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ABSTRACT 

MULTIVARIATE HABITAT-BASED PREDICTIVE MODELING OF THREE 

DEMERSAL ROCKFISH SPECIES IN CENTRAL CALIFORNIA 

 

Georgia Rae Martel 

 

 

 

 Accurate, spatially explicit models of rockfish abundance are critical in 

implementing ecosystem-based management strategies and designating essential fish 

habitats and marine protected areas. Multibeam bathymetry methods and visual, non-

extractive submersible transect surveys were combined to collect environmental variables 

and fish abundance data at three distinct sites within the study region. Zero-adjusted 

models were developed using habitat classification analyses of high-resolution (5 m) 

digital elevation models. Model accuracies were assessed by using a reserved subset of 

the original datasets. To demonstrate that a model’s predictive power was linked to its 

spatial origins, Mean Absolute Error and coefficient of determination values were 

recorded when the site-trained model was used to predict that site’s own test data, and 

when it predicted species’ distribution at the two other sites whose training data were not 

used to inform the model. The habitat characteristics of importance to each species varied 

across sites, and model accuracies declined when applied to a site that differed in 

physical composition, suggesting a species will alter their habitat associations in 

accordance to the relative availability of preferred substrata and terrain. 
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INTRODUCTION 

Many populations of commercially and recreationally important groundfish 

species, including rockfish in the genus Sebastes, have long been in decline along the 

Pacific northwest of the United States, prompting concern from managers and 

communities whose livelihoods depend on these stocks (Starr et al. 2002; Harvey et al. 

2006; Levin et al. 2006). Rockfish are one of the most economically valuable commercial 

fisheries on the west coast, in addition to being important recreational fisheries 

(Yoklavich et al. 2000; OCNMS 2011). This taxon presents a challenge to traditional 

management strategies however because of their unique life history traits. Rockfishes are 

slow growing, long-lived, and reach age of maturity much later in life than many other 

commercial stocks, rendering these populations especially vulnerable to overfishing 

(Love et al. 1990; Parker et al. 2000; Yoklavich et al. 2000; Levin et al 2006). 

Recently, managers have been seeking forms of human impact mediation and 

ecosystem-based management strategies to combat the declines seen in many rockfish 

populations (PFMC 2010). Investigating the factors that affect the degree to which fishes 

use specific habitat characteristics will aid managers’ decisions regarding allocation of 

resources. The revisions to the Magnuson-Stevens Fishery Conservation and 

Management Act (MSFCMA) allowed for the inclusion of habitat in fishery management 

strategies (MSA, 16 U.S.C. § 1801 et seq.). The MSFCMA revisions provided an option 

for decision-makers to designate certain areas as Essential Fish Habitat (EFH) and 

Habitat Areas of Particular Concern (HAPC) (Morgan et al. 2005; NOAA 2010). EFH is 
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defined as “those waters and substrate necessary to fish for spawning, breeding, feeding 

or growth to maturity” (Rosenburg et al. 2000). HAPCs are areas within EFH that are 

rare and are either ecologically important, sensitive to disturbance, or may be stressed 

(EA 2013). While some aspects of EFH have been defined and protected for federally 

managed fishes, many rockfish species’ habitat associations are still uncertain, and the 

question of whether there are discernable ontogenetic patterns in species’ habitat use 

remains. Regarding the species for which EFH has been defined, it remains unclear 

whether these associations hold constant throughout these species’ ranges. Disagreement 

also exists around what constitutes “essential” habitat for these fishes, with multiple 

studies finding evidence of facultative habitat usage by rockfish species (Auster et al. 

1995; Auster 2005; Wrubel 2013). 

In order for marine spatial planning strategies such as the designation of EFH, 

HAPC and the implementation of Marine Protected Areas (MPAs) to be successful, a 

robust understanding of the habitat characteristics of importance to the species of interest 

is required. Additionally, there is a need to understand how these associations with 

habitat may vary across broad geographic scales. Research in this field is sparse, with 

many studies focusing only on limited geographic regions and often reporting seemingly 

differing findings (Barrs et al. 1992; Auster et al. 1995; Yoklavich et al. 2000; Pacunski 

et al. 2001; Johnson et al. 2003; Anderson and Yoklavich 2007; Love et al. 2009). To 

strengthen inferences about any specific rockfish stock, multiple sub-populations across a 

number of sites that are diverse in physical composition should be compared. However, 

rockfish’s affinity for high relief, rocky reefs makes ascertaining habitat data difficult 
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using conventional methods such as bottom trawls (Wedding and Yoklavich 2015). Non-

extractive visual methods such as submersible and Remotely Operated Vehicle (ROV) 

surveys are a viable and effective means of accurately sampling the benthic environment 

(Auster and Lindholm 2005; Yoklavich et al. 2007; Tissot et al. 2008; Anderson et al. 

2009; Knight et al. 2014; Lindholm et al. 2015). When combined with the recent 

advancements in remote sensing technologies and predictive modeling approaches, visual 

sampling methods provide a powerful tool for researchers to effectively predict the 

distribution of rockfish species, without the need for exhaustive sampling (Summers-

Morris et al. 2004; Iampietro and Kvitek 2005; Young 2007; Iampietro et al. 2008; 

Young et al. 2010; Ierodiaconou et al. 2011). The information gathered on species’ 

abundance in relation to a suite of environmental variables (slope, aspect, elevation, etc.) 

can be analyzed with statistical models such as Generalized Linear Models (GLMs) to 

predict where species are most likely to occur in areas where no direct observational data 

exists (Rotenberry et al. 2006). 

In this study, I investigated the limitations and potential of a relatively new class 

of habitat-based predictive distribution models when applied across a large swath of 

coastline. My goals were (1) to identify the habitat characteristics associated with 

observations of three demersal rockfish species; (2) test whether these habitat 

associations remained constant at three different sites that varied in habitat structure and 

availability; and (3) evaluate these differences in habitat usage using predictive modeling 

techniques. To compare habitat associations between sites, I developed species-specific 

models that predicted the distribution of each rockfish species at each of my three study 
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sites, and then I assessed the accuracy of these site-trained models when predicting the 

same species’ distribution at other sites that differed in physical composition, with the 

expectation being that model fit would decrease when applied to areas with habitat 

features dissimilar to the original site of model construction. 

To allow for comparison, I selected species of rockfish that were common to all 

three survey sites in my study: Squarespot (Sebastes hopkinsi), Rosy (S. rosaceus), and 

Pygmy (S. wilsoni) rockfish (Eschmeyer 1983). Based on the current literature, I had 

reason to expect these species’ habitat associations to be similar but with nuanced 

differences (Love et al. 2002). Rosy rockfish have been shown to prefer complex 

substrata, positioning themselves in the upper depths of rocky reefs, between small cracks 

and crevices. Squarespot rockfish associate strongly with the same type of substrate, but 

at mid-depths on the bank or reef (Anderson et al. 2009). While squarespots are found in 

greater abundances over high relief structure, they have also been observed associating 

with lower complexity substrata such as cobble (Laidig et al. 2009), revealing a more 

generalist habitat selectivity behavior. As a schooling species, Pygmy rockfish have 

typically been found to associate with shallower waters relative to Rosy and Squarespot 

habitats, and can be found over a multitude of substrata, including sand and mud 

(Anderson et al. 2009). The nuanced differences in each species’ microhabitat 

associations amplified my ability to detect geographic changes in habitat usage among 

species. The data used in this study were gathered from baseline surveys in the Monterey 

Bay National Marine Sanctuary (MBNMS) conducted in 2007 directly following the 
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designation of State MPAs under the California Marine Life Protection Act (MPLA) 

(Starr et al. 2008). 

Analyzing these baseline data presents an opportunity to examine fish-habitat 

associations before any MPA protections were in effect and provides a reference point to 

compare any changes to these relationships in the future. Because these species are not 

specifically targeted in commercial or recreational fisheries, they already benefit from 

some protection, although they are subjected to varying levels of bycatch. Due to this de 

facto protection, these species have rarely been studied in the context of MPA 

management. Therefore, we do not understand the effects MPA closures will have on 

these species. The results of this project provide contextual information on how distinct 

species of fish utilize habitat at varying locations within their geographic range and shed 

light on the limitations of applying predictive distributional models to large swaths of 

coastline. Better understanding of these complex ecological relationships will provide 

policy-makers with the ability to make better-informed decisions and improve the 

management of our ocean and its resources. 
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METHODS 

Study Region 

The data used in this project were collected during the 2007 submersible Delta 

surveys off the coast of central California, at the time of the initial establishment of 

MPAs. These surveys encompassed 164,000 m2 of seafloor ranging in depth from 24 to 

365 m (Figure 1). Surveys took place largely within state waters (three nautical miles 

from shore), and encompassed a broad region of the continental shelf within the 

Monterey Bay marine sanctuary (Starr et al. 2008). The waters in this region are 

productive and cool, owing to the California Current’s year-round equatorward direction 

of flow, and substantial spring and summer upwelling events (Hickey 1998), which 

supports diverse fish and invertebrate communities. The area also historically sustained 

large commercial and recreational fisheries (Miller and Geibel 1973; Karpov et al. 1995; 

Mason 1998).  

Data Collection 

To compare habitat associations of targeted fish species, a total of 20 dives and 45 

transects from three distinct study sites, Portuguese Ledge, Pt. Lobos, and Pt. Sur, within 

the survey region were selected to encompass the known occurrence depths of the three 

study species (Figure 2). The purpose of selecting these three sites was to account for the 

strong influence of depth on structuring fish assemblages, while comparing fish habitat 

usage in areas with varying substrate profiles.  
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These sites exhibit a wide range of benthic habitats, from sloping mudflats to high 

relief rocky pinnacles and boulder fields (Wedding and Yoklavich 2015). Portuguese 

Ledge is a deep mudplain just south of the Monterey Canyon. This region is characterized 

by gently sloping mudflats and a low availability of high relief rocky reef. This was the 

deepest site surveyed, averaging about 100m in depth across all transects. Point Lobos, in 

contrast to Portuguese Ledge, has abundant high relief structure and high rock pinnacles. 

Pt. Lobos is extremely productive and supports a high diversity of invertebrate 

populations. This was the shallowest site sampled, averaging about 45m. The southern-

most site, Point Sur, can be characterized mainly by boulder fields with some high relief 

reefs dispersed throughout. Pt. Sur averaged about 70m in depth across transects. 

As part of the Delta protocol, quantitative, visual strip transects were conducted to 

characterize seafloor habitat and identify, count, and measure species of fishes. Each dive 

included two to four 10 min-long transects along a predetermined habitat-depth strata 

based on the occurrence of rocky habitat identified from multibeam bathymetric maps 

provided by the California Seafloor Mapping Program (SFML 2006). A pilot operated 

the submersible while an experienced scientist identified and estimated total length of all 

fish species using paired lasers spaced 20 cm apart as a guide within a 2 m-wide strip 

adjacent to the submersible. The length of each dive was determined using a Doppler 

velocity log (DVL) (NavQuest 600 Micro) and a ring-laser gyrocompass (Starr et al. 

2008). The width of each transect was estimated at 2 m by keeping the submersible at a 

constant altitude of 1-2 m above the benthos (Yoklavich et al. 2002). 

http://seafloor.otterlabs.org/SFMLwebDATA_SURVEYMAP.htm
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Each transect was documented with an external video camera and annotated in 

real-time by the scientific observer on board. These baseline surveys were conducted in 

September-November of 2007, the same year these areas were given State protection. For 

this reason, protections had little effect on the stock at this time, therefore MPA 

boundaries such as the delineations between State Marine Reserves and State Marine 

Conservation Areas were not considered in my analyses.  

Video Analysis 

From the annotated video, the geographic coordinates of the target fishes on 

transects were recorded when the individual fish was positioned between the 

submersible’s paired lasers in the center of the viewing area. The purpose of collecting 

these detection data this way was to standardize fish observations between the three 

species, which exhibit different behavioral responses to external stimuli such as the 

presence of a large submersible (Stoner et al. 2009). These georeferenced 

presence/absence data were converted into the ESRI shapefile format for GIS analysis. If 

the fish did not move within the paired lasers, its georeferenced timestamp was recorded 

when it was nearest the center of the viewing area. If more than one individual of a 

species was observed within a single second (a moving school for example) then the 

video was paused when more than half of the individuals were nearest the center of the 

viewing field. The total number of individuals in the group was estimated and their 

location was recorded as a single set of coordinates. Because these three species of 
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rockfish are known to exhibit strong site fidelity, sampled transects were considered to be 

independent. 

Fish sizes were estimated and binned at 5 cm intervals (Wedding and Yoklavich 

2015). Total length at age of maturity (Haldorson and Love 1991) was utilized to 

delineate three age classes of each of the target species to determine whether there were 

any ontogenetic patterns of habitat association; fish <10 cm were classified as young-of-

the-year (YOY), fish in the 10-15 cm bin were classified as sexually immature 

adolescents deemed “Year-1s”, and fish ≥ 15 cm were classified as reproductive adults 

(“Year-2s”). Each species’ age class data were pooled by site for initial statistical 

analyses and model-building. Species’ age classes were later modeled separately to 

determine any influence of ontogenetic patterns of habitat association if the initial pooled 

models did not converge. 

Substratum (mud, sand, gravel, pebble, cobble, boulder, flat rock, rock ridge, and 

pinnacle top) was classified from the recorded video of each transect based on standard 

geological definitions (Stein et al. 1992; Greene et al. 1999). Distinct habitat patches 

were delineated as such if the substrate type remained constant for at least three seconds 

during video playback (Wedding and Yoklavich 2015). A patch was comprised of a 

primary substrate (defined as occupying at least 50% of the area viewed), and a 

secondary substrate (>20% of the area viewed). The length of each habitat patch was 

determined using the starting and end coordinates of each distinct patch.  

Relief was categorized based on the complexity of the primary and secondary 

substrata. I simplified this categorical variable into four levels using similar terminology 
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as Wedding and Yoklavich (2015). The highest relief category was large structured hard 

substratum (Lhard), which included pinnacle tops, rock ridges, and flat rocks. Boulders, 

cobble, and pebble were classified as moderate complexity hard substratum (Mhard), 

while sand and mud comprised the soft substratum (Soft) low complexity category. If the 

primary substrate was of a different relief category than the secondary substrate (boulders 

scattered across a mud plain for instance), then the resulting relief was coded as “Mix”. 

Geospatial Processing 

High-resolution multibeam data were collected across the entire study region by 

the California Seafloor Mapping Program at a 5 m resolution. A hillshade layer was 

created and overlaid onto the Digital Elevation Model (DEM) so that physical features 

such as rocky reefs and outcroppings were more apparent. After confirming the spatial 

reference system (World Geodetic System 1984), the submersible transect data were 

projected onto the bathymetric DEM as points in ArcMap (Esri Inc. 10.5.1) whereby each 

point corresponded to the geographic coordinates of the submersible recorded by the 

DVL at one-second intervals. 

Following preparation of the coordinate data, slope and aspect were derived using 

the ArcGIS Spatial Analyst extension. Previous studies have shown that rockfish prefer 

sloping terrain (McClatchie et al. 1997). Consequently aspect, measured as the compass 

direction a slope faces, was hypothesized to be an important predictor of rockfish 

abundance due to the relationship between cardinal direction of slope face and the 

delivery of nutrients from the prevailing current (Young et al. 2010). The three other 
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habitat covariates were derived from the DEM using the Benthic Terrain Modeler 

extension (Walbridge et al. 2018). Bathymetric Positioning Index (BPI) is a habitat 

metric that characterizes a pixel in a bathymetric DEM as a positive or negative feature 

relative to the surrounding seafloor elevation (Weiss 2001; Young et al. 2010). Locations 

that are higher than their surroundings will have positive values, whilst areas that are 

lower will have negative values. Flat areas have values close to zero (Ierodiaconou 2011). 

BPI is a useful tool in examining habitat associations, and it can be calculated at different 

spatial extents. In this study, I used a fine-scale BPI (f-BPI), calculated at a scale factor of 

36 m, and a broad-scale BPI (b-BPI) at a scale factor of 200 m. Since these species of 

rockfish exhibit generally high site fidelity, I expected f-BPI to be a better predictor of 

occurrence as this scale captures the finer microhabitats individual fish are most likely 

associating with. BPI at both scales was standardized (mean=0, standard deviation=1) to 

allow for comparison across multiple datasets (Lundblad and Wright 2006). 

Another habitat morphometric that was calculated was planar curvature, which 

calculates the rate of change in slope and measures the concavity or convexity of a 

surface (Pittman et al. 2011). Curvature is considered to be an important measurement of 

seafloor habitat due to the connection between seabed characteristics and current strength 

(Wilson et al. 2007). Vector Ruggedness Measure (VRM) quantifies substratum 

complexity by defining “ruggedness” as the variation in the three-dimensional orientation 

of pixels within a raster and has previously been used to delineate habitats of marine 

organisms (Beck 2000; Kostylev 2005). Orthogonal dispersion within a specific 

neighborhood is calculated to measure the three-dimensional orientation of grid cells 
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(Valentine et al. 2004). This results in ruggedness values ranging from zero (no terrain 

variation) to one (highest terrain variation).  

Rockfish abundance does not generally exhibit an exact linear relationship with 

depth, displaying instead a parabolic relationship, with preferences being bracketed 

within a specific depth range (Love 1990; Stein 1992; Auster et al. 1995; Yoklavich and 

Greene 2000; Love and Yoklavich 2006; Love and York 2006). Thus, for each model that 

included depth as a predictor, a distinct model including the polynomial term Depth2 was 

developed and compared using AIC scores (Zeileis et al. 2008). 

Once the topographical values were computed for all habitat covariates, they were 

extracted to the transect point data using the Extract Multi Values to Points tool in 

ArcMap. The habitat covariates of interest are summarized in Table 1. 

Analysis of video showed that Squarespot and Rosy rockfish were often 

encountered at the interface of rocky habitat and soft sediment, or “edge” habitat. For this 

reason, I decided to include distance to reef edge as an omnidirectional environmental 

covariate. I created a map of the study region classifying terrain as either “rock” or “soft 

sediment” by selecting a VRM cutoff value that adequately identified the region into the 

different substrate types, which delineated edge habitat. After comparing the original 

DEM to VRM rasters of varying cutoff values, it was determined that a VRM value of 

0.002 was acceptable (Figure 3). These Euclidean distances between fish and reef edge 

were calculated within ArcMap by first converting the VRM raster (which indicates the 

rugosity of the substratum) to a polygon shapefile. Only those polygons containing VRM 

values greater than the established cutoff value for hard substrate were included in order 
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to demarcate rocky reef from soft sediment. The polygons in this shapefile, indicating 

sections of rocky reef of explicit VRM values, were then merged so that individual rocky 

reefs were now represented by a single polygon. The shapefile containing these reef 

polygons was converted into polylines, and the distance to each line (representing reef 

edge) was acquired by joining the polyline shapefile to the shapefile containing the fish 

detection data using the Join tool. 

Similarly, adult Rosy rockfish were observed preying periodically on Pygmy 

YOY. For this reason, distance to the nearest Rosy within a site was calculated for all 

Pygmy and Squarespot observations and included in the statistical analyses.  

In order to achieve a balanced sampling design for analysis, non-detection points 

were randomly generated from the transect data equal to the number of species’ detection 

points observed within a site (Bassett et al. 2018). Having an equal number of detection 

and non-detection points allowed me to compare areas of fish habitat usage without an 

overabundance of zeros in the data. To generate the non-detection points, fish detection 

points (geographic coordinates where fishes were observed along a transect) were first 

buffered by 5 m to eliminate the possibility of including potentially suitable habitat in the 

pool of locations available for selection. These are mobile species that exhibit relatively 

high site fidelity (Lowe et al. 2009), so a radius of 5 m around the coordinates of an 

observed fish was deemed appropriate; it was very likely that the habitat the fish was 

immediately associating with was very similar to the habitat type within a 5 m radius. 

Therefore, I did not want to potentially select this immediately adjacent habitat as a non-

detection point. Once the detection points were buffered, the non-detection points were 
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constrained to the transects sampled within a site, to represent where fishes were actually 

searched for and not observed. This process was repeated separately for the three age 

classes of each species, and then combined for a total of nine datasets for each species-

site combination. For example, if 20 YOY Pygmy were encountered at Point Lobos, then 

20 non-detection points were randomly generated along all transects sampled within 

Point Lobos, representing 20 locations where YOY Pygmy were searched for and not 

encountered. This dataset, containing a total of 40 points, was then combined with the 

Year-1 and Year-2 Pygmy datasets, resulting in a single dataset containing all the Pygmy 

data at Point Lobos. This balanced dataset was still considered to be zero-inflated by 

GLM standards, requiring me to utilize a different modeling approach than a traditional 

GLM. 

Statistical Analysis 

Hurdle models 

Predictive models of species’ distribution were developed using zero-adjusted 

negative binomial (ZANB) and zero-adjusted Poisson (ZAP) models, also commonly 

referred to as hurdle models (Zuur et al. 2009). These models are designed to handle 

excess zeros and overdispersion, and hence are useful for demersal fish count data 

(Santos et al. 2011; Turschwell et al. 2017). Most importantly, they have the ability to 

predict species’ occupancy and abundance simultaneously from a single dataset, thus 

making them an ideal tool when handling count data.  
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The first part of the hurdle model predicts the probability of a species’ presence 

via a binomial distribution given a set of environmental variables, while the second part 

models the species’ abundance given that it is present at a location via a Poisson or 

negative binomial distribution. Not all environmental predictors need to be statistically 

significant in the “best” hurdle model; in many cases removal of non-significant variables 

results in a model with a poorer fit based on AIC and R2 values. Furthermore, the 

predictor variables can be the same for the logistic regression and the count process of a 

hurdle model, but they often differ between the two procedures. This feature makes 

hurdle models very useful for describing distribution when a species’ occupancy and 

abundance arise from distinct ecological processes. For example, consider a species that 

has been extirpated from a number of its previously inhabited habitats due to overfishing 

or land use development. In this case, the species’ occurrence at a given site may be 

predicted by one variable such as historic trawling pressure, while its abundance when it 

is present is influenced by another set of environmental characteristics, such as suitable 

rock habitat.  

The logistic regression in a ZAP or ZANB models the probability of presence 

versus absence, rather than the probability of a false zero versus other types of data. The 

equation for the zero-adjusted model is: 

 

(1) 
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Where 𝑦𝑖 is the value of the dependent variable,  𝑧𝑖 represents the number of 

predictors in the zero process, X𝑖 represents the number of predictors in the count process, 

β is a vector of coefficients belonging to X, and γ is a vector of coefficients related to z. 

From Equation 1, the probability of measuring a zero count (fzero) is modeled using a 

binomial distribution. The lower part of the equation states that the probability of 

measuring a non-zero value equals the probability that it is non- zero value multiplied 

with the probability determined by the count distribution (fcount). In other words, to 

measure a non-zero count, the environment must first cross the “hurdle” of producing a 

non-zero value. As illustrated by the denominator of the fraction in the lower portion of 

the equation, the count process excludes the probability of any zero counts. This is the 

reason these models are referred to as zero-truncated or zero-adjusted distributions.  

Species’ distribution models 

Statistical analyses were accomplished using R statistical software and the 

package ‘pscl’ (Jackman 2010) and included data exploration protocols described by 

Zuur et al. (2010). Collinearity among predictor variables was investigated using 

correlation matrices and Variance Inflation Factors (VIF) (Montgomery and Peck 1992). 

If two variables were highly correlated (VIF>5), then only one was kept based on the 

likelihood of it being a predictor of rockfish abundance. This likelihood was determined 

after a literature review.  

To assess model accuracy, each of the nine datasets were first partitioned in a 

90/10 split whereby 90% of the data were randomly selected to be the “training data,” 

while the remaining 10% were to be used as “test” data (Morrison et al. 2013). Akaike’s 
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Information Criterion (AIC) was used to select the most parsimonious model from all 

possible combinations of covariates (Sakamoto et al. 1986), and validation of the optimal 

model was accomplished by examining residuals vs. fitted values (Anscombe and Tukey 

1963). Model fit was assessed using a rootogram from the R package ‘countreg’ (Kleiber 

and Zeileis 2016). A rootogram illustrates a model’s accuracy via a histogram of the 

count values in a dataset, whereby the bar height represents the difference between the 

observed and expected count values. A bar hanging below the zero line on the y-axis 

indicates underfitting by the model for that particular count category, while a bar 

hovering above zero indicates overfitting. Ad hoc testing is required to determine the 

exact numerical difference between the two values, such as using the “predict” function 

in R to provide an estimated value of the count value of interest. 

Each model was then used to predict the species’ count values given the site’s test 

data. To demonstrate that a model’s predictive power was linked to its spatial origins, 

Mean Absolute Error (MAE) and pseudo-coefficient of determination (R2) values were 

recorded when the site-trained model was used to predict that site’s own test data, and 

when it predicted species’ distribution at the two other sites whose training data were not 

used to inform the model (Iampietro and Kvitek 2008). MAE measures the average 

magnitude of errors in a set of predictions without considering their direction. In other 

words, it is the average over the test sample of the absolute differences between the 

predictions and observations, where all individual differences have equal weight 

(Wilmott and Matsuura 2005). This can be represented by the equation: 
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MAE = 
1

𝑛
∑ |𝑥𝑖 − 𝑥|𝑛

𝑖=1     (2) 

Where 𝑛 is the number of data points, 𝑥𝑖 is the predicted measurement, and 𝑥 is 

the observed value.  

MAE was chosen as a more appropriate metric to evaluate model performance in 

this case rather than Root Mean Square Error (RMSE), because the error distribution was 

not Gaussian (Chai and Draxler 2014). 

The coefficient of determination (R2) is defined as the proportion of variance 

within the dependent variable that is explained by the independent variables. A pseudo-

R2 value has been developed for use with zero-adjusted models that avoids inflation due 

to the inclusion of irrelevant covariates in the model (Carlevaro and Hoareau 2012). This 

psuedo-R2 value was utilized in this study in lieu of a traditional coefficient of 

determination using the R package “mhurdle”. 

Spatial autocorrelation 

 Environmental variables are commonly correlated with one another, such that 

observations that are closer geographically would be more similar to each other than 

expected by random chance. This spatial autocorrelation (SA) may persist after 

accounting for measured environmental variables due to other non-measured spatial 

similarities or effects (Legendre 1993). Thus, observations made on transects that were 

nearer to each other may have naturally been more similar than observations made on 

transects separated by greater distances. This can result in Type I errors (false positives), 

which can reduce the explanatory power of variables in distribution models (Segurado et 
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al. 2006). In other words, if SA is present in the response variable, the significance of the 

explanatory variables will be inflated.  

 To investigate lack of spatial independence in the data the residuals of each 

species’ “global” model at each site were tested for significant SA using the R statistical 

package ‘spdep’ (Bivand and Wong 2018) using Moran’s I coefficients and a binary 

weighted neighboring scheme. A species’ global model included all habitat covariates as 

predictor variables without regards to significance. The global model did not incorporate 

a spatial component such as a random effects term. Moran’s I is a correlation coefficient 

that measures how similar samples of a given variable are over varying spatial distances. 

Additionally, it calculates a p-value to evaluate significance. A Moran’s I value that is 

close to zero indicates no spatial autocorrelation. 

If significant SA was observed in the residuals of the global model, then four new 

models were constructed incorporating Transect as a random effect, in an attempt to 

mediate the effects of SA. Each of these four “spatial” models included the same habitat 

covariates as the global model, and utilized one of four different correlation structures 

(rational quadratic, exponential, spherical, and Gaussian; Pinheiro and Bates 2000). The 

first correlation structure represents a rational quadratic spatial correlation structure and 

is illustrated by the equation: 

1 ∕ (1 + (𝑟 ∕ 𝑑)2)     (3) 

 Where d denotes the range of points in three-dimensional space, and r is the 

distance between two observations.  
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An exponential spatial correlation structure measures the correlation between two 

observations at a distance r apart and is denoted by: 

𝑒𝑥𝑝(−(𝑟 ∕ 𝑑))    (4) 

 A spherical spatial correlation structure between two observations at distance r < 

d apart is illustrated as: 

1 − 1.5(𝑟 ∕ 𝑑) + 0.5(𝑟 ∕ 𝑑)3    (5) 

 Finally, a Gaussian spatial correlation structure was constructed, where the 

correlation between two observations at r distance apart is denoted by: 

𝑒𝑥𝑝(−(𝑟 ∕ 𝑑)2)    (6) 

 The normalized residuals of these four spatial models were tested for significant 

SA using a binary weighted neighboring scheme (Ord and Getis 1995). The results of 

these tests were compared to the results of the global models to determine whether the 

addition of Transect as a random effect and the inclusion of a spatial correlation structure 

removed the spatial autocorrelation in the residuals, and if so, which spatial correlation 

structure was most appropriate to utilize. If the spatial models did not resolve the spatial 

autocorrelation in the residuals, analysis proceeded with the simple model that did not 

incorporate a random effects term; in these instances, there were some spatial processes 

or effects at play that could not be accounted for statistically that were potentially 

affecting model results. However, multiple studies have utilized non-spatial models after 

investigating the effects of SA; these studies similarly concluded that either the 

incorporation of a random effects term did not reduce the effects of SA, or the resulting 
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spatial models were less interpretable and not as useful in predictive modeling (Young et 

al. 2010, Wedding and Yoklavich 2015). 
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RESULTS 

Spatial Autocorrelation 

 There was significant spatial autocorrelation in the data from Pt. Lobos and Pt. 

Sur based on the Moran’s I values of the residuals of the global models. When Transect 

was incorporated as a random effect into the spatial models, the Moran’s I values of the 

residuals at Pt. Lobos did not improve. Similarly, the residuals from the global model 

developed for the Pt. Sur data indicated there was significant spatial autocorrelation in the 

data. The SA at Pt. Sur was improved by the addition of a spatial component, but this 

addition did not remove the significant SA entirely. No significant SA was detected at 

Portuguese Ledge after examination of the residuals of the global model (Table 5). 

Because the SA found at Pt. Lobos and Pt. Sur could not be resolved by the spatial 

models, they were not used for interpretation. Analyses continued on the simple, non-

mixed models that did not incorporate a spatial component. 

General Site Model Results 

Covariates that were highly correlated were removed from analysis. The habitat 

variable b-BPI was found to be highly correlated with f-BPI and depth (VIF= 15.69) and 

was therefore excluded from further analyses. For each model that included depth as a 

predictor, a distinct model including Depth2 was developed and the AIC scores of the two 

models were compared. Although a parabolic relationship was evident in the Depth2 data, 

including the polynomial term did not significantly improve any of the models. Overall, 
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all three species were found to be statistically associated with relief type, sloping terrain, 

and cardinal direction of slope faces. However, the degree to which these characteristics 

affected fish associations varied among study locations. 

Of the three study sites, Pt. Lobos had the greatest extent of available high relief 

rocky substrate. This high complexity habitat supported the greatest number of 

Squarespot and Pygmy rockfish at all three study sites (Table 2). Squarespots at Pt. Lobos 

had a significant positive relationship with high relief, and a significant negative 

relationship with mixed substrata (Table 3). Pygmys however, continued to demonstrate a 

negative relationship with high relief and mixed relief, with only a near-significant 

positive relationship to moderate complexity hard substrata. Pygmy rockfish did not 

appear to have a direct association with relief, instead showing more generalist habitat 

distributions. At Pt. Lobos and Pt. Sur where high complexity rock was abundantly 

available, they demonstrated a significant negative relationship to the rugose reefs. In 

none of the Pygmy models does any relief category appear to have a significant positive 

effect on occurrence or abundance. Instead, Pygmy abundances seem to be related to 

other environmental predictors such as aspect, depth, and BPI. 

The Rosy rockfish at Pt. Lobos exhibited a significant positive relationship with 

the two environmental covariates correlated with rugosity, VRM and BPI (Table 3). 

Furthermore, this was the only site at which these two variables were significant 

predictors in the Rosy rockfish models. This suggests that when high relief habitat is 

readily available, we can predict Rosy rockfish distribution based on the emergent high 

relief reefs. However, where rugose structure is not as readily available, as is the case at 
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Portuguese Ledge, this species will alter their habitat preferences and other 

environmental variables become better at predicting the species’ distribution. At 

Portuguese Ledge and Pt. Sur, VRM and BPI were not included in the best-fitting model; 

instead, Rosy rockfish at this site were found to associate significantly with slope, 

indicating steeper sloping terrain may be the best habitat available to these fish when 

rugose rocky reefs are scarce.   

Modeling of Squarespot Rockfish  

Overall, there were 766 observations totaling 1,319 Squarespot individuals, 

comprised of 136 observations from Portuguese Ledge, 446 observations from Point 

Lobos, and 184 observations from Point Sur (Table 2). An observation can be one 

instance of any number of fish observed within a one-second interval (such as a school), 

whereas individual counts represent an individual fish. Squarespot were found over all 

habitat types, but probability of occurrence was highest over boulder and cobble 

substrate. This species consistently associated positively with high relief rock, and was 

observed over soft sediment at Portuguese Ledge. Squarespot rockfish were also more 

likely to be encountered on slopes facing into the direction of the prevailing California 

current (north to northeast). 

Portuguese Ledge 

The best hurdle model predicting Squarespot distribution at Portuguese Ledge 

included depth, relief, and aspect (Table 3). This model accounted for approximately 

24% of the variability in Squarespot distribution (Table 4).  
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Examining response curves of individual predictors, the probability of Squarespot 

presence was greatest at locations with substrata in the Mhard relief category. The 

probability of Squarespot presence was significantly influenced by aspect and decreased 

with depth from 70 to 100 m (Figure 4). Squarespot abundance decreased with depth at 

Portuguese Ledge (Figure 5). 

Point Lobos 

The best hurdle model predicting Squarespot distribution at Point Lobos included 

distance to reef edge, relief, and distance to nearest Rosy rockfish. This model accounted 

for approximately 5% of the variability seen in this species’ distribution at this site. The 

probability of Squarespot occupancy at a site was highest at locations with moderate hard 

relief, and declined with increasing distance to the nearest Rosy (Figure 6). Distance to 

reef edge was the only significant predictor of Squarespot abundance at Point Lobos, 

where Squarespot abundance decreased with greater distances to a rocky reef outcropping 

(Figure 7). 

Point Sur 

The best hurdle model predicting Squarespot distribution at Point Sur included 

distance to reef edge, relief, aspect, VRM, and distance to nearest Rosy, and accounted 

for approximately 38% of the variance in distribution at this site. As was the case at the 

other sites, Squarespot presence was most probable in areas of moderate hard relief 

(boulders and cobble). Probability of occurrence declined with increasing aspect, higher 

rugosity (larger VRM values), and distance to nearest Rosy rockfish (Figure 8). Similar 
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to the pattern observed at Point Lobos, Squarespot abundance at Point Sur declined as 

distance to reef edge increased (Figure 9). 

Modeling of Rosy Rockfish 

 A total of 592 observations of 631 Rosy individuals were collected from the three 

study sites: 151 observations from Portuguese Ledge, 91 observations from Point Lobos, 

and 350 observations from Point Sur. In each of the hurdle models developed for all three 

sites, the Rosy rockfish data fitted a Poisson distribution and abundance was not 

significantly influenced by any of the habitat covariates.  

Portuguese Ledge 

The best hurdle model predicting Rosy occurrence at Portuguese Ledge included 

relief and slope. This model accounted for approximately 17% of the variability in the 

species’ distribution at Portuguese Ledge. Like Squarespot, the probability of Rosy 

rockfish presence was highest at locations with boulder or cobble (Mhard relief) substrata 

(Figure 10). Probability of occurrence slightly increased with steeper slopes at Portuguese 

Ledge. 

Point Lobos 

 The selected model for predicting Rosy occurrence at Point Lobos included relief, 

aspect, VRM, and f-BPI, and accounted for approximately 13% of the variability seen in 

the distribution of Rosy at Point Lobos. However, unlike the Rosy population found at 

Portuguese Ledge, the probability of occurrence was lowest at locations comprised of 
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substrata of the Mhard complexity (Figure 11). Probability of occurrence also decreased 

with aspect, and increased with increasing VRM and f-BPI values. 

Point Sur 

 The best hurdle model predicting Rosy rockfish at Point Sur included patch 

length, relief, depth, and distance to reef edge, and it accounted for approximately 20% of 

the variability in Rosy distribution. The relief category Mhard was the best predictor of 

Rosy occurrence at this site, while the probability of Rosy presence declined with 

increasing patch length, depth, and distance to reef edge (Figure 12). 

Modeling of Pygmy Rockfish 

 Pygmy rockfish were the most abundant species surveyed; 915 Pygmy 

observations were made totaling 1,786 individuals from the three study sites. There were 

278 observations from Portuguese Ledge, 510 observations from Point Lobos, and 127 

from Point Sur. This species was the only one of the three to associate negatively with 

Lhard. Similar to the Squarespot rockfish, Pygmys were more likely to be found over 

current-facing slopes.  

Portuguese Ledge 

The best model predicting Pygmy distribution at Portuguese Ledge were relief, 

patch length, aspect, and f-BPI, wherein patch length and aspect predicted the logistic 

regression portion of the model, and relief, patch length, aspect, and f-BPI modeled the 

species’ abundance. This model accounted for over 61% of the variability found in 

Pygmy distribution at Portuguese Ledge. The probability of occurrence increased with 



28 

 

 

longer patch lengths and decreased with increasing aspect (Figure 13). Pygmy abundance 

was greatest in areas of highest relief (Lhard). Abundance also increased with aspect, 

patch length, and greater f-BPI values, corresponding to higher terrain elevation (Figure 

14). 

Point Lobos 

 The model that best described Pygmy distribution at Point Lobos included depth, 

relief, and distance to nearest Rosy rockfish. All three variables predicted Pygmy 

occupancy, while only depth and distance to nearest Rosy rockfish modeled Pygmy 

abundance given its presence. This model accounted for little more than 1% of the 

variability in Pygmy distribution, but was confirmed to be the best-fitting hurdle model 

following established model selection protocols. Mhard was again the best predictor of 

occupancy; this probability increased with increasing depth and distance to nearest Rosy 

(Figure 15). At Point Lobos Pygmy abundance declined with increasing depth and 

distance to Rosy (Figure 16). 

Point Sur 

 The selected model to predict Pygmy distribution at Point Sur included relief, 

depth, distance to reef edge, distance to nearest Rosy, and curvature. This model 

accounted for nearly 60% of the variability found in the species’ distribution at this site. 

Probability of occupancy at Point Sur was highest in areas with moderate rocky relief 

(Mhard relief category), and increased sharply with increasing depth (Figure 17). 

Contrary to what was expected, the probability of occupancy declined with Rosy rockfish 

distance and increased slightly with increasing distance to reef edge. Abundance however 
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decreased with increasing distances to Rosy rockfish, and increased with greater 

curvature (i.e. surfaces of higher concavity) (Figure 18). 

Comparison of Site-Trained Models 

 Species’ distribution, predicted using training data, demonstrated the highest 

accuracy was achieved when using models developed at the site where the test dataset 

originated. Utilizing a model developed at a different site to predict species’ distribution 

resulted in lower R2 values (Table 4). For instance, when predicting Pygmy distribution 

at Portuguese Ledge, the model trained by data gathered from Portuguese Ledge had an 

R2 value of 0.61. When the same population’s distribution was predicted using the model 

informed by the species’ patterns observed at Point Lobos, the R2 value was much lower 

(0.05), indicating poor model fit. Alternatively, when the model developed at Portuguese 

Ledge was used to predict Pygmy distribution at Point Lobos, the R2 value was 

approximately 0.0002. Abundance of all three study species was far lower at Portuguese 

Ledge where rocky habitat is rare. Individual habitat associations at this site were 

different than those observed at Pt. Lobos and Pt. Sur; the distributional models 

developed at these two high-relief sites did not accurately predict the species’ 

distributions at Portuguese Ledge. 

 With the exception of the model trained at Point Sur to predict Rosy (Sur.r) and 

the model trained at Point Lobos to predict Pygmy (Lobos.w) distribution, the models 

trained to their specific sites had lower MAE values than when models trained at one of 

the two other sites were used to predict species distribution. When comparing models, a 
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lower MAE value indicates a better fit. As expected, most of the models trained and 

tested at the same site had the lowest MAE as compared to those models trained at one 

site and used to predict test data from another. This low error rate can be visualized in the 

rootograms of the models (Figures 19-21). 
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DISCUSSION 

 This study was the first to investigate adaptive habitat usage of rockfish species 

across a large swath of their geographic range. The utilization of standard habitat 

characterization protocols allowed me to compare patterns of habitat associations of 

commonly studied demersal fish species. This study was successful in demonstrating that 

a species’ habitat usage varies in accordance to the relative physical surroundings. 

Habitat factors that may have been important in predicting occurrence or abundance in 

one area were not always found to be important in another. Every species’ distribution 

model developed at a distinct site resulted in a unique set of variables predicting the 

species’ distribution. 

 Relief was an important predictor of species’ occupancy in nearly every model 

developed, with the exception of Pygmy distribution at Portuguese Ledge, where it was 

only a predictor of abundance. Pygmy rockfish were more often associated with substrata 

in the Mhard relief category, rather than the more structurally complex rock pinnacles 

and ledges. This coincides with the findings of Tissot et al. (2007) for Pygmy rockfish at 

Heceta Bank, Oregon, which found that boulder and cobble habitat supported high 

Pygmy rockfish densities. Contrary to the conclusions of many previous studies however 

(Love and Yoklavich 2006; Love et al. 2009; Young 2010), Rosy rockfish in this study 

were not associating strongly with areas of highest relief (Lhard). Instead, the areas with 

the highest probability of occurrence for all three rockfish species consisted of substrate 

in the moderate hard relief category (Mhard), which includes boulders and cobble. This 
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result was similar to the findings of Wrubel (2013) along the Olympic coast of 

Washington. 

 As expected, occurrence and abundance for all three species of rockfish were 

lowest over soft substrates. However, some populations utilized these habitats when 

rocky relief was rare. For example, at the Point Lobos and Point Sur study sites no 

individuals of Squarespot were found over soft substrate, which is expected given what 

we know about this species’ preferred habitats. However, at Portuguese Ledge, where 

soft sediment accounted for over 22% of the substrate surveyed, several individuals were 

observed over mud or sand (n=7). At Point Lobos and Point Sur, soft sediment made up 

only 3% and 6% of the total substrate surveyed across all transects respectively, and there 

were no observations of Squarespot or Pygmy rockfish on soft sediment at these sites, 

whereas 19 Pygmy individuals were observed over sand or mud at Portuguese Ledge. 

These results indicate that if their preferred habitat is not available, rockfishes may alter 

their preferences and shift to less preferred substrata. These shifts in habitat use and their 

effects on population density should be taken into consideration when distributional 

models are being applied by resource managers, specifically in the planning of EFH and 

MPAs.  

 Species’ responses to mixed relief was highly variable. The population of 

Squarespot at Point Lobos, for example, were less likely to associate with mixed 

substrata, while at Point Sur their abundances over this relief type were higher in 

comparison. Mixed relief was not found to be significant in any of the three models 

developed for the Rosy rockfish and had a significant negative effect on Pygmy 
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occupancy relative to the three other relief types only at Point Lobos. Further subdividing 

the mixed category of substrata may shed some answers as to how these species are 

specifically associating with these areas of integrated relief. Point Sur had the highest 

abundance of Rosy rockfish of all three study sites and had slightly less overall high 

relief substrata. Given Rosy rockfish predation on YOY Pygmys, it may be that Pygmy 

rockfish at Pt. Sur are being displaced from their preferred habitat among the high relief 

rock. This may explain why more Pygmys were observed over mixed substrata at Pt. Sur 

than anywhere else. 

 Distance to reef edge was a significant predictor in four of nine of the species’ 

distribution models. Overall, most of the rockfish species studied followed a trend of 

decreasing abundance with increasing distance to the edge of a rocky reef; the farther 

from a rocky reef, the less likely that species was encountered. Because these species are 

known to associate strongly with high relief rock (Love et al. 2002), this result concurs 

with established hypotheses regarding rockfish habitat associations. One exception to this 

pattern were the Pygmy rockfish at Pt. Sur, whose probability of occurrence actually 

increased farther from the reef edge. Directional distance was not quantified in these data, 

so it cannot be stated with certainty whether the Pygmys were found farther away from 

reefs over soft substrate, or if large numbers of Pygmys were observed near the centers of 

large reefs, the theoretical distances being the same. The probability of Pygmy 

occurrence was highest over substrata of the Mhard relief category, so the latter instance 

is the most likely scenario. In any case, Pygmy rockfish at Pt. Sur did not associate as 

strongly with edge habitat as the other two target species, suggesting this metric is not a 
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good predictor for this species. Boulders accumulate around the bases of high relief rocky 

reefs and provide shelter and foraging space for piscivores such as Rosy rockfish which 

may be one explanation for the positive association observed between the two more 

aggressive rockfish species and edge habitat. 

The probability of Squarespot occupancy decreased with increasing distances to 

the nearest Rosy rockfish. This result is reasonable when considering the fact that Rosy 

and Squarespots occupy similar habitats (Love et al. 2002; Love and Yoklavich 2006; 

Iampietro et al. 2008), and so this negative trend may be suggestive of a surrogate 

predictor; Rosy rockfish presence in an area may be indicative of good habitat or 

favorable conditions, from which Squarespot rockfish are likewise benefitting from. 

Pygmy rockfish demonstrated a more complicated relationship with their nearest Rosy 

neighbor; the probability of Pygmy occurrence increased with greater distances to Rosy 

rockfish. However, Pygmy abundance significantly decreased with increasing distances 

to Rosy rockfish, suggesting they are potentially selecting alternative habitats to Rosy 

rockfish (which coincides with the results detailing Pygmys’ relationship with edge 

habitat). Rosy rockfish may be competing with or preying on Pygmys along the favorable 

edge habitat, forcing Pygmy rockfish to seek shelter either further into the reef, or out 

into the soft or mixed substrata. 

The potential role that benthic invertebrates play in influencing rockfish habitat 

associations was not investigated in this study. However, including invertebrate 

covariates such as percent cover or species diversity may have improved the models’ 

predictive ability, particularly when the inclusion of abiotic factors alone did not yield an 
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accurate, well-fitting model. This region of the central California coast does not harbor a 

significant population of the large structure-forming benthic invertebrates commonly 

thought to provide fishes with biogenic habitat, such as members of the genus Antipathes 

(black corals), barrel sponges (Class Demospongiae), or taxa in the Order Alcyonacea 

(soft corals) (Tissot et al. 2006; Wrubel 2013; Huff et al. 2013; Whitmire et al. 2017). 

However, groups of fish were observed over large swaths of brachiopods (Order 

Terebratulida), sea pens (Ptilosarcus gurneryi), and sea whips (Halipteris willemoesi) 

which form their dense aggregating beds in soft mud or sand, substrata with which 

rockfish do not typically associate. These observations suggest that large aggregations of 

smaller invertebrates may provide alternative structure for rockfish in the absence of high 

relief rock. Comparing rockfish densities between areas of hard substrate, soft substrate, 

and soft substrates with large densities of invertebrates may yield interesting results, 

particularly in sites that have a limited availability of hard substrata such as Portuguese 

Ledge. These invertebrate aggregations may be vital in providing habitat and structure in 

places that are bereft of high relief rock, where large abundances of rockfishes may not 

otherwise be able to persist. 

The application of hurdle models proved to be a suitable method to predict 

species’ abundances at distinct sites within the central California coastal region. Most of 

the zero-adjusted models developed demonstrated adequate fit, and predicted the count 

distributions from each site’s test data reasonably well (R2 values ranged from 0.2 – 0.6 

in six out of nine models). When these site-trained models were applied to differing sites 

however, the resulting fit was consistently poorer. This supports the idea that differences 
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in regional physical and ecological conditions play a key role in structuring fish 

assemblages and determining how a species interacts with habitat, which may potentially 

affect the way managers implement predictive distribution models. Site-level variation in 

terrain and availability of high relief rocky reef on the order of kilometers may be 

responsible for major changes in fish behavior and ecology. From the results of this 

study, it appears the availability of rugose structure and sloping terrain not only alters 

how rockfishes interact with habitat, but also impacts the local population’s overall 

abundance.  

The site-trained models that yielded low pseudo-R2 values generally had the 

highest percentage of YOY and Year-1 individuals at a site as compared to the species’ 

models with better fits. This poor fit may be attributed to the fact that juvenile rockfish 

behave and interact with habitat differently than their adult counterparts (Lenarz et al 

1991; Larson et al. 1994; Johnson et al. 2001; Lindholm et al. 2003; Laidig et al. 2009; 

Hallenbeck et al. 2012). For example, YOY Pygmy rockfish exhibit strong schooling 

behavior, and were often observed schooling over soft substrate in deep canyons formed 

between large rock reefs. Adult Pygmy rockfish however, were more often associated 

with higher relief, in particular cobble and boulder habitat in the Mhard relief category. 

Grouping a species without respect to developmental stage can result in convoluted and 

inaccurate distributional models, due to the differences in habitat usage exhibited by 

these fish at different stages in their life history. This is why initially the data on these 

fishes were collected by age class so that they could be modeled separately. However at 
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most of the sites, analyzing the data by age class resulted in small sample sizes that could 

not be modeled using such complicated techniques. 

Hurdle models have the potential to serve as powerful tools in multivariate 

predictive modeling. In many systems, species’ distributions of occupancy and 

abundance arise from distinct ecological processes that can vary on spatial and temporal 

scales. This is why in many cases, it is difficult for researchers to accurately model 

certain species’ distributions, or why they seem to be able to develop an accurate 

distributional model in one area but not another. The hurdle models developed in this 

study were most accurate when modeling the distribution of aggregating species (groups 

comprised of three to nine individuals) that demonstrate high site fidelity. Rosy rockfish, 

which are commonly observed as solitary individuals (Anderson et al. 2009), did not 

conform well to the parameters of the zero-adjusted distributions. This is evidenced by 

the fact that the Rosy models had a lower average R2 value than the two other species 

modeled, and that no environmental variables were significant predictors of Rosy 

abundance perhaps because abundance data were often binomial. There was only one 

instance of more than two Rosy rockfish observed together at any of the three study sites. 

It may be more appropriate to model solitary species such as Rosy rockfish in terms of 

presence/absence data, rather than count or density data. For aggregating or schooling 

species however, these models proved to be relatively accurate. If the goal is to conserve 

vulnerable populations, then we must ensure we are not going to waste resources by 

using models that may be misinformed. This study demonstrates that a robust knowledge 

of the differences in regional physical and ecological composition is essential when 
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applying distributional models across a broad spatial scale, as we are seeing more and 

more evidence of adaptive habitat usage by rockfish species. If rockfishes’ habitat 

associations are not static but rather subject to change dependent upon regional factors, 

managers must take such factors into account and attempt to predict their effects on 

rockfish population densities. Doing so will require more flexible spatial planning 

strategies, but may protect vulnerable stocks better than current strategies relying on 

broad generalizations can. 
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TABLES  

Table 1. Summary of the habitat covariates used in statistical analyses. 

Variable Definition 

Depth Distance in meters from the surface. 

Depth2 Polynomial term used to compare models including Depth as 

a significant predictor 

Relief Grouping based on complexity of substrata. Lhard (highest 

relief), Mhard, Soft (lowest relief), and Mix. 

Slope The maximum rate of change in elevation between pixels. 

Measured in degrees. 

Aspect Slope orientation measured in continuous degrees from 0-

360, with indices of cardinal direction. A flat surface is 

indicated by a -1. 

Curvature Calculates the rate of change in slope and measures 

concavity or convexity of a surface. 

Bathymetric 
Positioning Index 
(BPI) 

Characterizes features in a bathymetric DEM as positive or 

negative in relation to surrounding features. Calculated by 

comparing the elevation of a cell with the mean elevation of 

surrounding cells. Analyzed at fine-scale (scale factor of 36) 

and broad-scale (scale factor of 200). 

Vector 
Ruggedness 
Measure (VRM) 

Measures changes in slope and aspect simultaneously 

between pixels to represent terrain complexity. Ranges from 

0-1. 

Distance to Reef 
Edge 

Euclidean distance from observed fish or non-detection point 

to nearest rocky reef edge. 

Distance to Rosy Euclidean distance from observed fish detection or non-

detection point to nearest observed Rosy rockfish within a 

site. 
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Table 2. Summary of sample sizes of species at each of the study sites. 

Site Dives Transects Squarespot Rosy Pygmy Total 

Portuguese Ledge 5 13 184 112 965 1,261 

Pt. Lobos 7 15 693 135 861 1,689 

Pt. Sur 8 17 257 384 243 884 
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Table 3. Model covariates significant to the logistic regression portion of the selected 

hurdle model, predicting species' occurrence at a given location. Column names indicate 

the species (s = squarespot, r = rosy, p = pygmy) and study site (PD = Portuguese Ledge, 

PL = Pt. Lobos, PS = Pt. Sur). A plus sign (+) indicates a significant positive effect by the 

variable, while a minus sign (-) indicates a significant negative effect. A zero (0) 

indicates that although the specified covariate was included in the best-fitting model, its 

effects on the model were not statistically significant. DRE=Distance to Reef Edge, 

DTR=Distance to Rosy.  

 

Covariate s.PD     s.PL     s.PS r.PD     r.PL     r.PS p.PD      p.PL       p.PS 

    

Lhard + + + 0 0 +  - - 

Mhard + 0 + 0 - +  0 0 

Mix 0 - + 0 0 0  - 0 

Soft 0    0 0 -     

Aspect -  -  -   -    

Depth -      -  + + 

VRM   0  +       

Slope     +        

f-BPI      +       

Patch Length       - +    

Curvature             

DRE       0   0 

DTR   - -         + - 
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Table 4. Model covariates significant to the count process of the selected hurdle model, 

predicting species' abundance at a given location. Note no variables were predictors of 

Rosy rockfish abundance. 

 

Covariate  s.PD       s.PL      s.PS p.PD        p.PL       p.PS 

       

Lhard     -    

Mhard     0    

Mix     0    

Soft     0    

Aspect     +    

Depth -     -   

VRM         

Slope         

f-BPI     +    

Patch Length     +    

Curvature       0 

DRE  0 -     

DTR         - - 
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Table 5. Pseudo-coefficient of determination and Mean Absolute Error values of each 

Squarespot model. Columns contain the name of each study site whose dataset is being 

predicted by each model. Models in each row are named by site and species abbreviation. 

Highlighted in green are the optimal values for each metric that coincided with what was 

expected. Blue indicates optimal values that did not coincide with expected results. 

  
Ledge R2 Lobos R2 Sur R2 

 
Ledge 

MAE 

Lobos 

MAE 

Sur 

MAE 

Ledge.s 0.246 0.0231 0.0321 Ledge.s 0.481 4.04 6.87 

Lobos.s 0.00328 0.0583 0.00797 Lobos.s 0.675 0.824 0.725 

Sur.s 0.000256 0.0459 0.437 Sur.s 0.657 0.731 0.356 

 

Table 6. Pseudo-coefficient of determination and Mean Absolute Error values of each 

Rosy model. 

  
Ledge R2 Lobos R2 Sur R2 

 
Ledge 

MAE 

Lobos 

MAE 

Sur 

MAE 

Ledge.r 0.207 0.0617 0.0279 Ledge.r 0.438 0.473 0.522 

Lobos.r 0.000417 0.128 0.062 Lobos.r 0.507 0.427 0.593 

Sur.r 0.0163 0.0445 0.202 Sur.r 0.494 0.552 0.471 

 

Table 7. Pseudo-coefficient of determination and Mean Absolute Error values of each 

Pygmy model. 

  
Ledge R2 Lobos R2 Sur R2 

 
Ledge 

MAE 

Lobos 

MAE 

Sur 

MAE 

Ledge.p 0.614 0.000223 0.00404 Ledge.p 2.15 2.99 1.09 

Lobos.p 0.0513 0.0119 0.00279 Lobos.p 1.58 1.01 3.77 

Sur.p 0.00988 0.0089 0.592 Sur.p 2.74 2.49 0.565 
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Table 8. Moran’s I values of the residuals from the global model of Portuguese Ledge 

(“orig”), and the subsequent mixed models incorporating Transect as a random effect as 

the spatial component. The abbreviated names of each model refer to the spatial model’s 

correlation matrix. The statistical significance threshold is 0.05.  

  
observed expected sd p-value 

orig 0.0512 -0.00366 1.11 0.133 

sph 0.0342 -0.00366 0.768 0.221 

gaus 0.0377 -0.00366 0.84 0.2 

rat 0.0412 -0.00366 0.926 0.177 

exp 0.0381 -0.00366 0.848 0.198 

 

Table 9. Moran’s I values of the residuals from the global model of Pt. Lobos (“orig”), 

and the subsequent mixed models incorporating Transect as a random effect as the spatial 

component.  

  
observed expected sd p-value 

orig 0.362 -0.0013 13.1 <0.001 

sph 0.354 -0.0013 12.8 <0.001 

gaus 0.258 -0.0013 9.77 <0.001 

rat 0.265 -0.0013 9.89 <0.001 

exp 0.323 -0.0013 11.7 <0.001 

 

Table 10. Moran’s I values of the residuals from the global model of Pt. Sur (“orig”), and 

the subsequent mixed models incorporating Transect as a random effect as the spatial 

component.  

  
observed expected sd p-value 

orig 0.185 -0.0028 3.78 <0.001 

sph 0.17 -0.0028 3.56 0.00019 

gaus 0.145 -0.0028 3.03 0.00122 

rat 0.142 -0.0028 2.96 0.00157 

exp 0.145 -0.0028 3.017 0.00128 
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FIGURES 

 
Figure 1. Map of 2007 deep-water submersible dives from the baseline surveys of MPAs 

and reference sites off the central coast of California. Reprinted from Starr et al. (2008). 
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Figure 2. Map of transects selected from Delta surveys included in this study. Each 

location indicates the starting geographic coordinates of a transect. 
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Figure 3. Illustration of Vector Ruggedness Measure (VRM) derived from the 

bathymetric DEM at the Point Sur study site. 
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Figure 4. Effects of covariates on Squarespot occupancy at Portuguese Ledge. The 

vertical axes are labelled on the probability scale, and a 95% confidence interval has been 

drawn around the estimated effect. 
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Figure 5. Effect of depth on Squarespot abundance at Portuguese Ledge. 

 

 

Figure 6. Effects plot of relief and distance to nearest Rosy rockfish on Squarespot 

presence at Point Lobos. No observations were found, and no non-detection points were 

generated over substrata classified as “Soft” relief. 
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Figure 7. Effect of distance to reef edge on Squarespot abundance at Point Lobos. 
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Figure 8. Effects plot of covariates predicting Squarespot occupancy at Point Sur. Note 

that the variable VRM has been log-transformed, and the variable distance to nearest 

Rosy rockfish has been cube-root transformed. 
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Figure 9. Model effects plot of distance to reef edge in predicting Squarespot abundance 

at Point Sur. 

 

 

Figure 10. Model effects plot showing effects of variables on Rosy rockfish occupancy at 

Portuguese Ledge. 
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Figure 11. Effects of relief, aspect, VRM, and f-BPI on the probability of Rosy rockfish 

occupancy at Point Lobos. Note the habitat covariate VRM has been log-transformed. 
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Figure 12. Effects of relief, patch length, depth, and distance to reef edge on the 

probability of Rosy rockfish presence at Point Sur. Note Depth has been log-transformed. 
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Figure 13. Effects of patch length and aspect on the probability of Pygmy rockfish 

occupancy at Portuguese Ledge. Note that the variable patch length has been log-

transformed. 
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Figure 14. Effects of covariates on Pygmy abundance at Portuguese Ledge. 

 

 
Figure 15. Effects of relief, depth, and distance to nearest Rosy rockfish on the 

probability of Pygmy presence at Point Lobos. 
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Figure 16. Effects of depth and distance to nearest Rosy rockfish on Pygmy abundance at 

Pt. Lobos. 
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Figure 17. Model covariate effects on Pygmy occupancy at Pt. Sur. Note the habitat 

variable Depth has been log-transformed, and the variable Distance to Rosy rockfish has 

been cube-root transformed. 
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Figure 18. Model effects of curvature and distance to nearest Rosy rockfish on Pygmy 

rockfish abundance at Point Sur. Note distance to nearest Rosy rockfish has been cube-

root transformed. 
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Figure 19. Rootograms of best model fit to Squarespot test data from (A) Portuguese 

Ledge, (B) Point Lobos, and (C) Point Sur. Frequencies have been square-root 

transformed to ensure infrequent count categories are not overlooked. 
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Figure 20. Rootograms of best model fit to Rosy rockfish test data from (A) Portuguese 

Ledge, (B) Point Lobos, and (C) Point Sur. 

 

 

Figure 21. Rootograms of best model fit to Pygmy test data from (A) Portuguese Ledge, 

(B) Point Lobos, and (C) Point Sur. 
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APPENDICES 

 

Appendix A. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Squarespot occurrence at Portuguese Ledge. 

Significant codes: * = < 0.05, ** = <0.005, *** = <0.001. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 18.08 2.898 6.239 <0.001*** 

Mhard 1.090 0.4972 2.193 0.02831* 

Mix 0.4919 0.3432 1.433 0.1518 

Soft -0.2068 0.5977 -0.346 0.7294 

Aspect -0.0041 0.0014600 -2.836 0.004570** 

Depth -0.1987 0.03224 -6.163 <0.001*** 
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Appendix B. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Squarespot abundance at Portuguese Ledge. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 4.322 24.44 0.1770 0.8596 

depth -0.1081 0.04511 -2.396 0.01660* 

 

  



70 

 

 

Appendix C. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Squarespot occurrence at Point Lobos. 

 
Parameter coefficient Std. Error z-value p-value 

Intercept 0.5392 0.0989 5.452 <0.001*** 

Mhard 0.0213 0.1910 0.1065 0.9152 

Mix -1.431 0.2238 -6.393 <0.001*** 

r_dist -0.002641 0.0006042 -4.3709 <0.001*** 
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Appendix D. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Squarespot abundance at Point Lobos. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -11.46 65.12 -0.1760 0.8604 

edge_dist -0.003834 0.008495 -0.4512 0.6518 
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Appendix E. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Squarespot occurrence at Point Sur. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 2.025 0.7184 2.818 0.004832** 

Mhard 2.266 0.4183 6.349 <0.001*** 

Mix 1.510 0.3967 3.806 <0.001*** 

aspect -0.003287 0.001359 -2.419 0.01556* 

log_VRM 0.1137 0.09348 1.216 0.2240 

cube_r_dist -0.1082 0.02577 -4.199 <0.001*** 
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Appendix F. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Squarespot abundance at Point Sur. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -10.51 79.38 -0.1324 0.8947 

edge_dist -0.0202 0.005694 -3.553 <0.001*** 
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Appendix G. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Rosy occurrence at Portuguese Ledge. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -0.3255 0.3552 -0.9163 0.3595 

Mhard 0.4073 0.4468 0.9116 0.3620 

Mix -0.2389 0.3969 -0.6019 0.5472 

Soft -0.9498 0.5540 -1.745 0.08644 

slope 0.0674 0.0297 2.269 0.0233* 
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Appendix H. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Rosy abundance at Portuguese Ledge. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -2.823 0.5745 -4.914 <0.001*** 
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Appendix I. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Rosy occurrence at Point Lobos. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 0.7323 0.3819 1.917 0.0551 

Mhard -1.837 0.5356 -3.430 <0.001*** 

Mix -0.455 0.4252 -1.071 0.2843 

Soft -0.8665 1.180 -0.7340 0.4629 

aspect -0.004780 0.001480 -3.233 0.001224** 

VRM 19.95 9.252 2.156 0.03107* 

f-BPI 0.0009700 0.0004200 2.345 0.01901* 
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Appendix J. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Rosy abundance at Point Lobos. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -3.407 0.7052 -4.831 <0.001*** 
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Appendix K. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Rosy occurrence at Point Sur. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 1.785 0.4071 4.385 <0.001*** 

patch length -0.01209 0.002250 -5.377 <0.001*** 

Mhard 1.317 0.2582 5.101 <0.001*** 

Mix 0.001580 0.2703 0.006000 0.9953 

Soft -1.756 0.6642 -2.643 0.008211** 

depth -0.02377 0.006840 -3.475 <0.001*** 

edge_dist -0.006590 0.003390 -1.942 0.05216 
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Appendix L. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Rosy abundance at Point Sur. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -1.679 0.1799 -9.335 <0.001*** 
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Appendix M. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Pygmy occurrence at Portuguese Ledge. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -0.1313 0.1628 -0.8060 0.4200 

patch length 0.008690 0.001650 5.284 <0.001*** 

aspect -0.002280 0.0009200 -2.480 0.03100* 
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Appendix N. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Pygmy abundance at Portuguese Ledge. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -1.434 0.6003 -2.389 0.01689* 

Mhard 0.3688 0.3471 1.063 0.2879 

Mix -0.5349 0.3005 -1.780 0.07500 

Soft -0.7418 0.6373 -1.164 0.2445 

patch length 0.003730 0.001840 2.024 0.04293* 

aspect 0.004130 0.001080 3.818 <0.001*** 

f-BPI 0.001730 0.008750 1.974 0.04838* 
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Appendix O. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Pygmy occurrence at Point Lobos. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -2.573 0.3052 -8.429 <0.001*** 

depth 0.02578 0.003550 7.260 <0.001*** 

Mhard -0.06475 0.2364 -0.2740 0.7840 

Mix -0.8099 0.2062 -3.928 <0.001*** 

r_dist 0.003280 0.0005100 6.458 <0.001*** 
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Appendix P. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Pygmy abundance at Point Lobos. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 3.246 0.5061 6.415 <0.001*** 

depth -0.03195 0.005420 -5.894 <0.001*** 

r_dist -0.001860 0.0004700 -3.966 <0.001*** 
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Appendix Q. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Pygmy occurrence at Point Sur. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept -8.176 1.945 -4.205 <0.001*** 

Mhard -0.3705 0.5491 -0.6750 0.4999 

Mix -0.9916 0.7284 -1.361 0.1734 

depth 0.1291 0.03617 3.568 <0.001*** 

edge_dist 0.005520 0.007320 0.7550 0.4502 

r_dist -0.1547 0.07148 -2.165 0.03040* 
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Appendix R. Model output summarizing coefficients and significance (p-values) of each 

habitat variable used in the model predicting Pygmy abundance at Point Sur. 

 

Parameter coefficient Std. Error z-value p-value 

Intercept 1.397 0.1361 10.27 <0.001*** 

curvature 0.01709 0.009460 1.807 0.07080 

r_dist -0.03301 0.004800 -6.874 <0.001*** 

 


