta Multiplier No. of Parameters AICc dAICc 

A. dendrochristos 0.5 116 41210.7 0 

A. dendrochristos 1 121 41878.3 667.6 

A. dendrochristos 2 93 42631.6 1420.9 

A. dendrochristos 3 78 43154.1 1943.4 

P. longispina 0.5 68 6158.5 0 

P. longispina 1 36 6169.5 11 

P. longispina 2 28 6333.5 175 

P. longispina 3 18 6405.8 247.3 

Porifera sp. 0.5 148 102923.3 0 

Porifera sp. 1 121 103647.8 724.5 

Porifera sp. 2 116 104578.7 1655.4 

Porifera sp. 3 18 105123.4 2200.1 
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Table 4. Maxent variable contributions for Antipathes dendrochristos, Plumarella longispina, and Porifera sp.. Percent contribution is estimated by 

 the increase in regularized gain for each training iteration. Permutation importance is percent change to the original AUC when the variable 

 values are randomly permuted. Values above 20% Percent Contribution are highlighted in bold. 

 Antipathes 

dendrochristos 

Antipathes 

dendrochristos 

Plumarella 

longispina 

Plumarella 

longispina 

Porifera sp. Porifera sp. 

Variable Percent 

Contribution 

Permutation 

Importance 

Percent 

Contribution 

Permutation 

Importance 

Percent 

Contribution 

Permutation 

Importance 
Depth 21.3 22.9 19.2 62.3 40.2 32.2 

BBPI 28.8 41.7 25.9 12 23.9 25.6 

FBPI 0.5 0.1 9.6 0.9 0.6 0.8 

Slope 12.6 0.6 9.3 1.9 2.8 3.4 

Diatom 

Concentration 

30.8 25.5 28.7 14.2 27.7 31.5 

Northern 

Current 

Velocity 

5.3 8.8 4.5 6.3 3.4 3.9 

Eastern Current 

Velocity 

0.8 0.4 2.8 2.3 1.4 2.6 
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BBPI was the highest contributor for A. dendrochristos and P. longispina, and the 

second highest contributor for Porifera sp. (36.9%, 33.2%, and 33.6% respectively, Table 

4). Habitat suitability had an increasing trend with respect to BBPI for all three taxa, and 

suitability was low for negative values of BBPI (Figure 5). A. dendrochristos reached 

peak suitability of 1 around a BBPI value of 800. Both P. longispina and Porifera sp. 

reached a peak habitat suitability just below 1 around a BBPI value of 1000 (Figure 5). 
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Figure 5. Response plots for Antipathes dendrochristos, Plumarella longispina, and Porifera sp. full maxent 

 models. All models were made with a beta multiplier value of 0.5 and bootstrapped with 100 

 samples. Y axis for all plots is habitat suitability. 
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Diatom concentration was the second highest contributing variable for A. 

dendrochristos and P. longispina, and was the third highest contributor for Porifera sp. 

(contributing 23.0%, 26.8%, and 19.8%, respectively), with relatively high permutation 

importance compared to other variables (Table 4). Highest habitat suitability occurred at 

low diatom concentrations close to zero (<0.001mmol/L when log of diatom 

concentration was backtransformed to raw values) (Figure 5). A. dendrochristos had a 

peak habitat suitability of 0.8 that occurred around 1e-6 mmol/L, while P. longispina’s 

highest habitat suitability of 0.5 occurred at a lower concentrations around 1e-9 mmol/L, 

but had a generally wider range of higher habitat suitability (>0.2) between the ranges of 

1e-11 to 1e-4 mmol/L. Porifera sp. had an even wider range of higher suitability levels 

(>0.2) between 1e-14 and 1e-3 mmol/L, with a peak habitat suitability around 1e-6 

mmol/L (Figure 5).    

Depth was the highest contributor to the model for Porifera sp. and the third 

highest contributor for A. dendrochristos and P. longispina (33.9%, 14.9%, and 22.3% 

respectively, Table 4). It also had relatively high permutation importance for all three 

taxa (Table 4). Depth had a wide range of higher suitability (>0.5) between 150-450 m 

for A. dendrochristos with peak suitability of 0.6 occurring just below 400 m (Figure 5). 

Habitat suitability peaked just below 0.6 around 150 m depth for P. longispina but had a 

range of habitat suitability >0.3 between ~100-400 m (Figure 5). Porifera sp. peaked just 

below 0.7 habitat suitability around 100 m depths with a steady decline in habitat 

suitability in deeper waters (Figure 5).  



38 

 

 

  

Slope was the fourth highest contributing variable for A. dendrochristos, the fifth 

highest for Porifera sp., and the sixth highest contributor for P. longispina (Table 4). 

Slope had a relatively flat trend for A. dendrochristos, slightly decreasing in habitat 

suitability from just above 0.5 to just below 0.5 for the majority of the range of slope 

values (Figure 5). P. longispina had the highest habitat suitability just above 0.45 

between 0o and 20o slope, then steadily decreased for all higher values of slope (Figure 5). 

Porifera sp. had a dome-shaped response plot; when slope was 10o the habitat suitability 

slowly increased to a peak suitability of ~0.7 around a slope of 25o, and then suitability 

quickly declined between slope of 25o and 45o (Figure 5).  

Northern current was the fourth highest contributor for P. longispina and Porifera 

sp., and the fifth highest contributor for A. dendrochristos (Table 4). Response plots for 

northern currents had sharp peaks with highest suitability between 0.5-0.6 occurring at 

velocities near zero for both P. longispina and Porifera sp. (Figure 5). A. dendrochristos 

had a small peak around 0 m/s, but reached maximum habitat suitability of 1 at relatively 

higher current velocities (~0.08 m/s). Eastern currents contributed relatively low amounts 

to the three models, between 1.3-4% (Table 4). Porifera sp. and P. longispina had peak 

habitat suitability between 0.8-0.9 just above 0.04 m/s in the westward current direction 

(indicated by negative values for eastern currents, Figure 5), although both had relatively 

high (>0.5) habitat suitability values in both low eastern and western directions (Figure 

5). A. dendrochristos had peak habitat suitability just above 0.6 at relatively low eastern 
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current velocity (<0.02 m/s), although it also had high suitability around 0.04 m/s in the 

western direction, similar to P. longispina and Porifera sp. (Figure 5).    

FBPI was the lowest contributing variable for all three taxa (0.7-1.1%, Table 4). 

A. dendrochristos and P. longispina had an increasing trend for FBPI with peak habitat 

suitability around 20, which then decreased for higher FBPI values, particularly for A. 

dendrochristos (Figure 5). Porifera sp. had peak habitat suitability just above 0.7 around a 

FBPI value of 10. Porifera sp. had a generally increasing trend with peak habitat 

suitability around an FBPI value of 50 (Figure 5).  

 Single variable response plots were broadly consistent with full model response 

plot for depth, FBPI, northern currents, slope, and diatom concentration (Figure A1). The 

shape of BBPI changed the most, displaying a distinct peak for all three taxa (Figure A1). 

Eastern currents were still peaked but were broader in range (Figure A1). Slope for A. 

dendrochristos was mostly flat in the full model, but was dome-shaped and more similar 

to the other two taxa in the singe variable models (Figure A1).  

A. dendrochristos, P. longispina, and Porifera sp. suitable habitat was predicted 

across the SCB, and there was a large amount of similarity across the three taxa (Figures 

2, 3, & 4). The highest suitability areas were found on: the western and southeastern side 

of the northern section of CINMS, throughout the southern section of CINMS (around 

Santa Barbara Island), ringing the southern Channel Islands (Santa Catalina, San Clemente, 

and San Nicholas), north of Santa Barbara Island at Hidden Reef, and along parts of the 

southern coast near San Diego (Figures 2, 3, & 4). Species occurrences appear in high 



40 

 

 

  

suitability areas in the north, with many high suitability areas that do not have occurrence 

data (Figures 2, 3, & 4). The largest hot spot for A. dendrochristos is at Hidden Reef north 

of Santa Barbara Island (Figure 2). P. longispina had similar geographic trends to A. 

dendrochristos predictions (Figure 2), but slightly more expansive. The largest hot spots 

for P. longispina and Porifera sp. were at Hidden Reef north of Santa Barbara Island 

(Figures 3 & 4), similar to A. dendrochristos. Porifera sp. had very similar geographic 

trends to A. dendrochristos and P. longispina, but was more extensive.  

GAM Results 

A spatial random effect was included in the best GAMs for all each of the three 

taxa. For all three taxa, models without the spatial random effect showed patterns of SAC 

in the residuals in that a majority of the residuals were negative with positive residuals 

occurring in more eastern areas (Figures A12, A13, & A14) and had much higher WAIC 

scores (WAIC scores of 8531.8 for A. dendrochristos, and 10337.0 for P. longispina, 

and 7300.9 for Porifera sp., Table 5), strongly supporting the inclusion of the spatial 

random effects. Some SAC patterns persisted after including a spatial random effect, 

specifically clusters of small negative residuals throughout the study area, but these 

clusters diminished compared to the non-spatial model (Figures A12, A13, & A14). 
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Table 5. Maxent variable contributions for Antipathes dendrochristos, Plumarella longispina, and Porifera 

sp.. Percent contribution is  

estimated by increase in regularized gain for each training iteration. Top three contribution 

covariates values are in bold for each species. 

Taxa Model WAIC WAIC Test AUC Train AUC 

A. dendrochristos Global GLM 10790.2 8531.8 - - 

A. dendrochristos Global GLMM 2526.2 267.8 - - 

A. dendrochristos Final GAMM 2258.4 0 0.86 0.95 

A. dendrochristos Maxent - -  0.916 

P. longispina Global GLM 12524.2 10337.0 - - 

P. longispina Global GLMM 2647.1 459.9 - - 

P. longispina Final GAMM 2187.2 0 0.75 0.95 

P. longispina Maxent - -  0.919 

Porifera sp. Global GLM 11847.3 7300.9 - - 

Porifera sp. Global GLMM 5151.3 604.9 - - 

Porifera sp. Final GAMM 4546.4 0 0.59 0.89 

Porifera sp. Maxent - -  0.831 
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Depth, slope, northern currents, and eastern currents were all important variables 

(i.e. they did not include zero in their CrI) in the final models for all three DSCS. 

Probability of occurrence showed more complex relationships with depth and currents 

while relationships with slope were generally flat, based on the response plots for the 

covariates (Figure 6). Diatom concentration was not important in any of the three GAMs, 

and probability of occurrence was generally flat across the range of diatom values for all 

three taxa (Figure 6). While some similarities occurred across taxa, variation was also 

present in both the overall trend and the variables that were important for the model. 
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Figure 6. Response plots for predicted probability of occurrence for Antipathes dendrochristos,  

Plumarella longispina, and Porifera sp. GAMs. “NA represents variables that were not important. 



44 

 

 

  

Depth was important in all three models (Table 6) and showed a strong 

relationship with probability of presence (Figure 6). A. dendrochristos had a steeply 

increasing response curve for depth, where peak probability of presence (>0.75) occurred 

at depths around 150 m and stayed consistently high for all deeper depths, although with 

a wider range of certainty for depths greater than ~250 m. Probability of P. longispina 

had a similar pattern, with an increasing trend from 0 to 75 m, then a mostly consistent 

trend with peak probability of ~1 near 300 m (Figure 6). Probability of Porifera sp. had 

an inverse relationship with depth, where greater probabilities occurred in shallower 

waters and decreased gradually with increased depth, with maximum probability of 

occurrence around 100 m (Figure 6).  
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Table 6. Final variables for best GAM models for Antipathes dendrochristos, Plumarella  

longispina, and Porifera sp.. Smoothed variables are represented by s(variable) and a tensor is 

represented by te(variable 1 x variable 2). 

 

  Species Predictors 

Porifera sp. 

s(Depth) 

Slope 

s(FBPI) 

te(N Current x E Current) 

 

P. longispina 

s(Depth) 

Slope 

s(E Current) 

s(N Current) 

  

A. dendrochristos 

s(Depth) 

s(Slope) 

s(BBPI) 

s(FBPI) 

s(E Current) 

s(N Current) 
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Other bathymetric variables were less important in the GAMs for the three DSCS 

taxa. BBPI was only important in the A. dendrochristos final model (Table 5). The 

probability of A. dendrochristos presence was high (~0.75) with BBPI values greater than 

200, although uncertainty around these values were quite wide (Figure 6). FBPI was 

important in A. dendrochristos and Porifera sp. final models (Table 5). Probability of 

presence for A. dendrochristos had a sigmoidal relationship with FBPI, but it had a wide 

CrI (Figure 6). The relationship between FBPI and probability was relatively flat for 

Porifera sp. (Figure 6). Slope was important in all three models (Table 5), but did not 

appear to have as large an effect on the probability of occurrence as some of the other 

covariates, since the relationship was relatively flat for all species (Figure 6). P. 

longispina showed a slight negative trend, Porifera sp. showed a slight positive trend, and 

A. dendrochristos had a slightly concave shape, but the probability changed no more than 

0.1-0.2 for any of these trends (Figure 6). 

Eastern current was also important in all final models (Table 5) and had strong 

relationship with all three taxa (Figure 6). High probability of A. dendrochristos (>0.5) 

occurred across the range of eastern and western velocities, with peak probabilities at 

relatively weak velocities in both the eastern and western direction, although a fair 

amount of uncertainty occurred for the majority of the current range in the western 

direction (Figure 6). Probability of P. longispina peaked at relatively weak velocities in 

the western direction, with widespread uncertainty for stronger western currents and a 

fair amount of uncertainty for eastern currents (Figure 6). The best Porifera sp. model 
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included a tensor for eastern and northern currents, with peak probability occurring in 

northern and western currents (Figure 6). High probability of Porifera sp. occurrence 

occurred near zero m/s in the eastern current direction and relatively weak velocity in the 

southern direction (Figure 6). 

Northern currents were also important in all three models, with generally higher 

probability occurring in northern current velocities (Figure 6). Probability of A. 

dendrochristos and P. longispina had a sigmoidal relationship with northern currents, 

with low probability of occurrence in southern currents and high probability of 

occurrence occurs in northern currents, although uncertainty in southern currents was 

much greater than in northern currents (Figure 6).  

Cross validation revealed northern and eastern currents, and FBPI were generally 

important predictors in 100 cross-validation models, depending on taxa (Table 7). A. 

dendrochristos cross-validation models had depth and FBPI as important variables all 

models, with slope and eastern currents in over 80% of all models (Table 7). AUC was 

relatively high for both training and test data (0.949 and 0.826, respectively, Table 7). P. 

longispina had northern and eastern currents as important variables in all models, depth 

in over half of the models, and also had a high AUC for both training and test data (0.947 

and 0.729, respectively, Table 7). Depth, FBPI, and northern and eastern currents were 

important in all Porifera sp. cross validation models, slope was important in over half of 

all models, and had a good training AUC (0.6892) but a poor test AUC (0.602) (Table 7). 
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Table 7. Cross validation results for Antipathes dendrochristos, Plumarella longispina, and  

Porifera sp.. WAIC and AUC scores area averaged across 50 cross validation runs. Variable 

percent are the number of times a variable either 1) is a linear predictor and does not include zero 

in the 90% CrI or 2) performed better in the model as a smoothed variable. 
 

A. dendrochristos P. longispina Porifera sp. 

Non Spatial Global Model WAIC 10809.6 11280.7 10669.7 

Spatial Global Model WAIC 2588.9 2362.5 4651.2 

Final Spatial Model WAIC 2300.2 2214.0 4570.2 

Train.AUC 0.949 0.947 0.892 

Test.AUC 0.826 0.729 0.602 

Depth 100.0% 66.7% 100.0% 

BBPI 33.3% 41.7% 33.3% 

FBPI 100.0% 33.3% 100.0% 

Slope 83.3% 25.0% 66.7% 

Diatom Concentration 41.7% 25.0% 16.7% 

Northern Current 33.3% 100.0% 100.0% 

Eastern Current 83.3% 100.0% 100.0% 
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The majority of low uncertainty, high probability predictions for all three GAMs 

were found in patches throughout the Channel Islands, on ridges between islands, and in 

select areas along the coast (Figures 7, 8, and 9). A. dendrochristos had concentrated 

areas of high probability of occurrence along the western portion of the northern section 

of CINMS near San Miguel, on the eastern and southern side of Sant Cruz Island, along 

the bathymetric contours around San Nicholas Island, ringing Santa Catalina, Santa 

Barbara, and San Clemente Islands, and regions surrounding Santa Barbara Island, 

including to the north at Hidden Reef (Figure 7). Peaks of bathymetric features in the 

southern portion of the SCB were also hot spots for A. dendrochistos as well all near the 

coast of San Diego (Figure 7). 
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Figure 7. GAM model predictions for Antipathes dendrochristos (n= 674) in the Southern  

California Bight. The best model included depth, slope, BBPI, FBPI, eastern currents, and 

northern currents as predictive variables and a spatial random effect. Lower plot excludes areas 

where predictions had a high degree of uncertainty (i.e., plot shows areas with credible interval 

ranges less than 0.25 probability). Broad areas with smaller ranges of uncertainty include the 

majority of the Santa Barbara Basin, east of San Miguel Island, along the coast. 
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Figure 8. GAM model predictions for P. longispina (n=606) in the Southern California Bight. The  best 

 model included depth, slope, eastern currents, and northern currents as predictive variables and a 

 spatial random effect. Lower plot excludes areas where predictions had a high degree of 

 uncertainty. 

   



52 

 

 

  

 
Figure 9. GAM model predictions for Porifera sp (n=1403) in the Southern California Bight. The  best 

 model included depth, slope, FBPI, and a tensor between eastern, and northern currents as 

 predictive variables and a spatial random effect. Lower plot excludes areas where predictions had 

 a high degree of uncertainty. 
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P. longispina had a wide predicted distribution, with high areas of high 

probability throughout the SCB (Figure 8).  Large areas of high probability occurred 

throughout the Santa Barbara Channel, ringing the northern and southern islands, and 

through the channel east of Santa Cruz Island (Figure 8). Hidden Reef had a mix of high 

and mid-range probabilities, as did the banks south of San Nicholas Island (Figure 8). 

High probability also occurred on the peaks of the bathymetric features in the southern 

portion of the SCB (Figure 8). 

Porifera sp. had concentrated hot spots of high probability and a wide distribution 

of mid-range probabilities throughout the SCB, with similar trends of higher probability 

ringing the islands and other select locations (Figure 9). Hot spots occurred on the 

northern side of San Miguel and Santa Rosa, and Santa Cruz Island, south of Santa Rosa 

Island, along the western side of San Nicholas and Santa Cruz Basins, ringing the 

southern islands, and hugging the coast (Figure 9). The largest continuous areas of high 

probability occurred north of San Miguel Island and on the southwest side of Santa Cruz 

Basin (Figure 9). 

High levels of uncertainty in these predictions exists for all three taxa throughout 

the SCB (Figures 7, 8, & 9). Large areas of uncertainty exist especially for P. longispina 

predictions (Figure 8) as well as Porifera sp., particularly in the northern section of 

CINMS (Figure 9). A. dendrochristos had better certainty in model predictions (Figure 

7), although stretches of high uncertainty exists in the western part of the northern portion 

of CINMS and around San Nicholas Island. 
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Suitable Habitat Within National Marine Sanctuary Waters 

Maxent models predicted small areas of high suitability within CINMS for all 

taxa, generally southwest of San Miguel Island, southeast of Santa Cruz Island, and 

around Santa Barbara Island (Figures A2, A3, and A4). While the total percentage of the 

CINMS area that is suitable habitat for the three DSCS is low (<3% for all taxa, Table 8), 

the percent of total suitable habitat of the SCB study area that falls in the CINMS is much 

higher (9-35%, Table 8). Specifically, 35.3% and 27.9% of suitable A. dendrochristos 

SCV habitat (at the 0.75 and 0.5 thresholds, respectively) occurs in the CINMS (Table 8). 

A smaller percentage of suitable habitat for P. longispina, exists in CINMS (15.8% and 

9.1% at the 0.75 and 0.5 thresholds, respectively; Table 8). Nearly equal amounts of 

suitable habitat exists for Porifera sp. in CINM: 15.7% at the 0.5 threshold and 14.9% at 

the 0.75 threshold (Table 8).  CINMS Suitable Habitat is the area of the CINMS 

predicted to be suitable habitat (at the stated threshold) divided by the total CINMS area 

between 50-500 m depth (2679 km2), expressed as a percentage. SCB Suitable Habitat is 

calculated in the same fashion, the total study area between 50-500 m in SCB is 15,437 

km2. DSCS Habitat Protected by CINMS is the proportion of total SCB suitable habitat 

area that is located within the CINMS, expressed as a percentage. For example, A. 

dendrochristos had 183.1 km2 of suitable habitat available at the 0.5 habitat suitability 

threshold available in the SCB, of which 51.1 km2  fell within CINMS waters, or 27.9%. 
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Table 8. Proportion of total Channel Islands National Marine Sanctuary (CINMS) and the Southern 

 California Bight (SCB) that are predicted to be suitable habitat for three DSCS taxa, based on 

 GAM and Maxent models. GAM results were subsetted to only include areas of high certainty 

 (with a CrI range <0.25), and the same process was repeated and reported here as GAM*.  

 

  

Taxa Model 
Logistic 

Threshold 

CINMS 

Suitable 

Habitat 

SCB 

Suitable 

Habitat 

Habitat 

Protected 

by CINMS 

A. dendrochristos 
Maxent 0.5 1.9% 1.2% 27.9% 

A. dendrochristos Maxent 0.75 0.15% 0.11% 35.3% 

      

A. dendrochristos GAM 0.5 23.0% 26.5% 15.0% 

A. dendrochristos GAM 0.75 15.3% 18.6% 14.3% 

      

A. dendrochristos GAM* 0.5 9.1% 11.2% 14.1% 

A. dendrochristos GAM* 0.75 9.1% 11.2% 14.1% 

      

P. longispina Maxent 0.5 0.90% 2.5% 9.1% 

P. longispina Maxent 0.75 0.28% 0.44% 15.8% 

      

P. longispina GAM 0.5 42.8% 48.1% 15.4% 

P. longispina GAM 0.75 33.2% 35.1% 16.4% 

      

P. longispina GAM* 0.5 17.1% 15.3% 19.3% 

P. longispina GAM* 0.75 29.3% 44.5% 16.5% 

      

Porifera sp. Maxent 0.5 2.9% 4.5% 15.7% 

Porifera sp. Maxent 0.75 0.52% 0.89% 14.9% 

      

Porifera sp. GAM 0.5 31.1% 22.4% 24.0% 

Porifera sp. GAM 0.75 12.1% 11.7% 18.0% 

      

Porifera sp. GAM* 0.5 2.4% 3.9% 10.8% 

Porifera sp. GAM* 0.75 2.4% 3.8% 10.7% 
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Relative to the Maxent models, the GAMs generally predicted larger areas of high 

probability of occurrence within CINMS for all three taxa; however when areas with high 

uncertainty were accounted for the distributions were much smaller (Figures 7, 8, & 9). 

GAMs generally predicted areas of high probability on the northern side of both sections 

of CINMS (Figures A5, A6, and A7). The low uncertainty GAM and Maxent models 

estimated that the total percentage of CINMS suitable habitat was higher for P. 

longispina, and lower for Porifera sp. and A. dendrochristos. About 11-19% of CINMS 

area has a high probability of occurrence for the three taxa, although the total percentage 

of high probability areas in the SCB that falls within CINMS is more consistent between 

the two models for P. longispina and Porifera sp. (Table 8).   
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DISCUSSION 

Summary of project goals and results 

Predictive models for A. dendrochristos, and two DSCS associated with YOY 

rockfish (P. longispina and Porifera sp.) were used to create distribution maps in the 

SCB. Both presence-absence (GAMs) and presence-only models (Maxent) predicted 

known presences well (Tables 5 & 7); however important variables for making these 

predictions varied between modeling methods (Tables 4 & 7). The GAMs, which were 

developed using the best practices for DSCS species distribution modeling (Winship et 

al. 2020), found that depth and bottom current direction and velocity were important in 

predicting the presence for all taxa. Both Maxent and GAMs pointed to several areas 

outside of CINMS that may be candidates for exploration and potentially additional 

conservation. Hidden Reef, Santa Catalina, and San Clemente are all areas outside of 

CINMS that may be important habitat for these three DSCS, as well as their associated 

fish and invertebrate species.  

Model Comparison  

Models that include true absence data, such as GAMs, are the preferred modeling 

method for DSCS SDMs as they provide additional information on conditions that are not 

suitable for species (Elith et al., 2011; Winship et al., 2020). In this study, model AUC 
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scores were similar between Maxent and GAMs, implying they both performed well 

when predicting known presences (and absences for GAMs). These results are similar to 

the results found in a comparison of several SDMs including Maxent and GAMs (Duque-

Lazo et al., 2016); however in the Duque-Lazo et al. (2016) study they found GAM 

performed better when the model was used in a new study location (i.e. GAMs were 

more “transferable”). Results from Maxent reflect environmental conditions at 

occurrence points across the landscape. Thus, results can provide information on what 

feature a species may be “selecting” for in a landscape, with caveats including sampling 

bias in the species observations, such as high occurrences in areas that are easier to access 

for surveying (Elith et al. 2011).  

GAM models in this study accounted for spatial autocorrelation, and therefore 

likely make better inferences than models that do not account for this spatial dependency 

(Legendre, 1993), such as the Maxent models (Václavík et al., 2012). In addition to the 

use of presence and absence data, this aspect of accounting for spatial autocorrelation in 

the GAMs is also considered a best practice for building DSCS SDMs (Winship et al., 

2020). These spatial models provide more reliable results as they account for patterns that 

may be created by unexplained variation in the models. 

Measures of uncertainty are important for interpreting model predictions, and 

areas of low uncertainty and high probability are provided for all GAMs (Figures 7, 8, 

and 9). These areas of high confidencewere generally distributed throughout the SCB for 

all three taxa. Areas of agreement between the three taxa include areas north of Santa 
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Barbara Island, on the banks south of San Nicholas Island, around Santa Catalina and San 

Clemente, and in patches west of San Miguel (Figures 7, 8, and 9). While measures of 

uncertainty in model predictions were not estimated for Maxent, I recommend future 

studies include these via analysis such as trend surface analysis (Václavík et al., 2012).  

Environmental Predictors  

 Interpretation of relationships between probability of taxa occurrences and 

environmental predictors should be done with caution. Positional errors in species 

occurrences are difficult to detect but can create substantial changes to model results 

(Osborne and Leitão, 2009) and mismatches in the scale of predictors can miss important 

relationships with the organism of study (Dolan et al., 2008; Rengstorf et al., 2013). 

Additionally, as is the case with this study, different models can come to different results 

in terms of which variables are important and what the relationship is between the 

response and the predictors due to differences in modeling approaches and in the data 

used to build the models. With these concepts taken into consideration, information 

provided by visual plots (e.g. response plots) and cross-validation (i.e. how often a 

variable is selected as an important variable in a model) can provide insight to ecological 

processes otherwise difficult to obtain and influence future areas of study (Huff et al., 

2013; Rengstorf et al., 2013; Gugliotti et al., 2019). 

Depth was an important variable in all models and is a common, important 

variable in SDMs (Bryan and Metaxas, 2007; Davies and Guinotte, 2011; Huff et al., 
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2013, Ross & Howell 2013). While DSCS have niches associated with depth (Cairns, 

2007), depth can act as a proxy for other correlated environmental variables not included 

in the models, such as temperature and dissolved oxygen (Garcia et al., 2014).  However, 

in this study I did not find depth correlated with these or other measured covariates. This 

may be due to the scale at which DO and temperature were estimated by 

ROMS/NEMURO, which is 100 times greater than the depth measure estimates provided 

by the California Relief Model. This mismatch in scale may be why depth came out as an 

important variable in all models, as depth was measured at a finer scale (30 m) and may 

be a proxy for other variables at a finer scale. The food variables predicted using the 

ROMS/NEMURO (calculated at a scale of 3 km) may have been too coarse, particularly 

compared to the scale of depth measurements. This finer resolution may better represent 

the conditions that DSCS exist in. Additionally, depth may be representing more complex 

associations between multiple variables. Megafauna biomass and abundance are known 

to decrease with depth most likely due to loss of available energy (Rex et al., 2006), and 

competition among DSCS for resources could play a role in distributions (Iken et al., 

2001) although competition in the deep sea may not be as large of a driver as it is in 

shallower rocky reefs (Rex et al., 2006).  

The remaining bathymetric variables play a less important role in both maxent 

and GAM models. FBPI and slope were low contributing variables in all maxent models, 

and although they came out as important in GAMs (Table 7), there was not a strong 

relationship between probability and these variables (Figure 6). This agreement between 
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modeling approaches suggests that these two variables are not good predictors of the 

three DSCS taxa, which may be due to the scale at which FBPI and slope were calculated 

(250 m2 and 90 m2, respectively). Other BPI scales have been good predictors for DSCS 

along the California coast (DeVogelaere et al., 2005), and future studies could explore the 

spatial scales that may be important to DSCS in the SCB.  

Northern and eastern current velocities were important covariates in all GAMs, as 

observed for DSCS in other SDMs (Davies et al., 2008; Huff et al., 2013), likely due to 

their role in food delivery, larval dispersal, and sediment cleaning (Roberts et al., 2006, 

Freiwald & Roberts, 2005). GAM response plots showed strong trends between 

probability of occurrence and current direction/velocity with greater probability in strong 

northward currents but not in strong southward currents, indicating direction plays an 

important role (Figure 6). This may be due to large scale processes in the SCB. Currents 

in the SCB are strongly affected by the California Current, which bends toward the coast 

of San Diego and then travels north along the coast, through the southern basins, and into 

the Santa Barbara Channel (Bray et al. 1999, Hickey, 1992, Aaud et al., 2010; Figure 

A8). An increase in northern current velocity may be connected to increased productivity 

in the SCB, or increased advection of food present locally (Chavez et al., 1991; Mantyla 

et al., 2008; Kim et al., 2009).  

Eastern currents were also important in all GAMs (Tables 4 & 5). Probability of 

A. dendrochristos was relatively high for weak eastern and western currents, with some 

negative trends at the highest velocities, although the uncertainty was high for most 
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western currents (Figure 6). Probability of P. longispina was highest at relatively weak 

western current velocities and Porifera sp. probability was also highest in areas with 

western velocity currents (Figure 6). These trends may be due to general trends in the 

environment surveyed, as the data contained a wider range of western current velocities 

than eastern. There are also certain areas where western current flow is accelerated, 

particularly out of the western side of the Santa Cruz Basin and into the Santa Barbara 

Channel east of Santa Cruz Island (Figures A9 & A10), and thus the trend in total 

magnitude of the current (northern and eastern combined) could be driving this 

relationship.  

Final predictions of the three taxa show some trends in current direction and 

magnitude, especially in A. dendrochristos and P. longispina (Figures A9 & A10). High 

areas of probability occur east of Santa Cruz Island (north of the Footprint), and on the 

northern side of the banks off San Nicholas Island where a saddle exists between these 

banks and the banks south of Santa Rosa Island. Both of these areas have a higher 

probability of occurrence (Figure A9, A10, & A11) which may be connected to increased 

delivery of food. Considering a cumulative current direction and magnitude may better 

capture the relationship between DSCS and currents in future models, such as those done 

for other DSCS species in Ireland (Rengstorf et al., 2013), and Alaska (Rooper et al., 

2017). 

Huff et al. (2013) created a predictive model for A. dendrochristos utilizing the 

same data set and found the highest abundances in low velocity northern currents, which 
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differs from this study’s results, however predictive maps show general spatial agreement 

across the SCB. Differences in these results could be due to the types of models used 

(Huff et al., 2013 utilized a non-spatial GAM to predict counts of A. dendrochristos) as 

well as variables included in the model. Huff et al. (2013) included average January 

currents as January had the warmest temperatures, which they hypothesized may be 

related to spawning. I found that seasonal currents were strongly correlated to the average 

current, (for example average and January currents were correlated at the 0.9 level) and 

thus used the average. Huff et al. (2013) also had a restricted set of variables in the 

models that did not include eastern currents or BBPI, which came out as important 

variables in this study (Tables 4 & 6). 

While food was hypothesized to play an important role in DSCS distributions, 

diatom concentration was not an important variable in the GAMs. Food supplies (detritus, 

diatom, phytoplankton and zooplankton) were highly collinear with certain 

environmental variables (temperature and dissolved oxygen), which are also important to 

DSCS metabolic processes (Roberts, 2009, Gugliottie et al., 2019). It is possible that the 

spatial or temporal scales used for diatom concentration (and its correlated variables 

including temperature and dissolved oxygen) were too broad to effectively capture a 

relationship with the taxa in the GAM models. Food supply, temperature, and dissolved 

oxygen estimates were originally calculated at ~3 km resolution and averaged over many 

years.  Other, finer-scale variables, such as depth which was calculated at a 30 m 

resolution, may better capture the conditions DSCS are experiencing.  
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  Scale plays a critical role in predictions for SDMs as DSCS are sessile organisms 

that require suitable conditions at their location, thus scales that are too large may 

mismatch localized conditions (Dolan et al., 2008). In this study, bathymetry data (depth, 

slope, BBPI, and FBPI) used was at a 30 m resolution, while all other variables, such as 

currents and temperature, were estimated at the 3 km scale and were interpolated down to 

match the 30 m resolution for modeling. The broad scale variables are likely 

insufficiently describing the localized environments where patches of DSCS (or solitary 

DSCS) can occur (Tissot et al., 2006), which in turn are likely adding to error in the 

models (Rengstorf et al., 2013). These broad scale variables may be better proxies of 

landscape-wide patterns; for example, currents may be acting as a broad scale proxy for 

food in the region (Hyrenbach and Veit, 2003, Roemmich & McGowan, 1995). Ocean 

circulation patterns in the SCB and resulting nutrient and food availability can fluctuate 

from a daily to a decadal scale. The Southern California Bight is a very complex system 

where the entire system can be flushed within a matter of days (Hickey 1992). During El 

Niño years, ocean circulation in the region is generally strengthened and currents broaden 

in the poleward inshore countercurrent (Dever and Winant, 2002). During La Niña years, 

these patterns weaken, and strong winds result in greater off-shore flow and sustained 

upwelling (Dever & Winant 2002, Lynn & Bograd 2002). While DSCS are long-lived 

and thus large-scale patterns in climate and food availability may be important, an 

additional metric that captures what areas provide consistent food to DSCS on a daily 

basis might improve models. Additionally, a measure of food delivery to the bottom on a 
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smaller spatial scale may better capture the relationship between DSCS and food 

availability. 

Suitable Habitat Within National Marine Sanctuary Waters 

Most taxa had less than 20% suitable habitat in the CINMS (Table 8).  A. 

dendrochristos was an exception, as it had a relatively high percentage of habitat in 

CINMS based on Maxent predictions (Table 8). CINMS covers about 25% of the SCB 

study area (waters within the SCB between 50-500 m), which provides a metric for 

comparing the amount of suitable DSCS habitat inside and outside CINMS. If the amount 

of total SCB habitat protected by CINMS (Table 8) is around this value of 25%, that 

suggests that the CINMS is protecting DSCS habitat at a scale proportional to its size; 

however, most predictions fell below this threshold suggesting a higher proportion of 

DSCS exists outside CINMS. The majority of suitable habitat areas inside the CINMS 

occurred at Piggy Bank and the Footprint southeast of Santa Cruz Island. These areas are 

known hot spots identified by previous SDMs (Huff et al., 2013; Salgado et al., 2018) 

and are currently protected as Essential Fish Habitat. Hot spots for Porifera sp. based on 

GAMs were scattered throughout the CINMS (Figure A7), which is consistent with the 

widespread and abundant distribution of the taxa throughout the Bight. Both P. 

longispina and Porifera sp. had high probability of occurrence areas on the northern edge 

of CINMS, which may be connected to higher productivity and nutrient cycling in the 

Santa Barbara Channel (Bray et al. 1999, Hickey 1992). High probability areas for A. 
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dendrochristos and P. longispina exist west of San Miguel Island. This area had fewer 

surveys than other regions of CINMS, and were generally surveyed less due to intense 

wind exposure on the west side of the Channel Islands (A. Lauermann, pers. Comm., 

2020). Any opportunities to explore this region as well as other areas for conservation 

consideration outside the CINMS should be taken.  

Threshold analyses used in this study come with caveats, specifically that the 0.5 

and 0.75 cutoffs are somewhat arbitrary and may not have a direct ecological 

interpretation (Osborne et al., 2001). It can be easy to assume an output, for either 

Maxent or GAMs, greater than 0.5 would be associated with presences, and those less 

than with absences, but it is entirely possible for an area that is predicted to be highly 

probable is in fact unsuitable (Osborne et al., 2001). Future analyses could consider less 

subjective thresholds, such as ones that optimize sensitivity and specificity (Liu et al., 

2005).  

Management Implications and Future Research  

While the extensive data collected over the last few decades have provided the 

baseline for this and many other studies, human impacts and climate change has and will 

continue to pose a threat to DSCS (Roemmich and McGowan, 1995; Lunden et al., 2014; 

Gómez et al., 2018). Current and future threats still exist in the form of changing 

environments. For example, from 2005 to 2014, a large die off in gorgonian deep-sea 

corals was observed around Anacapa (Etnoyer et al., 2015), followed by die offs along 



67 

 

 

  

the central California coast in the fall of 2016 (California Department of Fish and 

Wildlife, Marine Region, 2017). Laboratory experiments have revealed these die offs are 

likely due to climate change, specifically prolonged exposure to high temperatures 

(Gugliottie et al., 2019). While my study did not focus on the species that were 

documented in these events, this highlights the potential for species distributions to have 

changed from the time of data collection due to acute or chronic impacts of stressors such 

as environmentally driven die-offs. 

Historically one of the largest threats to DSCS in the SCB is bottom trawl fishing, 

which has recently been banned throughout the majority of deep waters in the SCB 

(NMFS, 2019). The ban represents a significant development in the protections for 

DSCS, but fishing still poses a threat to DSCS species via lost gear pollution, which can 

have direct impacts to DSCS (Watters et al., 2010) and can abort dive missions via ROV 

entanglement (A. Lauermann, pers. Comm., 2020). Finding a balance between 

conservation and commercial fisheries has been an ongoing challenge in the SCB over 

the last few decades, and will continue to be in the future (Love et al., 1998; Yoklavich et 

al., 2018). Continued advances in predictive modeling can help direct future surveys in 

the SCB that can help with future decision-making processes.  

Although the cost of deep-sea surveying is high, it is critical to continue gathering 

data on DSCS and their environments to understand their current distributions and the 

state of their habitats. Current models made for DSCS may reflect realized niches that 

have been constrained due to extensive historical bottom trawling along the west coast of 
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North America (Yoklavich et al., 2018). Assuming current distributions may be dictated 

by historic bottom trawling throughout the SCB, future distributions of DSCS may 

change due to the new closures. Future distributions of DSCS will also reflect newer 

threats to DSCS such as climate change. For example, currents were an important 

predictor of DSCS in this study, however trends in the strength and temperature of these 

currents has been shifting and will continue to shift over the coming decades (Doney et 

al., 2009). Additional data collection on ocean conditions moving forward could allow 

for updating these models and potentially making predictions for where DSCS may exist 

in the future. 

All models include some level of uncertainty, and the predictions made for the 

three taxa included areas of high uncertainty. Unfortunately, large areas in CINMS had 

high uncertainty, particularly for Porifera sp., but many areas exist outside of CINMS that 

are predicted to have a high probability of occurrence with relatively low uncertainty 

(Figures 7, 8, & 9). Specifically, areas near Hidden Reef had high probability and low 

uncertainty for A. dendrochristos and P. longispinga (Figures 7 & 8). Additionally, all 

three taxa had areas of high probability and low uncertainty on the banks south of San 

Nicholas Island, in additions to areas around San Clemente and Santa Catalina Island 

(Figures 7, 8, & 9). This suggests that these areas may indeed be a ‘hot spot’ for DSCS, 

since these locations have also appeared as an area of interest in SDMs for other taxa 

(Guinotte and Davies, 2014; Salgado et al., 2018, Huff et al., 2013). Areas around San 

Clemente and Santa Catalina Islands were designated as “highest priority 
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recommendations for conservation-focused research” due to a high probability of DSCS 

occurrence and bottom-contact fishing in the area (Salgado et al., 2018). Hidden Reef 

was also found to be an area for high A. dendrochristos frequency (Huff et al., 2013), 

which emphasizes the potential importance of this area to DSCS and their associated 

species.  

The high cost of surveying deep-sea habitats hinders our ability to study DSCS, 

but SDMs such as those provided in this study can help to focus future survey and 

conservation efforts. Predicted hot spots identified here are consistent with other studies 

(Huff et al., 2013, Etnoyer et al., 2018), and are also expected to be of benefit to 

commercially important rockfish species given their associations with Porifera sp. and P. 

longispina (Henderson et al., 2020). Threats to DSCS and their associated species will 

persist into the future, and strategic management and advances in our understanding of 

their ecology will be critical in creating a sustainable ecosystem in the SCB.  
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APPENDIX A 

Appendix A: Supplemental Figures 
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Figure A1 Response plots for Antipathes dendrochristos, Lophelia pertusa, and Porifera sp. single variable 

 Maxent models. All models were made with a beta multiplier value of 0.5 and bootstrapped with 

 100 samples. 
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Figure A 2 Predicted areas based on 0.5 and 0.75 logistic output thresholds for Antipathes dendrochristos based on maxent models. 
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Figure A 3 Predicted areas based on 0.5 and 0.75 logistic output thresholds for Plumarella longispina based on maxent models.  
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Figure A 4 Predicted areas based on 0.5 and 0.75 logistic output thresholds for Porifera sp. based on maxent models. 
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Figure A 5 Predicted areas based on 0.5 and 0.75 predicted probability thresholds for Antipathes dendrochristos GAMs. 
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Figure A 6 Predicted areas based on 0.5 and 0.75 predicted probability thresholds for Plumarella longispina GAMs.  
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Figure A 7 Predicted areas based on 0.5 and 0.75 predicted probability thresholds for Porifera sp. GAMs.  
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Figure A 8 Seasonal and average currents through the Southern California Bight. Areas of increased flow 

 include the Santa Barbara Basin, on the south east end of the San Nicholas Basin, through the 

 saddle between the banks on the west side of the Santa Cruz Basin, on the northern banks of the 

 West and East Cortes Basins, and the bank west of the Tanner Basin. 
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Figure A 9 GAM predictions for A. dendrochristos with current direction and magnitude depicted in vector form. Areas of increased flow exist east of 

 Santa Cruz Island, through the Santa Barbara Channel, over the saddle between the banks south of Santa Rosa Island and north of San 

 Nicholas Island, and through the banks south of San Nicholas Island. 
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Figure A 10 GAM predictions for P. longispina with current direction and magnitude depicted in vector form. Areas of increased flow exist east of 

 Santa Cruz Island, through the Santa Barbara Channel, over the saddle between the banks south of Santa Rosa Island and north of San 

 Nicholas Island, and through the banks south of San Nicholas Island. 
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Figure A 11 GAM predictions for Porifera sp. with current direction and magnitude depicted in vector form. Areas of increased flow exist east of 

 Santa Cruz Island, through the Santa Barbara Channel, over the saddle between the banks south of Santa Rosa Island and north of San 

 Nicholas Island, and through the banks south of San Nicholas Island.
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Figure A 12 Model residuals for A. dendrochristos for non spatial GLM (top) and spatial GAM (bottom). 

 Black circles represent negative residuals, green represents positive. Size of circle is relative to 

 residual magnitude. 
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Figure A 13 Model residuals for P. longispina for non spatial GLM (top) and spatial GAM (bottom). Black 

 circles represent negative residuals, green represents positive. Size of circle is relative to residual 

 magnitude. 
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Figure A 14 Model residuals for Porifera sp. for non spatial GLM (top) and spatial GAM (bottom). Black 

 circles represent negative residuals, green represents positive. Size of  circle is relative to 

 residual magnitude. 
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Figure A 15 Bathymetric Position Index (broad-scale) data for surveyed cells (Absence and Presence 

 boxes) and throughout the Southern California Bight between 50 – 500 m (Available). 
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APPENDIX B 

Appendix B: Supplemental Tables 
Table A 1 Stage one of the model selection process. All combinations of smoothed and linear bathymetric 

 variables were tested, and the model with the lowest WAIC score was used in stage two. 

 

  

One Bathymetric Variable Smoothed 

s(Depth) + Slope + FBPI + BBPI + Biogeophysical Variables 

Depth + s(Slope) + FBPI + BBPI + Biogeophysical Variables 

Depth + Slope + s(FBPI) + BBPI + Biogeophysical Variables 

Depth + Slope + FBPI + s(BBPI) + Biogeophysical Variables 

Two Bathymetric Variables Smoothed 

s(Depth) + s(Slope) + FBPI + BBPI + Biogeophysical Variables 

s(Depth) + Slope + s(FBPI ) + BBPI + Biogeophysical Variables 

s(Depth) + Slope + FBPI + s(BBPI) + Biogeophysical Variables 

Depth + s(Slope) + s(FBPI) + BBPI + Biogeophysical Variables 

Depth + s(Slope) + FBPI + s(BBPI) + Biogeophysical Variables 

Depth + Slope + s(FBPI) + s(BBPI) + Biogeophysical Variables 

Three Bathymetric Variables Smoothed 

s(Depth) + s(Slope) + s(FBPI) + BBPI + Biogeophysical Variables 

s(Depth) + s(Slope) + FBPI + s(BBPI) + Biogeophysical Variables 

s(Depth) + Slope + s(FBPI) + s(BBPI) + Biogeophysical Variables 

Depth + s(Slope) + s(FBPI) + s(BBPI) + Biogeophysical Variables 

Four Bathymetric Variables Smoothed 

s(Depth) + s(Slope) + s(FBPI) + s(BBPI) + Biogeophysical Variables 
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Table A 2 Stage two of the model selection process for all noncollinear variables. All combinations of 

 smoothed and linear biogeophysical variables were tested in addition to a tensor between current 

 variables. The model with the lowest WAIC score was used as the final model.  

 
No Biogeophysical Variables Smoothed 

Diatom Concentration + Northern Current + Eastern Current + Bathymetric Variables 

Diatom Concentration + (Northern Current x Eastern Current) + Bathymetric Variables 

One Biogeophysical Variable Smoothed 

s(Diatom Concentration) + Northern Current + Eastern Current + Bathymetric 

Variables s(Diatom Concentration) + (Northern Current x Eastern Current) + Bathymetric 

Variables Diatom Concentration + s(Northern Current) + Eastern Current + Bathymetric 

Variables Diatom Concentration + Northern Current + s(Eastern Current) + Bathymetric 

Variables Two Biogeophysical Variables Smoothed 

s(Diatom Concentration) + s(Northern Current) + Eastern Current + Bathymetric 

Variables s(Diatom Concentration) + Northern Current + s(Eastern Current) + Bathymetric 

Variables Diatom Concentration + s(Northern Current) + s(Eastern Current) + Bathymetric 

Variables Three Biogeophysical Variables Smoothed 

s(Diatom Concentration) + s(Northern Current) + s(Eastern Current) + Bathymetric 

Variables  

 


