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ABSTRACT 

 HABITAT USE AND PREY SELECTION BY MOUNTAIN LIONS IN AN 

ALTERED SAGEBRUSH STEPPE ENVIRONMENT 

 

Jonathan Ewanyk 

Throughout the American West there is an increasing trend of 

encroachment of woody vegetation on previously open sagebrush steppe habitat. 

The Modoc Plateau in northeastern California has not been excluded from this 

encroachment trend and has seen an increase in western juniper (Juniperus 

occidentalis) densities, likely as a result of long-term fire suppression. Mountain 

lions (Puma concolor) have not previously been studied on the Modoc Plateau, 

and there is potential for an increase in cover due to juniper encroachment to 

benefit the hunting behavior of lions. To better understand if the presence of cover 

is being selected by mountain lions, 17 mountain lions were captured and fitted 

with GPS collars and their movements and diet were monitored. Using remotely 

obtained location data, I investigated spatially aggregated clusters of GPS points in 

search of mountain lion feeding sites and their associated kill sites. I created 

resource selection functions at both the study area and home range levels to test if 

lions were killing their prey in areas with higher ambush cover, or rather in areas 

with higher prey densities. Lions spent more time within parts of their home 

ranges that had larger western juniper basal area. For killing prey, lions selected 



 

 

 

areas with increased ambush cover and increased prey densities, compared to what 

was available within the study area. At the home range level, there was model 

uncertainty and no selection was observed. At a fine scale, lions selected for areas 

with more obstructed horizontal visibility, but showed no preference for areas 

closer to western junipers when killing prey. In areas with declining ungulate 

populations, there is potential for habitat to be managed by reducing the areas 

where ungulates are at risk to predation by lions. Through timber cuts and 

controlled burns, managers have the ability to restore the sage-steppe habitat and 

reduce areas where ungulates are at greater risk to mountain lion predation.  
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INTRODUCTION 

Sagebrush steppe ecosystems are experiencing fragmentation from anthropogenic 

activities in the form of fences for cattle (Bos taurus) grazing, increased human presence 

and development of infrastructure (Rickard 1985, Davies et al. 2011). The encroachment 

of junipers (Juniperus sp.) on open rangelands is further increasing fragmentation by 

creating dense pockets of vegetation that can divide prairies and create an increase in 

total edge habitat (Coppedge et al. 2001). There has been a trend of increasing woody 

vegetation across the interior northwest United States as a result of reduction in fuels 

from grazing and a decline in fire frequency due to the cessation of indigenous burnings 

(Anderson 2018, Miller et al. 1999). In the past, more frequent fires with sufficient fuel 

loads allowed wildfires to reduce the recruitment of woody vegetation. In addition to the 

increase in western juniper (Juniperus occidentalis) density, the decrease in fire 

frequency and presence of cattle on the landscape, the Modoc Plateau in northeastern 

California has seen a reduction in winter browse and an increase in invasive grasses over 

the past few decades (Clements and Young 1997). Furthermore, juniper encroachment 

impedes flow and duration of ephemeral streams (Zou et al. 2014) and increases soil 

erosion (Pierson et al. 2010). Juniper encroachment not only changes the water, soil, and 

the structure and types of vegetation on the landscape, but has potential to change the 

way wildlife species use available resources. Large felid ambush predators utilize areas 

with both high prey density and increased ambush cover for killing their prey (Balme et 

al. 2007, Davidson et al. 2012). If riparian corridors are attractive to ungulates due to 
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their vegetative composition, and that vegetation also provides ambush cover, then these 

areas may attract ambush predators as well.  

In large parts of the expansive range of mountain lions (Puma concolor, hereafter 

lions), mule deer (Odocoileus hemionus) and elk (Cervus canadensis) are primary prey 

species (Hornocker 1970, Ackerman et al. 1984, Logan and Sweanor 2001, Husseman et 

al. 2003, Thompson et al. 2009). Lions have a large prey breadth and have been 

documented feeding on an extensive variety of secondary items (Robinette et al. 1959, 

Ackerman et al. 1984, Iriarte et al. 1990, Blake 2014, Lowrey et al. 2016), but have 

seldom been documented killing pronghorn (Antilocapra americana) (Engstrom and 

Maxwell 1988, Ockenfels et al. 1994, Keller et al. 2013) or feral horses (Equus caballus) 

(Greger and Romney 1999, Turner and Morrison 2001). On the Modoc Plateau, mule 

deer, elk, pronghorn, and feral horses, all occur and may be a prey source to lions. 

However, mule deer, a primary prey source, have declined on the Modoc Plateau as a 

result of changes in vegetation (Clements and Young 1997). Prey switching has been 

documented in lion populations when the primary prey source has declined, and this 

study aims to evaluate prey selection of lions in light of recent ecological changes (Logan 

and Sweanor 2001, Rominger et al. 2004). Furthermore, lions have never been studied on 

the Modoc Plateau and little is understood about their foraging habits in this unique 

region encompassing dry, high-elevation forests that are being encroached by junipers. 

Previous studies have shown that habitat selection of prey helps to inform habitat 

selection of lions (Pierce et al. 1999, Grigione et al. 2006), thus it is important to 
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understand the distribution of prey species within the study area. Each species of ungulate 

found on the Modoc Plateau utilizes habitat features in different ways and as a result may 

experience varying levels of predation risk from lions. 

Mule deer and elk show similar patterns of habitat selection, preferring areas in 

close proximity to water (Ordway and Krausman 1986, Boroski and Mossman 1997) with 

moderate slopes (Ganskopp and Vavra 1987, Sawyer et al. 2006). Both species typically 

migrate from higher elevations in the summer to lower elevations in the winter (D’Eon 

and Serrouya 2005, Sawyer et al. 2007). The manner in which mule deer use edge habitat 

seems to offer an advantage to stalking predators (Logan and Irwin 1985), and it is likely 

that this same risk applies to elk (Hernandez and Laundre 2005). Mule deer show 

preference for meadow riparian habitat, and select for aspen (Populus tremuloides) 

groves when under the competitive pressures of cattle grazing (Loft et al. 1991). Deer and 

elk could be seeking riparian and mesic habitats with a higher density of over-story for 

thermal protection and security (Jenkins and Wright 1988). In Modoc, where browse has 

been reduced by livestock grazing, juniper likely provides forage for ungulates as well 

(Hubbard and Hansen 1976). If mule deer are spending more time in close proximity to 

western junipers, they may be more susceptible to attacks by predators, which also utilize 

western junipers for cover. Mule deer in south-central Idaho were disproportionally at 

risk to predation by lions in juniper habitat (Altendorf et al. 2001).    

Pronghorn thrive best in steppe ecosystems that are continuously shaped by fire 

and provide subclimax vegetation and a wide variety of shrubs and forbs (Yoakum 1979). 
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The three essential elements of pronghorn habitat are water, forage, and short vegetative 

structure (Yoakum 1972). Adult pronghorn are typically found in patches of sagebrush 

that are shorter than 76 cm, and fawns select grass and forb dominated rangelands 

(Yoakum 1979). Aerial surveys have recorded pronghorn selecting areas within 6 km of 

water (Yoakum 1979). Drought conditions may reduce pronghorn recruitment and 

density (Brown et al. 2006). Pronghorn avoid areas with taller vegetation, which may 

impair their mobility and increase vulnerability to predation (Goldsmith 1990). In 2013, 

the non-profit Institute for Wildlife Studies in conjunction with California Department of 

Fish and Wildlife conducted a study on the mortality of female pronghorn on the Modoc 

Plateau. Eight of 23 adult pronghorn mortalities were attributed to predation by lions 

(Institute for Wildlife Studies, unpublished data). It has been suggested that areas within 

pronghorn home ranges that contain dense vegetation likely provide ambush cover for 

lions (Ockenfels et al. 1994, Keller et al. 2013). 

Little is known regarding how feral horses utilize the landscape on the Modoc 

Plateau. However, studies in other areas indicate that feral horses use landscape features 

differently than other ungulate species on the Modoc Plateau. Populations of feral horses 

in south-central Wyoming showed preference for stream-sides, bog meadows and 

mountain sagebrush habitats and avoided lowland sagebrush habitats (Crane et al. 1997). 

Coniferous forests and grasslands were neither avoided nor preferred by feral horses 

(Crane et al. 1997). Feral horses in Wyoming selected for areas within 4.8 km of water 

sources and within close proximity (1.6 km) to ridges for cooling (Miller 1983). When 
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horses were in higher elevation habitats (> 1600 m) that were heavily dominated by 

pinyon pine (Pinus edulis) and Utah juniper (Juniperus osteosperma), it was suspected 

that lion predation of foals was higher than in more open habitats at lower elevations 

(Greger and Romney 1999).  

Mountain lions occur and thrive across diverse habitat types from hammock 

swamp forests in Florida (Belden et al. 1988) to high desert ecosystems of the southwest 

(Logan et al. 1996). Across this range of habitats, and within their home ranges, they 

select for vegetation types, terrain, slope, and elevation (Logan and Irwin 1985). In 

western Colorado, lions have been observed selecting habitats used by preferred prey 

species and spend more time hunting in those habitat types (Lowrey et al. 2016). Lion 

home ranges are frequently associated with areas of cover (Seidensticker et al. 1973). 

While lions stalk their prey, they select habitat features that allow them to approach 

closely enough to attack (Hornocker 1970). Specifically, lions prefer vegetation 

characteristics that allow them to remain concealed when approaching and ambushing 

their prey (Logan and Irwin 1985). Lions select for steep rugged topography (Morrison et 

al. 2014) and typically avoid areas of slope less than 20% (Logan and Irwin 1985). 

Because lions select habitat with topography and vegetative cover in which prey are 

vulnerable, changes in vegetation structure is likely to influence both the availability and 

vulnerability of prey (Logan and Irwin 1985).  

Within preferred types of vegetation and terrain, lions consistently display 

preference for “edge” habitats (Morrison et al. 2014), being as much as four times as 
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likely to select edge habitat as compared to open areas (Holmes and Laundré 2006). At a 

fine scale, lion kill sites had more obstructed horizontal visibility than the surrounding 

habitat (Blake and Gese 2016). In northwestern Utah and southern Idaho, mule deer were 

killed more frequently than expected in pinyon– juniper habitat (Laundré and Hernandez 

2003). It is possible that western junipers are providing more concealment cover for lions 

in the form of reduced horizontal visibility, while at the same time creating more edge 

habitat in sagebrush steppe ecosystems.  

Presence of water sources may be another factor influencing how lions use 

habitat. Large herbivores occur in higher densities in close proximity to water (Thrash et 

al. 1995), and distribution of prey often helps inform habitat selection by lions (Grigione 

et al. 2002). A negative correlation between distance to water and lion occupancy was 

observed in Emas National Park in Brazil (Sollmann et al. 2012). In southern California, 

home ranges of lions shrank during the dry season, suggesting that both lions and their 

prey were selecting areas in close proximity to water (Dickson and Beier 2002). Lions 

have also shown preference for hunting in riparian vegetation (Dickson and Beier 2002). 

Leading up to the study, California had been experiencing a drought (Mann and Gleick 

2015) and the effects of water on prey densities and lion hunting behavior may have been 

amplified in an area such as the Modoc Plateau, where water sources are limited. 

The main objective of this study was to elucidate the habitat characteristics 

selected by mountain lions for stalking and killing on the Modoc Plateau. I tested four 

hypotheses about lion habitat use. (1) Forest cover positively influences lion habitat 
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selection within their home ranges. I predicted that lions would spend disproportionally 

more time in regions of their home ranges that have higher canopy cover, conifer density 

and western juniper basal area than in less forested areas. (2) Coarse scale habitat 

characteristics favorable for ambush attacks influence the locations at which lions stalk 

and successfully kill their prey. I predicted that lions would kill prey in areas with both 

high prey density as well as high ambush cover. (3) Fine scale habitat characteristics 

favorable for ambush attacks influence the locations at which lions stalk and successfully 

kill their prey. At the fine scale, I predicted kill sites and the places lions first contacted 

their prey would occur in areas with more obstructed visibility, closer to cover 

(specifically western junipers and conifers), on steeper slopes, closer to water, in areas 

with more ground cover and at higher elevations. (4) Habitat preferences of prey 

influence where they are killed by lions. Because mule deer, elk, pronghorn, coyotes and 

feral horses typically utilize different habitat types, I predicted that slopes, forest cover, 

and distance to water would differ at kill sites for each species. 
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MATERIALS AND METHODS 

Study Area 

This study was conducted in Modoc and Lassen counties of northeastern 

California, which are part of the Modoc Plateau (Figure 1). The study area is 

approximately 23,110 km2 and is comprised mostly of public land in the form of 

California State Wildlife areas, Bureau of Land Management, U.S. Forest Service, U.S. 

Fish and Wildlife Service land with interspersed patches of private land.  

Throughout the Modoc Plateau the major water sources are man-made reservoirs, 

lakes, rivers, snowmelt runoff fed streams, and wetlands. Most water sources in the study 

area are a part of the Pit River watershed. The study area receives on average 43 cm of 

precipitation annually, however the higher elevation Warner Mountains can receive up to 

121 cm of precipitation due to additional snowfall. Temperatures range from -11º C in the 

winter months to 32º C in the summer months (Riegel et al. 2006).  

The Modoc Plateau is a series of large table lands sculpted from volcanic lava 

rock. These large mesas occur throughout Modoc County and are dominated by 

sagebrush steppe habitat. The dominant grassland species on the Modoc Plateau are 

introduced cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-

medusae). Over the past century, there has been an increase in density of western junipers 

on these mesas. The largest span of uninterrupted western junipers, covering nearly 1,215 
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km2, occurs on the Devil’s Garden Plateau in the northern central portion of the study 

area (Riegel et al. 2006).  

The Warner Mountains run north to south through the eastern portion of the study 

area and range from 1,219 – 3,019 m in elevation. Plant communities in the lower 

elevations of the Warner Mountains are sagebrush steppe intermixed with western 

junipers; the middle elevations of the Warner Mountains are dominated by ponderosa 

pine (Pinus ponderosa) and Jeffrey pine (Pinus jeffreyi), intermixed with patches of 

quaking aspen (Populus tremuloides) and white fir (Abies concolor). White fir are the 

dominant tree species at higher elevations, with whitebark pine (Pinus albicaulis), 

lodgepole pine (Pinus contorta murryana), and western white pine (Pinus monticola) also 

occurring (Riegel et al. 2006). 

            There are many ungulate species on the Modoc Plateau including mule deer, elk, 

pronghorn, feral horses, domestic cattle, domestic sheep (Ovis aries), and feral goats 

(Capra hircus). Black bears (Ursus americanus) and lions are the apex predators on the 

landscape, with potential for black bears to displace lions from carcasses (Murphy et al. 

1998). Gray wolves (Canis lupus) occupy areas north, west and south of the study area, 

and radio-collared individuals have been documented in the study area for brief periods 

of time before returning to Oregon. Other mammals in the study area that are potential 

prey items of lions include badger (Taxidea taxus), beaver (Castor canadensis), black-

tailed jackrabbit (Lepus californicus), bobcat (Lynx rufus), coyote (Canis latrans), gray 

fox (Urocyon cinereoargenteus), brush rabbit (Sylvilagus bachmani), western spotted 
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skunk (Spilogale gracilis), western striped skunk (Mephitis mephitis) and yellow-bellied 

marmot (Marmota flaviventris). 

 

Figure 1. Study area boundary shown within northeastern California. The study area 

encompassed all of Modoc County and the northern portion of Lassen County. 

Mountain lions were collared and tracked within the bounds of this study area 

from February 2016 through August 2018.   
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Study Design 

Capturing and collaring 

Lions were captured by the Institute for Wildlife Studies (IWS) between February 

2016 and August 2018 for a study on home range sizes and population estimate of 

mountain lions in the region. Morphometrics of each lion were recorded, and age was 

estimated based on gum recession of the upper canines and staining of the teeth. Lions 

were fitted with Lotek Globalstar, Sirtrack Iridium, and Vectronic VERTEX Lite GPS 

collars. GPS collars were programmed to collect 12 or 24 locations per 24-hour period, 

and data were uploaded to the Iridium satellite system daily. Each GPS collar was fitted 

with a timed drop-off mechanism, which allowed the collar to fall off 26 – 90 weeks after 

attachment to the study animal. Upon retrieval of the collar, data were manually 

downloaded to acquire points that were not sent through the Iridium or Globalstar 

networks. Capture and handling procedures were covered under UC Davis’ Institutional 

Animal Care and Use Committee protocol (#18921). All other aspects of the project were 

covered under Humboldt State University’s Institutional Animal Care and Use 

Committee protocol (16/17.W.97-A). 

Home ranges 

To test the prediction that lions spend disproportionally more time in forested 

areas of their home ranges, I first generated home ranges for each individual. I utilized 

hourly or bihourly locations to generate a 50%, 85% and 95% utilization distribution for 

each lion. I generated these using fixed kernel density estimates (hereafter KDEs) with 
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href as the smoothing parameter (Hemson et al. 2005) in package adehabitatHR within R 

Studio version 1.1423 (R Development Core Team 2008, RStudio Team 2016).  

To analyze multiple facets of forested areas, so I acquired layers for canopy 

cover, live conifer density and juniper basal area from the Gradient Nearest Neighbor 

(GNN) Lemma website (http://lemma.forestry.oregonstate.edu/data/structure-maps/). The 

canopy cover layer was recorded as percent cover, the live conifer density layer was 

recorded in trees/ha with a diameter at breast height > 2.5cm, and western juniper basal 

area was recorded in m2/ha within a 30 m resolution. I then utilized the extract function in 

R Studio to obtain values of canopy cover, live conifer density and juniper basal area for 

each of the 3 home range delineations (50, 85, 95%) for each study animal. Due to the 

50% KDE being contained within the larger two delineations, I utilized a donut 

extraction, which removed the 50% KDE from both the 85% and the 95% KDEs for this 

analysis. 

It has been suggested that kernel density estimates of 95% are of little importance 

to lions and are prone to errors as a result of smoothing (Seaman et al. 1999), but 85% 

KDEs show areas of ecological importance to lions and 50% estimations are considered 

to be core utilization areas (Dickson and Beier 2002). To assess if there was a discernable 

difference between the “core” areas and the remainder of the areas used by lions, I 

compared the habitat values from the 50% KDEs to the values from the 85% KDE donuts 

and the 95% KDE donuts, respectively, utilizing pairwise comparisons. Pairwise 
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comparisons were made for all 3 habitat variables, and 95% confidence intervals were 

assessed to see if they overlapped zero.  

Locating kill sites and points of first contact 

 Lions typically move widely across the landscape searching for opportunities to 

ambush prey; however once cached food is available, they remain in close proximity to 

the food item (Beier et al. 1995). My first step to locating lion kill sites was to identify 

spatially aggregated clusters of GPS points (GPS clusters) that may represent where lions 

were feeding on a large prey item (Beier et al. 1995, Anderson and Lindzey 2003, 

Elbroch et al. 2014). GPS clusters that occurred more than 1 hour after sunrise and less 

than 1 hour prior to sunset were considered day beds and not predation events (Elbroch et 

al. 2013). For my study, GPS locations occurring within 50 m of each other over the 

course of a 6-hr time span, with at least one point occurring nocturnally, qualified as a 

GPS cluster (hereafter cluster). Once a GPS cluster was identified, a central point was 

generated from all of the points within the cluster.   

The GPS coordinates of the centroid were then entered into a Garmin GPSMAP 

64ST hand held GPS unit. All GPS points were projected in World Geodetic System 

1984 and recorded in the Latitude/Longitude coordinate reference system. GPS clusters 

were prioritized by giving preference to individual lions that had the fewest GPS clusters 

previously investigated, in an attempt to keep the sampling effort as uniform as possible 

across individuals. 



14 

 

 

 

I hiked to the centroid of GPS clusters and searched for a carcass. If no evidence 

of hair, blood, bone, rumen or the carcass of a prey item was detected, I systematically 

searched the area. To ensure that equal search effort was conducted at each GPS cluster 

investigation, I searched in 10 m concentric rings around the center of the cluster out to a 

100 m diameter (Blake 2014).  

When carcasses were detected, I recorded the GPS location, the species, age, and 

sex of prey items, where possible. Mule deer were aged by tooth eruption and categorized 

as neonates, juveniles, or adults (Pierce II et al. 2011). Horses were also aged based on 

tooth eruption (American Association of Equine Practitioners 1966). Coyotes were aged 

by tooth eruption and classified into 2 age classes: juveniles (milk teeth present) and 

adults (milk teeth replaced) (Nellis et al. 1978). For carcasses that were sufficiently fresh, 

I searched for canine punctures with any associated hemorrhaging and recorded the 

maximum width of the punctures. These measurements were used for comparison to 

known canine widths of captured lions to help determine if it was most likely that the 

prey item was killed by the collared lion associated with the cluster.  

Lions frequently drag their prey from the kill site to nearby vegetative cover, and 

cache it with sticks, leaves and rocks (Musgrave 1926). From the carcass site I 

backtracked, following tracks, hair, blood, and drag trails in an attempt to locate the site 

where the prey was killed by the lion. Characteristic signs of a kill site included, but were 

not limited to: a large area of disturbed dirt or vegetation, overturned rocks, broken 

branches, heavily planted prey tracks, large swaths of hair removed from the prey, or 



15 

 

 

 

blood (Robinette et al.1959). I only designated a location as a kill site if it contained at 

least three of the aforementioned characteristics.  

Not all prey items are killed at the exact site where a lion abandons its cover and 

begins to pursue the prey, and there are instances where lions can be shaken off the backs 

of their prey (Musgrave 1926). I considered the location where a lion first made contact 

with its prey item the “point of first contact”. Tracking beyond the kill site, I looked for 

signs of contact such as small isolated clumps of hair, drops or pools of blood and 

disturbed vegetation without evidence of a drag trail. I identified an area as the point of 

first contact if I detected any 3 of the following elements beyond the kill site at the end of 

the drag trail: blood, lion hair indicating a struggle, prey hair, or tracks indicating the lion 

came into contact with the prey. I acknowledge that for some predation events the kill site 

and point of first contact may be the same location, and therefore there were inherently 

fewer points of first contact than kill sites.  

Although most feeding events of lions are results of predation, some studies have 

shown that scavenging occurs as well (Musgrave 1926, Bauer et al. 2005, Elbroch and 

Wittmer 2013, Elbroch et al. 2014). If I did not find conclusive evidence that a lion killed 

the prey item, the feeding event was recorded as a “non-predation”. The cause of death 

for each carcass detected at a GPS cluster was categorized as lion kill, probable lion kill, 

non-predation, or unknown. Carcasses were classified as lion kills when I observed 

hemorrhaging in the canine punctures on the neck and the canine width matched that of a 

lion, or the spinal cord was severed, as lions frequently kill their prey by these methods 
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(Musgrave 1926, Hornocker 1970, Pierce and Bleich 2003). If I located a kill site and 

lion sign such as hair or tracks were detected, the carcass was also categorized as killed 

by a lion. Carcasses were deemed probable lion kills if there was appropriately spaced 

canine marks in the neck, but no hemorrhaging found, if the carcass had been consumed 

in a manner similar to the way that lions feed on carcasses, or when the estimated time of 

death coincided with GPS location data from that collared individual. If the estimated 

time of death did not match the time when the lion first visited the carcass, or if more of 

the carcass was consumed than capable by the collared lion for the amount of GPS 

locations at the carcass, then the carcass was classified as a non-predation. When I was 

unable to observe sufficient characteristics to classify the carcass into any of the above 

categories, the carcass was classified as an “unknown”. For my kill site analyses I only 

included kill sites found where the prey was classified as a lion kill or probable lion kill. 

However, for my diet composition I included all prey items, due to lions feeding on the 

carcasses regardless of whether they killed them or not.  

 For analyzing prey selection by the study lions, I acquired rough population 

estimates of prey species from both California Department of Fish and Wildlife and the 

Modoc National Forest for the study area. Since few data were available for non-

ungulates within the study area, I only used population estimates for mule deer, elk, 

pronghorn, and feral horses. Mule deer (California Department of Fish and Wildlife 

2019), elk (California Department of Fish and Wildlife 2018), and pronghorn (California 

Department of Fish and Wildlife, unpublished data) population data were delineated by 
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hunt zone, so I only included the hunt zone population estimates that had lion territories 

within them. For feral horse estimates, I only included the Devil’s Garden unit as it was 

the only horse management unit in which I had lions collared. I added all of these 

estimates together to get an index of the total number of ungulates available to lions on 

the landscape. I then calculated the proportion of each species that was available on the 

landscape, by dividing that species population estimate by the total ungulate population. 

For my analysis of prey selection, I excluded all non-ungulate prey that I found at 

clusters. I then divided the number of each species found at clusters by the total number 

of ungulates I detected at clusters to derive the prey composition in the diet of my study 

lions. I then compared the proportion of each species available to lions to the proportion 

that occurred on the landscape, as an index for how lions were utilizing the prey.   

Coarse scale habitat selection 

 When analyzing environmental determinants of habitat and kill site selection of 

large territorial felids, scale and order of habitat selection are of importance (Davidson et 

al. 2012). To analyze the areas where lions were killing their prey at a coarser scale, I 

used the full set of kill sites (n=100), and paired random locations (n=100), as habitat 

variables could be extracted remotely from GIS layers. In addition to looking for 

differences between fine and coarse scale selection of kill sites, I also wanted to see if 

there was a difference between the orders of habitat selection (Johnson 1980). For the 

coarse scale analyses, I elected to look for differences between what was available to 

lions both at the study area level (2nd order; Johnson 1980), as well as what was available 
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for each lion within their own home range (3rd order; Johnson 1980). For analyzing where 

mountain lions were successfully killing their prey compared to what was available to 

them, I generated random points utilizing spsample function within the sp package in 

RStudio (Manly et al. 2002).  

The habitat variables I used for the coarse scale analyses were distance to water, 

slope, vegetation class, canopy cover, live conifer density, and western juniper basal area. 

However, after I conducted a Variance Inflation Factor test, I found canopy cover to be 

correlated with conifer density, so I excluded canopy cover from the analysis to avoid 

issues with multicollinearity (O’Brien 2007). For distance to water, I acquired both linear 

and area 2018 TIGER shapefiles from the U.S. Census Bureau, and then merged both of 

these shapefiles in ArcMap (https://www2.census.gov/geo/tiger/TIGER2018/). I then 

utilized the dist2Line function within package geosphere v1.5-10 in RStudio to calculate 

the distance from each location to the nearest source of water. Because the Modoc 

Plateau experiences an arid climate and some water sources were subject to seasonal 

drying, I compared distance to water from the TIGER lines to the subset of kill sites and 

paired random locations where I had verified the closest water source. I found there to be 

no significant difference in distance to water between these two methods (t54= 0.305, p= 

0.76). 

 To determine slope at each kill site, point of first contact, and paired random 

location, I acquired a 1/3 arc-second resolution Digital Elevation Model (DEM) layer 

from the U.S. Geological Survey website (http://ned.usgs.gov/). I then converted this 
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DEM into a slope raster in ArcMap V10.4.1 utilizing the slope tool within the spatial 

analyst tool box, and then used the extract values to points function to acquire values for 

slope. 

I acquired layers for vegetation class, live conifer density and juniper basal area 

from the Gradient Nearest Neighbor Landscape Ecology, Modeling, Mapping & Analysis 

(GNN LEMMA) database (https://lemma.forestry.oregonstate.edu/data/structure-maps). 

The vegetation class layer categorized the vegetation into 11 classes: sparse, open, 

broadleaf-sapling/pole, broadleaf-small/medium/large, mixed-small/medium, mixed-

large/giant, conifer-saplings/pole, conifer-small/medium, conifer-large, and conifer-giant. 

The live conifer density layer was recorded in trees/ha with a diameter at breast height > 

2.5 cm; western juniper basal area was recorded in m2/ha within a 30 m resolution. 

Values were obtained for these 3 GNN LEMMA layers by using the extract values to 

points function within ArcMaps V10.4.1 for both kill sites and paired random locations.   

I ranked the candidate models with each of the predictor variables separately. I 

included vegetation class (Clements and Young 1997), distance to water (Boroski and 

Mossman 1996), and slope (Sawyer et al. 2006) for prey density models. I included live 

conifer density and western juniper basal area (Carpenter 1998). I chose to be more 

lenient for the first round of model selection and used a delta AICc <4.0 as a cutoff. If 

there was support for both prey density and ambush cover models, I combined the top 

models from each of these categories and re-ran the AICc model selection to assess if the 

combined model outperformed the models where the predictors were kept separate. For 
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this second round of model selection, I followed the traditional method of using a delta 

AICc <2.0 as a cutoff (Burnham and Anderson 2002). When the top model was a 

combined model, it indicated that lions may have been selecting for both prey density and 

ambush cover factors.  

I did not conduct coarse-scale habitat analyses at the few points of first contact 

due to coarseness of raster layer cell size and small sample size. 

Fine scale habitat selection 

I measured fine scale habitat characteristics at a subset of kill sites and points of 

first contact. To obtain a biologically relevant distance for paired random points, I 

calculated the mean step length between a cluster centroid and the GPS location prior to 

the start of the cluster for 10 clusters for each collared lion and calculated the grand mean 

of these values. This analysis resulted in paired random locations being located 500 m at 

a random azimuth from kill sites and points of first contact.   

I measured 9 habitat characteristics at kill sites (n=55), points of first contact 

(n=15) and paired random sites (n=55 and 15, respectively). At each location I utilized a 

measuring tape to record the distance from the center of the site to the nearest available 

cover, which I defined as vegetation, topography, rocks, or any other structure that was ≥ 

70 cm in height (approximate shoulder height of an adult lion). I recorded the type (rock, 

herbaceous vegetation, sagebrush, bitterbrush (Purshia tridentata), manzanita (sp), 

mountain mahogany (sp), juniper, fir, or pine) of the nearest cover and treated this as a 

categorical variable. I also noted if this source of cover was a conifer or not and treated 
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this as a binary categorical variable. Because it has been reported that lions need to be 

within 25 m or less to successfully kill their prey (Laing 1988, Holmes and Laundré 

2006), I estimated horizontal visibility at mule deer eye height (122 cm) between the 

center of the site and 25 m away in the 4 cardinal and inter-cardinal directions. I 

measured obstruction of visibility by recording the number of boxes that were obscured 

by vegetation on a 70 x 70 cm cover board that was divided into 100 boxes total. I then 

averaged the 8 measurements of obstructed visibility to obtain one value for each 

location. Additionally, I measured from the center of the site to the nearest western 

juniper ≥ 70 cm. To measure the percent ground cover, I divided the location into 4 even 

quadrants based on the 4 cardinal directions. I attached a measuring tape to a 70 cm tall 

stake in the center of the site and pivoted around the center point at a distance of 5 m, 

holding the tape level and estimating the percent ground cover of vegetation that was 

taller than the tape in each quarter of the resulting circular sampling area.  

For each kill site and point of first contact, I was interested in the distance to 

water, as this could be a factor influencing lion use of habitat. Utilizing the hydrography 

layer from the 2016 onX Hunt GPS micro SD chip on handheld GPS receivers, I 

identified the closest source of water, hiked to it, and if upon inspection it still had water 

in it, I recorded the distance (in m) from that location to the site. If this water source did 

not contain water, I hiked to the next nearest water source and repeated this process. 

I evaluated these fine scale habitat characteristics under a conditional logistic 

regression framework by creating a Resource Selection Function (RSF) for both kill sites 
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and points of first contact (Manly et al. 2002). The conditional logistic regression was 

represented by the equation:  

logit(x) = β0 + β1 x1 + …β; x;… + strata 

where logit(x) represented the probability of a kill site or point of first contact, β0 

represented the intercept, β1 represented the coefficient for the habitat variable x1, and 

strata represented the cluster ID, which was how kill sites and points of first contact were 

paired to their associated random locations. I generated 9 a priori candidate models, with 

the full model represented by: presence of kill site or point of first contact ~ obstructed 

horizontal visibility + elevation + slope + distance to western juniper + distance to water 

+ distance to nearest cover + percent ground cover + cover type + conifer cover. I then 

calculated Akaike Information Criterion corrected for small sample size (AICc) for each 

of the 9 candidate models, ranked the models by the smallest AICc scores, and chose the 

top models by using a delta AICc cutoff of 2.0 (Burnham and Anderson 2002). To 

understand the relationship between kill sites and points of first contact with the predictor 

variables, I evaluated the odds ratio of the beta coefficients for the top models. I 

calculated the odds ratios for habitat variables in R Studio with the exp(coef()) function 

(R Core Development Team 2008, RStudio Team 2016). To represent the certainty in my 

odds ratios of habitat variables, I also calculated the 95% confidence intervals in RStudio 

using the exp(confint()) function.  
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Habitat variation across kill sites by prey species  

To test the hypothesis that habitat characteristics of kill sites vary between prey 

species, I compared kill sites of mule deer (n = 67), horses (n = 18), pronghorn (n = 8), 

and coyote (n = 5). I excluded species for which I had an insufficient sample of kill sites 

(n<5). I tested variation across species kill sites in distance to water, slope, live conifer 

density, and western juniper basal area. I utilized the same layers as in previous analyses. 

To extract values for each of the kill sites, I utilized the extract values to points function 

within ArcMap V10.4.1. Initially I created a Linear Discriminant Function (LDF) to 

detect differences in these variables across species (Appendix A). However, due to the 

imbalance in sample size across prey species, the probability of the LDF predicting the 

prey to be a mule deer over-powered the other 3 species.  

I then analyzed the habitat variables for kill sites using an Analysis of Variance 

(ANOVA). To conduct this portion of the analysis, I used the function aov within the 

package stats v3.6.1 in RStudio (R Core Development Team 2008, RStudio Team 2016). 

I used each habitat variable individually in these 4 ANOVAs with the 4 species as levels. 

I utilized a post-hoc Tukey’s Honestly Significant Difference test to elucidate the 

differences between species using the TukeyHSD function embedded within the stats 

v3.6.1 package in RStudio (R Core Development Team 2008, RStudio Team 2016).  
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RESULTS 

Home Ranges 

 I used GPS data for 14 adult mountain lions (6 females, 8 males) and 3 juveniles 

(all males). GPS collars collected 111,624 (minimum= 1,951; maximum= 16,788) 

locations between February 2016 and August 2018. From these GPS locations, home 

ranges were generated using 50%, 85% and 95% KDEs (Table 1). For females, the 50% 

KDE (t12 = -3.409, P = 0.007), 85% KDE (t12 = -3.385, P = 0.007) and 95% KDE (t12= -

3.3766, P = 0.006) were smaller than those of adult males.  
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Table 1. Home range sizes of adult mountain lions in the study area, located in Modoc 

and Lassen counties, CA. Home ranges represented as 50%, 85% and 95% kernel 

density estimates (KDE) recorded in km2. Adult females are indicated by the 

letter F and adult males are indicated by the letter M in the Lion IDs. Means are 

represented ± SE. 

 

Lion ID 50% KDE 85% KDE 95% KDE 

F158 31.78 101.26 160.68 

F159 74.49 244.61 366.97 

F163 143.99 418.63 660.1 

F164 133.96 363.62 529.55 

F180 48.74 127.33 196.95 

F182 65.28 157.49 219.6 

Female Mean 83.04 ± 18.71 235.49 ± 53.49 355.64 ± 82.62 

  

212.15 

 

477.95 

 

645.09 M157 

M160 85.89 227.25 350.23 

M161 321.2 805.52 1119.75 

M166 362.08 990.22 1375.29 

M178 444.07 1032.43 1378.75 

M179 159.78 453.18 672.18 

M181 132.69 395.74 604.22 

M184 235.38 644.39 963.46 

Male Mean 244.16 ± 43.40 628.34 ± 103.01 888.62 ± 134.50 
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To assess how lions were establishing their core home ranges, I examined live 

conifer density, canopy cover, and western juniper basal area within their 50%, 85% and 

95% KDEs. Dependent juvenile males were excluded from the home range analysis due 

to their ranges being reflective of their mother’s range, rather than their own. I found no 

difference in live conifer density between the lions’ 50% KDEs (𝑋̅= 4.99 trees/ha, 95% 

CI for the differences: -37.77 – 27.77) and 85% KDEs, nor was there a difference 

between their 50% and 95% KDEs (𝑋̅= 1.26, 95% CI for the differences: -38.44 – 40.95) 

(Figure 2). Similarly, I detected no difference in canopy cover between the lion’s 50% 

and 85% KDEs (𝑋̅= 0.24%, 95% CI for the differences: -1.62 – 2.10), nor their 50% and 

95% KDEs (𝑋̅= 0.71%, 95% CI for the differences: -1.79 – 3.22) (Figure 3). However, 

western juniper basal area was higher in the 50% than in the 85% KDEs (𝑋̅= 0.51 m2/ha, 

95% CI for the differences: 0.15 – 0.87) and 95% KDEs (𝑋̅= 0.60 m2/ha, 95% CI for the 

differences: 0.17 – 1.02) (Figure 4). 

  



27 

 

 

 

 

Figure 2. The median values of live conifer density for 3 kernel density estimate sizes 

(50, 85, and 95%) of the 14 GPS collared adult mountain lions in Modoc and 

Lassen counties, CA between 2016-2018. Interquartile ranges are represented by 

the boxes around the lines, and the minimum and maximum represented by the 

vertical lines.  
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Figure 3. The median values of canopy cover for 3 kernel density estimate sizes (50, 85, 

and 95%) of the 14 GPS collared adult mountain lions in Modoc and Lassen 

counties, CA between 2016-2018. Interquartile ranges are represented by the 

boxes around the lines, and the minimum and maximum represented by the 

vertical lines. 
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Figure 4. The median values of western juniper basal area for 3 kernel density estimate 

sizes (50, 85, and 95%) of the 14 GPS collared adult mountain lions in Modoc 

and Lassen counties, CA between 2016-2018. Interquartile ranges are represented 

by the boxes around the lines, the minimum and maximum represented by the 

vertical lines, and outliers represented by a dot. 

  



30 

 

 

 

GPS Clusters and Diet 

 Between April 2016 through August 2018, GPS collar locations were monitored 

to detect clusters. In total, I investigated 293 GPS clusters from 17 lions (6 adult females, 

8 adult males, 3 juvenile males) and detected a prey item at 266 (90.8%) of these sites. 

Mule deer made up a majority of the prey composition (61.3%), followed by feral horses 

(10.9%), coyotes (7.5%), birds (4.5%), and pronghorn (3.4%) (Table 2). Out of the 29 

feral horses that were observed at GPS clusters, 26 were killed by one individual (M166). 

Of the 163 mule deer I found at GPS clusters, I was able to determine the sex of 73 

(44.8%): 60.3% female and 39.7% males. I determined the age class for 143 (87.7%) of 

the mule deer: 38 (26.6 %) were fawns, 32 (22.4%) were yearlings, and 73 (51%) were 

adults. I was able to age 25 of the 29 feral horses (86.2%), of which 96% were juveniles 

and only one was an adult. I was able to determine the age of 13 of 20 (65%) coyotes, of 

which pups comprised 15.4%, juveniles comprised 38.5% and adults made up 46.2%. I 

was unable to determine age class of all birds detected at GPS clusters, due to the limited 

amount of feathers and carcass remains. I determined age class for 7 (77.8%) of the 

pronghorn, all of which were adults. Other carcasses that were found less frequently at 

the GPS clusters included feral goats, cattle, beaver, sheep, small rodents, elk, badgers, 

brush rabbits, yellow bellied marmot, and feral cat (Felis catus) (Table 2). At the GPS 

clusters that had carcasses of prey items, I was able to identify a kill site at 100 (37.6%) 

and a point of first contact at 31 (12.4%) clusters (Figure 5). 
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Table 2.  Frequency and percentage of prey items found at 293 GPS clusters investigated 

for mountain lions in Modoc and Lassen counties, CA. Species are listed in 

descending order from most to least frequently found. For the percentage of diet, 

the GPS clusters where I did not detect prey items were excluded. For the birds 

category, I combined Sialia (n=1), California quail (Callipepla californica) (n=3), 

mourning dove (Zenaida macroura) (n=2), red-tailed hawk (Buteo jamaicensis) 

(n=1), sooty grouse (Dendragapus fuliginosus) (n=2) and Picidae (n=1). The 

small rodents category combined Belding’s ground squirrel (Urocitellus beldingi) 

(n=1), dusky-footed woodrat (Neotoma fuscipes) (n=1), and an unknown 

specimen from the family Muridae (n=1). KS = Kill Site; PFC = Point of First 

Contact. 

 

Species n 

Percentage 

of clusters 

Percentage 

of diet 

Number of 

KS found 

Number 

of PFC 

found 

Mule deer 163 55.6 61.3 66 20 

Feral horse 29 9.9 10.9 17 10 

No prey observed 27 9.2 n/a n/a n/a 

Coyote 20 6.8 7.5 5 0 

Birds 12 4.1 4.5 1 0 

Pronghorn 9 3.1 3.4 8 2 

Feral goat 6 2.0 2.3 1 0 

Beaver 5 1.7 1.9 0 0 

Cattle 5 1.7 1.9 0 0 

Sheep 4 1.4 1.5 0 0 

Elk 3 1.0 1.1 1 0 

Small rodents 3 1.0 1.1 0 0 

Badger 2 0.7 0.8 1 1 

Brush rabbit 2 0.7 0.8 0 0 

Bobcat 1 0.3 0.4 0 0 

Feral cat 1 0.3 0.4 0 0 

Yellow-bellied marmot 1 0.3 0.4 0 0 
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Figure 5. A map of kill sites that were observed by backtracking from GPS clusters 

generated by GPS collared mountain lions in Modoc and Lassen counties, CA. 

The kill sites are overlaid on a LEMMA layer, depicting larger values for western 

juniper basal area in deeper shades of red.  
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Coarse Scale Habitat Selection at the Study Area Level 

To assess habitat selection at all kill sites (n=100) at the study area level, I first 

compared them to an equal number of random points throughout the study area using a 

binomial generalized linear model. I tested 2 hypotheses regarding the locations of these 

kill sites: that mountain lions were killing prey in areas where prey density was high and 

that mountain lions were killing prey in areas where there was increased ambush cover, 

with the potential for both of these hypotheses to be supported, but at different scales. I 

also included a null model, which only included the intercept to test if there was no effect 

of the predictors.  

The top model was ambush 1, which had a weight of 0.614; however, 2 other 

models carried weight: ambush 3, and prey 1. In order to assess if lions were selecting for 

both areas with high prey density and high ambush cover, I created 2 new models by 

combining the top 3 supported models (Table 3). After including the new combined 

models, the top model was combined 1. For the top model, kill sites were slightly closer 

to water, slope was slightly steeper, and juniper basal area was larger than at paired 

random sites (Table 4). There was also support for combined 2 model, which indicated 

that kill sites were more likely to occur in areas slightly closer to water, with steeper 

slopes, greater western juniper basal area, and slightly lower conifer densities (Table 4). 

The models combining predictors from both competing hypotheses outperformed the 

models that kept the predictor variables separate.  
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Table 3. Coarse scale model selection results at the study area level for the prediction of 

kill sites from mountain lion GPS clusters in Modoc and Lassen counties, CA. 

The three models with support from the initial model selection were combined to 

form the combined models 1 and 2, to see if they outperformed the separate 

hypotheses. 

 

Model Name Model Parameters df AICc Δ AICc Weight 

combined 1 dwater + slope + juniper basal 4 267.7 0 0.588 

combined 2 dwater + slope + juniper basal + coniferdens 5 269.5 1.81 0.238 

ambush 1 juniper basal 2 271.2 3.42 0.106 

ambush 3 juniper basal + coniferdens 3 273.2 5.48 0.038 

prey 1 dwater + slope 3 274.2 6.44 0.023 

null  1 279.3 11.54 0.002 

prey 2 vegclass + dwater 9 279.6 11.83 0.002 

prey 4 vegclass + dwater + slope 10 280.6 12.83 0.001 

ambush 2 coniferdens 2 281.1 13.33 0.001 

prey 3 vegclass + slope 9 282.3 14.59 0.000 

 

juniper basal = the basal area of western junipers in m2/ha 

coniferdens = live conifer density measured in trees/ha 

dwater = the distance to the nearest water source in m 

slope = the slope which was measured in percentage 

vegclass = a categorical variable representative of the 11 vegetation classes 

prey = indicates that the model is a part of the prey density hypothesis 

ambush = indicates that the model is a part of the ambush cover hypothesis 
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Table 4. Coarse scale beta estimates, odds ratios, and 95% confidence intervals for the 

parameters of the supported top two models for predicting presence of kill sites at 

the study area level for mountain lions in Modoc and Lassen counties, CA. 

 

Model Name Parameter Beta Odds Ratio Lower CI Upper CI 

combined 1 intercept -0.2343717602 0.791 0.4945877 1.268157 

combined 1 dwater -0.0003623777 0.999 0.9990383 1.000106 

combined 1 slope 0.0499986915 1.051 1.0009339 1.109601 

combined 1 juniper basal 0.1336187961 1.143 1.0393224 1.304665 

      

combined 2 intercept -0.2286331094 0.796 0.4972799 1.275675 

combined 2 dwater -0.0003563420 0.999 0.9990458 1.000111 

combined 2 slope 0.0540052915 1.055 1.0028155 1.116952 

combined 2 juniper basal 0.1367281024 1.147 1.0417103 1.310057 

combined 2 coniferdens -0.0002225546 0.999 0.9988730 1.000600 

 

int = the intercept 

juniper basal = the basal area of western junipers in m2/ha 

coniferdens = live conifer density measured in trees/ha 

dwater = the distance to the nearest water source in m 

slope = the slope which was measured in percentage 

vegclass = a categorical variable representative of the 11 vegetation classes 

prey = indicates that the model is a part of the prey density hypothesis 

ambush = indicates that the model is a part of the ambush cover hypothesis 
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Coarse Scale Habitat Selection at the Home Range Level 

To assess habitat selection at kill sites (n=100) at the home range level, I 

compared them to random points (n=100) generated throughout the lions’ home ranges 

using a conditional logistic regression framework. The number of kill sites detected for 

each lion was different, so I generated the same number of random points as kills for each 

lion, and used each lion ID as a stratum. Similar to the study area level RSF, I wanted to 

test the same 2 hypotheses regarding the locations of these kill sites: that mountain lions 

were killing prey in areas where prey density was high, and that mountain lions were 

killing their prey in areas with increased ambush cover, with the potential for both of 

these hypotheses to be supported, but at different scales. The top model was the ambush 1 

model; however, 3 other models carried weight: ambush 2, prey 1, and ambush 3 models. 

To assess if lions were selecting for both areas with high prey density and ambush cover, 

I created 3 new models by combining the top 4 supported models. After including the 

new combined models, the top model was still ambush 1 model, which contained western 

juniper basal area, but there was also support for ambush 2 and prey 1 models, as in the 

previous model selection exercise (Table 5). There was weak support for western juniper 

basal area being slightly higher (Odds Ratio= 1.027873, 95% CI: 0.9861496– 1.071362) 

at kill sites as compared to paired random points (Table 6). There was also weak support 

for kill sites occurring in areas of higher conifer density (Odds Ratio= 0.9999446, 95% 

CI: 0.9996821– 1.000207). The prey 1 model indicated weak evidence of kill sites 

occurring closer to water (Odds Ratio= 0.9998194, 95% CI: 0.9995826– 1.000056) and 
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on steeper slopes (Odds Ratio= 1.0032661, 95% CI: 0.9780098– 1.029175) (Table 6). 

The models that combined predictors from both hypotheses did not outperform the 

models that kept the predictor variables separate.  
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Table 5. Coarse scale model selection results at the home range level for the prediction of 

kill sites from GPS clusters of mountain lions in Modoc and Lassen counties, CA. 

The 4 models with support from the initial model selection were combined to 

form the combined 1, 2, & 3 models to see if they outperformed the separate 

hypotheses. 

 

Model Name Model Parameters df AICc Δ AICc Weight 

ambush 1 juniper basal 1 240.7 0 0.299 

ambush 2 coniferdens 1 241 0.23 0.267 

prey 1 dwater + slope 2 241.6 0.9 0.191 

ambush 3 juniper basal + coniferdens 2 242.8 2.08 0.106 

combined 1 dwater + slope + juniper basal 3 243.6 2.89 0.07 

combined 2 dwater + slope + coniferdens 3 243.8 3.02 0.066 

combined 3 dwater + slope + juniper basal + coniferdens 4 245.8 5.06 0.023 

prey 3 vegclass + slope 8 253.7 12.91 0 

prey 2 vegclass + dwater 8 254.6 13.83 0 

prey 4 vegclass + dwater + slope 9 255.7 14.98 0 

 

juniper basal = the basal area of western junipers in m2/ha 

coniferdens = live conifer density measured in trees/ha 

dwater = the distance to the nearest water source in m 

slope = the slope which was measured in percentage 

vegclass = a categorical variable representative of the 11 vegetation classes 

prey = indicates that the model is a part of the prey density hypothesis 

ambush = indicates that the model is a part of the ambush cover hypothesis 
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Table 6. Coarse scale beta estimates, odds ratios, and 95% confidence intervals for the 

parameters of the supported top three models for predicting presence of kill sites 

at the home range level for mountain lions in Modoc and Lassen counties, CA. 

 

Model Name Parameter Beta Odds Ratio Lower CI Upper CI 

ambush 1 intercept 0.4746395 1.607 1.4079885 1.835133 

ambush 1 juniper basal 0.0275 1.028 0.9861496 1.071362 

      

ambush 2 intercept 0.5106386 1.666 1.451501 1.913912 

ambush 2 coniferdens -0.0000554 0.999 0.9996821 1.000207 

      

prey 1 intercept 0.570147269 1.769 1.4180449 2.205635 

prey 1 dwater -0.000180574 0.999 0.9995826 1.000056 

prey 1 slope 0.00326 1.003 0.9780098 1.029175 

 

juniper basal = the basal area of western junipers in m2/ha 

coniferdens = live conifer density measured in trees/ha 

dwater = the distance to the nearest water source in m 

slope = the slope which was measured in percentage 

vegclass = a categorical variable representative of the 11 vegetation classes 

prey = indicates that the model is a part of the prey density hypothesis 

ambush = indicates that the model is a part of the ambush cover hypothesis 
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Fine Scale Habitat Selection 

Habitat characteristics were measured at a subset (n=55) of kill sites for the fine 

scale habitat analysis. Horizontal visibility at kill sites was more obstructed than at paired 

random points (t54= 3.73, p<0.001). Although I found no difference in distance to the 

nearest western juniper (t54= 0.53, p= 0.60), distance to nearest cover was significantly 

shorter at kill sites than at paired random points (t54= -2.59, p= 0.01). There was no 

difference in distance to water (t54= -0.25, p= 0.80), ground cover within a 5 m radius 

(t54= 0.79, p=0.43), or slope between kill sites and paired random points (t54= -0.92, p= 

0.36).  

Habitat characteristics were also measured at a subset (n=15) of points of first 

contact for the fine scale habitat analysis. Horizontal visibility at points of first contact 

was significantly more obstructed than at paired random points (t14= 2.38, p= 0.03), and 

points of first contact occurred significantly closer to cover than paired random points 

(t14= -2.7, p= 0.049). I found there to be no difference in the distance to western junipers 

(t14= 0.16, p= 0.87), the mean distance to water (t14= 0.02, p=0.99), slope (t14= -0.47, p= 

0.64), or ground cover within a 5 m radius (t14= 1.95, p= 0.06) at the point of first contact 

when compared to paired random points.   

I generated 9 a priori candidate models, with the full model represented by: kill 

site presence ~ obstructed horizontal visibility + elevation + slope + distance to western 

juniper + distance to water + distance to nearest cover + percent ground cover + cover 

type + conifer cover (Table 7). There was support for two models: a model that included 
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obstructed horizontal visibility (model 1) and a model that included obstructed horizontal 

visibility, distance to nearest western juniper and distance to nearest cover (model 2). Of 

these two supported models, I chose the most parsimonious model (model 1) for 

predicting the presence of kill sites based on fine scale data. For the top model, the 

obstructed horizontal visibility predictor had a positive effect on presence of kill sites (β 

= 0.08296, Odds Ratio = 1.0865, 95% CI: 1.038 – 1.137), meaning that kill sites were 

more likely to occur in areas where the cover board was more obscured. 
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Table 7. Fine scale model selection results for prediction of kill sites. Models were 

trained using data from the subset of fine scale data measured at kill sites and 

paired random locations for GPS collared mountain lions in Modoc and Lassen 

counties, CA. 

 

Model 

# Model Parameters df AICc 

Δ 

AICc Weight 

1 visobs 1 53.5 0 0.505 

2 visobs + djun + dcover 3 54.4 0.81 0.337 

3 visobs + dcover + dwater 3 55.9 2.36 0.155 

4 visobs + dcover + covtype 10 65.2 11.66 0.001 

5 visobs + djun + dcover + covtype + conif 12 65.4 11.88 0.001 

6 visobs + dcover + dwater + covtype 11 67.5 13.98 0.000 

7 visobs+ dcover + dwater + gc + elev + covtype + conif 14 74.9 21.35 0.000 

8 
visobs + djun + dcover + dwater + gc + slope + elev + 

covtype + conif 
16 75.3 21.76 0.000 

9 
visobs + dcover + dwater+ gc + slope + elev + covtype + 

conif 
15 76 22.41 0.000 

 

visobs = the percentage of a 0.7 m2 cover board that was obstructed from viewing at 25 m in the 4 

cardinal and 4 inter-cardinal directions 

djun = the distance in m to the nearest western juniper, trees < 0.7 m in height were excluded 

dcover = the distance in m to the nearest cover that was ≥ 0.7 m 

dwater = the distance in m to the nearest water source  

gc = the percent ground cover that was ≥  0.7 m within a 5 m radius 

covtype = a categorical variable representing the nearest type of cover that was ≥ 0.7 m 

conif = a binary variable indicating whether the nearest source of cover was a conifer or not  

elev = the elevation in m, which was extracted from a Digital Elevation Model  
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For points of first contact, I generated 8 a priori candidate models, with the full 

model represented by: point of first contact presence ~ obstructed horizontal visibility + 

slope + distance to nearest western juniper + distance to nearest water + distance to 

nearest cover (Table 8). There was support for a single top model, based on its AICc 

score and majority of weight that it carried. Similar to the fine scale analysis of kill sites, 

the most parsimonious model included only obstructed horizontal visibility (model 1). 

The obstructed horizontal visibility predictor had a positive effect on the presence of 

points of first contact (β = 0.1291, Odds Ratio = 1.1378, 95% CI: 0.9451 – 1.3699), 

meaning that points of first contact were more likely to occur in areas where horizontal 

visibility was more obscured.  
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Table 8. Fine scale model selection results for predicting of points of first contact (PFC) 

for GPS collared mountain lions in Modoc and Lassen counties, CA. Models were 

trained using data from the subset of fine scale data measured at points of first 

contact and paired random locations. Due to small sample size (n= 15 PFC, n=15 

random), fewer predictors were used in PFC candidate models than in kill site 

candidate models.  
 

Model 

# Model Parameters df AICc 

Δ 

AICc Weight 

1 visobs 1 14.2 0 0.757 

2 distance to cover 1 17.5 3.29 0.146 

3 visobs + distance to cover + djun 3 19.3 5.09 0.059 

4 slope 1 22.6 8.44 0.011 

5 djun 1 23.1 8.91 0.009 

6 distance to water 1 23.1 8.94 0.009 

7 visobs + distance to water + distance to cover + slope + djun 5 24 9.79 0.006 

8 distance to water + slope 2 25.3 11.13 0.003 

 

visobs = the percentage of a 0.7 m2 cover board that was obstructed from viewing at 25 m in the 4 

cardinal and 4 inter-cardinal directions 

djun = the distance in m to the nearest western juniper, trees less than 0.7 m in height were 

excluded 

distance to cover = the distance in m to the nearest cover that was ≥ 0.7 m  

distance to water = the distance in m to the nearest water source  
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Habitat Variation across Kill Sites by Species 

 

 

The data used for determining differences in kill site characteristics by species 

included mule deer (n = 67), feral horses (n =18), pronghorn (n = 8), and coyote (n = 5). I 

found that slope differed between kill sites of different species (F3= 4.196, p= 0.008) 

(Table 9). I observed that mean slope at kill sites of mule deer was 5.4% steeper than at 

kill sites of feral horses (p= 0.005, 95% CI: 1.307 – 9.496) (Figure 6). I also found a 

difference in western juniper basal area at kill sites of different species (F3= 3.312, p= 

0.023). Pronghorn were killed in areas with western juniper basal area that was 4.8 m2 

greater than in areas where mule deer were killed (p= 0.055, 95% CI: -0.074 – 9.751) 

(Figure 7). I did not detect significant differences in the mean distance to water (F3= 

0.294, p= 0.83) nor in live conifer density (F3=1.714, p= 0.17) at kill sites across the 4 

species (Table 9).  
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Table 9. Mean values for the predictor variables at the kill sites from GPS clusters of 

mountain lions in Modoc and Lassen counties, CA, for each of the prey species. 

 

Species 

Slope 

(%) 

Distance to 

water (m) 

Conifer density 

(trees/ha) 

Western juniper basal 

area (m2) 

Mule deer 7.41 429.27 184.96  1.43 

Feral horses 2.01 520.08 48.57  1.79 

Coyotes 4.86 415.54 370.91  6.09 

Pronghorn 4.79 244.09 89.24  6.27 
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Figure 6. The median values of percent slope for each of the 4 species killed by GPS 

collared mountain lions in Modoc and Lassen counties, CA between 2016-2018. 

Interquartile ranges are represented by the boxes around the lines, the minimum 

and maximum represented by the vertical lines, and outliers represented by dots. 
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Figure 7. The median values of western juniper basal area for each of the 4 species killed 

by GPS collared mountain lions in Modoc and Lassen counties, CA between 

2016-2018. Interquartile ranges are represented by the boxes around the lines, the 

minimum and maximum represented by the vertical lines, and outliers represented 

by dots. 
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DISCUSSION 

Western juniper played an important role in the way lions partitioned their time, 

as seen by the establishment of their core ranges around juniper with larger basal area. At 

the coarse scale, lions killed their prey in areas that had steeper slopes and had larger 

western juniper basal area. At the fine scale, lions killed their prey in areas with more 

obstructed horizontal visibility.  

Home Ranges 

 Overall, there was high variance among lions in their use of habitat within their 

home ranges (3rd order habitat selection; Johnson 1980). The entire home range of some 

lions were in habitat with high values for canopy cover and conifer density. 

Consequently, this masked detection of differences in live conifer density and canopy 

cover between the 50%, 85% & 95% KDEs of all the lions sampled. These results 

suggest that lions may be selecting for forest cover when establishing their home ranges 

on the landscape (2nd order habitat selection; Johnson 1980).  

Although I did not observe differences for canopy cover and live conifer density 

between core use areas and entire home ranges, lions did show evidence of preferentially 

using core areas within their home ranges that had higher western juniper basal area 

(Appendix B). The characteristics of western juniper habitat may benefit lions in a variety 

of ways. Mountain lions typically drag their prey into areas of more dense cover, which 

prolongs carcass life (Musgrave 1926). Larger western junipers may have more duff 
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underneath them for the caching of carcasses. These larger trees are also likely to have 

more complex branching for concealing their prey items from scavengers. Another reason 

lions may be using western junipers with larger basal area is for thermal benefit. Western 

junipers have the potential to act as a thermal buffer for lions, both in the form of shade 

in summer months and as a shield from the elements in winter months. It is also possible 

that lions established their core ranges around larger western juniper basal area for 

increased cover for hunting, as supported by the coarse scale kill site analysis. In theory, 

fire suppression would allow for later successional stages of western junipers to persist, 

which would increase areas with trees of larger basal areas. Although my study did not 

fully elucidate why lions are utilizing these junipers of larger basal area, they appear to be 

an important habitat characteristic for lions. This was apparent at multiple levels, as 

juniper basal area was larger within the core of their home range, and at kill sites, both 

when compared to the rest of the study area and their home ranges.  

Diet Composition 

I was able to detect prey items at 90.8% of the GPS clusters I investigated. 

Mountain lions consumed more mule deer (61%) than any other prey items, followed by 

feral horses, coyote, birds and pronghorn. This supports results from other studies that 

show lions primarily eat mule deer when most abundant (Pierce et al. 2000, Villepique et 

al. 2011, Allen et al. 2014). Other studies have shown secondary prey items of lions to 

include desert cottontails (Sylvilagus audubonii) and black-tailed jack rabbits in the 
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eastern Sierra of California (Pierce et al. 2000), domestic cattle and javelina (Pecari 

tajacu) in southeastern Arizona (Cunningham et al. 1999), javelina and feral hogs (Sus 

scrofa) in southern Texas (Harveson et al. 2000), beaver in western Washington (Kertson 

et al. 2011) and porcupines (Erethizon dorsatum) in northwestern Nevada (Sweitzer et al. 

1997). Interestingly, I observed a surprisingly high number of feral horse kills by one 

male study animal (M166). Within that individual’s home range, mule deer densities 

were lower compared to that of other study animals (California Department of Fish and 

Wildlife 2019). This is congruent with a study in the Pryor Mountains of Montana, where 

it was suggested that a single lion was focusing on bighorn sheep as prey as a result of 

availability within this individual lion’s home range (Blake 2014).  

A Morasita Horn Index of Similarity analysis found that M166’s diet was 

strikingly dissimilar from that of the other study animals (Horn 1966; Appendix C). 

When M166 was removed from the diet analysis as an outlier, mule deer comprised 

68.4% of the diet, and feral horses comprised less than 1% of the remaining lions’ diet. It 

is likely that not all lions had equal access to all prey types within their home ranges. 

Only 4 study animals had home ranges that overlapped with horse and burro management 

units. If I had more animals collared within areas of high feral horse concentrations, there 

would be potential for feral horses to be hunted by more than just a few lions and emerge 

as an even larger portion of their diet. It is likely that M166’s diet likely reflects the 

abundance of prey available to him, as horse populations were high within his home 

range (Appendix D). It is possible that the high number of horses observed in our 
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sampling is representative of apparent competition occurring between feral horses and 

other prey species on the Modoc Plateau (Holt 1977).  

The number of coyote carcasses detected at GPS clusters was unusually high. 

Other studies have found that coyotes comprise a low percentage of lion diet in the 

mountain west (1.8%, Ackerman et al. 1984; 1.97%, Kertson et al. 2011; 3%, Blake 

2014) or are not found at all (Leopold and Krausman 1986, Cunningham et al. 1999, and 

Harveson et al. 2000). In central Idaho, it was suggested that lions may kill coyotes at 

their feeding sites while defending prey carcasses (Koehler and Hornocker 1991). I 

acknowledge that mountain lions and coyotes may exhibit intraguild competition 

(Palomares and Caro 1998), however all of the coyotes I detected at GPS clusters were 

more than 50% consumed by lions. This led me to believe that lions of the Modoc 

Plateau may be utilizing coyotes as supplemental food sources to their primary prey of 

mule deer. Unlike the bias observed with feral horses, coyotes were taken by more than 

half of the study animals. This may indicate that in areas where primary prey densities are 

low, lions use coyotes as supplemental food sources.   

 Initially I anticipated that pronghorn would make up a larger proportion of the 

lions diet than I observed, due to a congruent study finding lions to be the main predator 

of collared pronghorn in the area (IWS, unpublished data). Drought may have been a 

factor in the high mortality observed in that study, which occurred in the severe drought 

years of 2014-2016 (Funston and Mills 2006). If primary water sources were dry, 

pronghorn may have had to utilize secondary water sources that were less desirable in 
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terms of predation risk. Alternatively, GPS collared pronghorn may have been weakened 

during capture and could have been more susceptible to predation by lions due to capture-

related myopathy (Mech 1967). Although high numbers of pronghorn were not detected 

in my GPS cluster investigations, lions may still have the potential to impact their 

populations. 

Although my cluster parameters (6 hours spent within a 50 m span, with 1 or 

more nocturnal locations) were more conservative than other lion diet studies (Anderson 

and Lindzey 2003, Bacon et al. 2011, Blake 2014, Lowrey et al. 2016), I consider them 

sufficient for the purpose of locating kill sites of large prey items, which was the main 

purpose of the study. While GPS cluster investigations may be biased towards larger prey 

items (Bacon et al. 2011), I detected a considerable number of birds in the diet of lions. 

This detection of smaller prey suggests that my cluster parameters did not miss prey 

items the size of sooty grouse or larger. Of the 293 clusters that I investigated, I was 

unable to find prey remains at only ~9% of the sites, suggesting that the cluster 

parameters were not too conservative. Since I did not investigate less conservative 

cluster, I acknowledge that smaller prey items may make up a larger percentage of lions 

diet than I observed.  

Coarse Scale Habitat Selection 

For coarse scale habitat selection at kill sites at the study area level, there was 

support for 2 models that combined predictors from both the prey density and ambush 
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cover hypotheses. Both supported models included distance to water, slope, and western 

juniper basal area as predictors of kill sites. There was a negative relationship between 

distance to water and kill sites, indicating that kill sites occurred closer to water sources. 

This is important, as the study occurred on the tail end of an extreme drought (Mann and 

Gleick 2015), and during times of limited water prey utilize secondary and tertiary water 

sources, potentially making them more susceptible to predation (Thrash et al. 1995). 

However, I believe this effect to be small, as the confidence intervals overlapped 1(Table 

4). There was a positive relationship between kill site and slope, indicating that kill sites 

occurred on steeper slopes than random locations throughout the study area. Lions may 

utilize steeper slopes to their advantage when successfully killing their prey (Gladders 

2003, Nichols 2017). There was also support for larger western juniper basal area at kill 

sites suggesting that larger trees provide lions with greater cover when stalking their prey. 

The second supported model included live conifer density as a predictor of kill site. I 

conclude that the effect of live conifer density is likely small, as confidence intervals 

overlapped 1 and the odds ratio was so close to 1. Overall, the models that combined 

predictors from both the prey density and the ambush cover hypotheses were ranked 

higher than models that kept them separate. Thus, I conclude that at the study area level, 

lions are killing their prey in areas where there are higher prey densities as well as 

increased ambush cover. 

 For the coarse scale selection of kill sites at the home range level, I identified 3 

supported models (Table 5). The top model showed kill sites occurred in areas with larger 
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western juniper basal area than random points throughout lion’s home ranges. Although 

the confidence intervals for western juniper basal area overlapped 1, they were skewed to 

the right, indicating some support for larger basal area. As discussed previously, lions 

may be utilizing these larger western junipers (or the vegetation associated with them) as 

sources of cover to from which to make their kills. The second ranked model included the 

variable conifer density, but there was little support for this with confidence intervals 

overlapping 1. The third ranked model included slope and distance to water. Kill sites 

occurred slightly closer to water and on slightly steeper slopes than random points, 

supported by findings of previous studies (Blake 2014, Nichols 2017), although the 

confidence intervals overlapped 1.   

At the home range level, the top ranked models identifying kill sites did not 

contain predictor variables from both the prey density and ambush cover hypotheses, 

suggesting that scale may play a role in determining what lions are selecting for at kill 

sites. Compared to what is available throughout the study area, lions are likely killing 

prey where densities are high (Davidson et al. 2012). However, they would also need 

sufficient cover to kill their prey as shown by the top models being a combination of the 

prey density and ambush cover hypotheses. My model selection process was supported 

by a study that found that lions in three other regions of California establish their home 

ranges around high prey densities (Grigione et al. 2002). If prey is not limited throughout 

lions’ home ranges, it is possible that they are killing prey in areas where ambush cover is 

sufficient (Davidson et al. 2012). Support for the first hypothesis indicates that lions in 
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Modoc establish their home ranges around pockets of western junipers with larger basal 

area. This suggests that western juniper basal area is likely more uniform throughout 

lions’ home ranges than it is at the larger study area level, and that lions may not be 

making selections at this scale.  

Fine Scale Habitat Selection 

Other research has highlighted the importance of scale when analyzing habitat 

features of mountain lion kill sites, but only a few studies have analyzed habitat at a fine 

scale (Husseman 2003, Blake 2014). In this study, both of the top models for kill sites 

and points of first contact included the obstructed horizontal visibility variable. 

Specifically, horizontal visibility was lower at both kill sites and points of first contact, as 

was found in the Salmon River Mountains of Idaho and the Pryor Mountains of Montana 

and Wyoming (Husseman et al. 2003, Blake 2014). I predicted western junipers would 

strongly influence kill site selection due to the increase in western junipers on the Modoc 

Plateau (Young and Evans 1981, Bedell et al. 1993, Miller et al. 2005) and previous 

research finding that lions preferentially kill their prey in conifer stands (Logan and Irwin 

1985, Husseman et al. 2003), juniper-pinyon stands (Laundré and Hernandez 2003), and 

juniper-mahogany stands (Blake 2014). Contrary to what I predicted, distance to western 

juniper did not arise as an important factor in habitat selection at kill sites and points of 

first contact. At a fine scale it seems that lions were not specifically seeking out western 

junipers as sources of cover; rather they were using whatever cover was available to them 
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on the landscape to obscure their profile from the prey items. This is further supported by 

the absence of conifer presence as a variable in the top supported models for predicting 

kill sites and points of first contacts. These results suggest that it is not the type of cover 

that is important, but rather that there is sufficient cover for stalking.  

The lack of a regular fire cycle in the study area has allowed for more than just 

the succession of western junipers; rather it has affected all vegetation on the landscape, 

such as the increase in both woody and herbaceous vegetation (Miller and Wigand 1994). 

This increase in vegetation as a whole makes more cover available on the landscape for 

lions to use. Especially since lions may not need to be fully concealed, rather they may 

only require sufficient cover to break up their profile from the prey’s perspective, as 

when stalking mule deer using only a fence line for cover (Logan and Irwin 1985).  

It has been suggested that when hunting, lions utilize both topography as well as 

vegetative cover (Logan and Irwin 1985). Slope was found to be an important predictor 

of lion kill sites in the Sierra National Forest of California (Nichols 2017) and at lion 

feeding sites on Vancouver Island, British Columbia (Gladders 2003). However, the fine 

scale analyses did not include slope as a predictor in the top models for kill sites nor 

points of first contact. This could be due to the relatively uniform slopes available to lions 

on the Modoc Plateau. Because slope was not included in the top fine scale models, it is 

possible that the ample vegetative cover in my study area allows lions to kill without 

utilizing slope at this level. In a similar habitat type of juniper and mountain mahogany in 
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the Pryor Mountains, slope was similarly excluded from top models for fine scale kill site 

selection (Blake 2014).  

 Several other studies have included the proximity of water sources as a predictor 

of felid kill sites, but found that at a fine scale, big cats were selecting for cover rather 

than proximity to water (Hopcraft et al. 2005, Balme et al. 2007, Davidson et al. 2012). 

This trend of distance to water being less important than cover at fine scale habitat 

selection at kill sites may be related to the distribution of water and prey on the 

landscape. It is common for the distribution of water on the Modoc Plateau to vary 

seasonally, and if I included seasonality in my analyses, then water may have been a 

more important predictor of kill sites and points of first contact (Blake and Gese 2016). It 

is also possible that lions establish their home ranges around areas with sufficient water 

to support abundant prey, and they utilize cover within the areas where prey already exist, 

indicating that the scale of this habitat variable is important for selection.  

Habitat Variation across Kill Sites by Species 

I observed different habitat characteristics at kill sites of different prey species. 

Mule deer were killed on steeper slopes than were feral horses. This may be explained by 

the terrain that these species prefer, with mule deer using steeper slopes than horses 

(Ganskopp 1983). It is also possible that steeper slopes were more available to deer, 

which were ubiquitous throughout the study area. Compared to deer, horses were 

confined within the flatter, more open Devil’s Garden Horse Management Unit.  
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 I also observed lions killing pronghorn in areas with larger western juniper basal 

area than the sites where they killed mule deer. This contradicted what I expected, as 

pronghorn typically prefer open habitats (Kitchen 1974, Miller et al. 2005) and mule deer 

are more capable of utilizing forested and edge habitats (Kufeld et al 1988, Kie et al. 

2002). This suggests that lions require junipers with larger basal area to provide more 

cover when killing pronghorn, perhaps because pronghorn have excellent eyesight 

(Lubinski and Herren 2000). This is supported by pronghorn evolving in open habitats, 

utilizing their vision to detect sources of cover on the landscape (Kitchen 1974, Bromley 

1977). However, while pronghorn have excellent vision at a distance, they lack visual 

acuity at close distances (Kitchen 1974), and therefore any cover capable of concealing 

ambush predators may make them vulnerable. Pronghorn also rely heavily on vision for 

social cues from conspecifics within their herd for predator avoidance (Bromley 1977), 

thus it is possible that western junipers of larger basal area provide more impediments to 

these predator avoidance strategies.  

 Although there were differences in the mean live conifer density and mean 

distance to water between kill sites across species, these were not significant. This was in 

part due to the large variation in values across the kill sites for all of the species observed. 

This is likely a product of the mosaic of habitats found in the study area. Although there 

was the largest difference in live conifer density means between feral horses and coyotes, 

I still observed occasions where lions killed coyotes in areas with low live conifer 

density. Because coyotes are generalists and have the ability to thrive in high and low 
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forest cover (Quinn 1997, Boisjoly et al. 2010), my findings of lions killing coyotes 

across a wide spread of values for live conifer density do not seem anomalous. Similarly, 

I did not detect significant differences for distance to water across individual species kill 

sites. Water availability has been shown to dictate space use of mule deer (Jenkins and 

Wright 1988, Boroski and Mossman 1996), feral horses (Miller 1983), pronghorn 

(Kitchen 1974, Yoakum 1979), and coyotes (Atwood et al. 2011). However, if water is 

limited across the Modoc Plateau, these four species may be utilizing water sources 

similarly.  

Management Implications 

 The larger western juniper found in core areas of lions’ home ranges indicates 

their importance to mountain lions in this region. If lions are spending nearly half of their 

time in areas of larger western juniper basal area, they may be impacted by the large-

scale western juniper cuts planned by the U.S. Forest Service (USFS) and Bureau of Land 

Management (BLM). As a result of the juniper removal effort, there is potential for 

mountain lion home ranges to shift and expand to incorporate new areas with sufficient 

cover. The impact of large territorial animals increasing the size of their home ranges 

may mean that the study area will support a lower density of lions, or that lions may 

expand their ranges outside of the study area. I recommend that lions continue to be 

monitored after juniper removal to see if there are abrupt shifts in home range size or 

fidelity. In coordination with the USFS and BLM, there is potential to assess the space 
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utilization by lions before and after large scale cuts are conducted. Interestingly, several 

lions within the study area killed prey in close proximity to western junipers that recently 

had been cut down, but left on the landscape. It is possible that lions have the ability to 

use these downed junipers for cover as well, so using prescribed burns to accompany 

juniper removals may be a more impactful way to reduce the zones of risk for ungulates 

within the study area. Prescribed burns will also help reduce cover in forms other than 

western junipers, which I found to be important to lions at the fine scale.  

Based on the rough population estimates of ungulates on the landscape from 

CDFW (California Department of Fish and Wildlife 2018, 2019), IWS (unpublished data) 

and the USFS (Modoc National Forest 2019), the composition of ungulates in the diet of 

lions seems to track the relative abundance of what is available to them (Kunkel et al. 

1999, Kortello et al. 2007, Valeix et al. 2012). Lions of the Modoc Plateau are likely not 

selecting any particular prey type, rather following the trends of what prey is abundant 

within their respective home ranges (Iriarte et al. 1990, Karanth and Sunquist 1995, 

Davidson et al. 2013). I did not find pronghorn to represent a large proportion of any of 

the lion’s diets, but if pronghorn populations increase, there is potential for more lion 

predation to ensue.  

Although male lion M166 appeared to be a feral horse specialist, a single lion is 

not capable of keeping the regional feral horse population in check (Greger and Romney 

1999, Turner and Morrison 2001, Knopff et al. 2010). To further understand the impact 

of lions on the feral horse population, I recommend capturing and collaring more lions in 
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the feral horse management units to see if there are other feral horse specialists. As the 

Devil’s Garden unit is scheduled to remove 1,000 feral horses annually for the next 3 

years, it may be beneficial to monitor diets of lions in this area as prey densities shift.  

Another benefit to understanding the prey composition of these collared mountain 

lions is that it can provide managers with baseline data for the diet of lions prior to wolf 

colonization of the study area. With established wolf packs to the north, south and west 

of the study area, it may only be a matter of time before they establish in Modoc County. 

Wolves have the potential to impact lions directly, through mortality and carcass 

displacement (White and Boyd 1989, Kortello et al. 2007), or indirectly by altering lion 

prey selection and spatial movement patterns (Alexander et al. 2006, Kortello et al. 

2007). I now have data on prey composition, home range metrics, and habitat selection 

for lions at the study area, home range, and within-home range levels. If wolves establish 

within the study area, managers can monitor behavioral changes in lions in both their 

foraging habits and habitat selection. Modoc County is unique in that it offers a 

significant source of secondary prey: feral horses. Unlike previous interaction studies in 

Yellowstone (Bartnick et al. 2013) and Banff National Parks (Kortello et al. 2007), in 

Modoc, feral horses are available as secondary prey items to alleviate the immediate 

impacts of wolf colonization on lions, as there is large dietary overlap between these two 

predators in a multi-prey system (Kunkel et al. 1999). A study in Banff National Park 

showed that once elk densities were low, wolves switched to consuming deer, which then 

pressured lions to predate more upon bighorn sheep (Kortello et al. 2007). In Modoc, elk 
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densities are already low, and the primary ungulate prey available on the landscape is 

mule deer (California Department of Fish and Wildlife 2018, 2019). With the potential 

for prey switching and a change in diet composition of lions on the Modoc Plateau, it 

would be prudent to continue monitoring the foraging habits of lions as wolves make 

their way into the study area.  

The feral horse population in Modoc is growing rampantly, and wildlife managers 

may wish to reduce this population in an effort to improve habitat for native wildlife 

(Crane et al. 1997, Beever and Brussard 2000, Beever et al. 2008). If additional mountain 

lions (other than M166) are specializing in feral horses, there is potential for foal 

recruitment to be limited through predation by lions (Turner and Morrison 2001). 

Wildlife managers have the ability to improve lion hunting habitat within the horse 

management areas by increasing the amount of cover available to lions in areas that have 

flatter slopes.  

Conversely, mule deer populations are declining across the Modoc Plateau 

(Clements and Young 1997, California Department of Fish and Wildlife 2019). The most 

effective way to reduce predation by lions is through the alteration of habitat, reducing 

areas of high risk for prey (Blake and Gese 2016). Habitat characteristics were broadly 

similar across species. This suggests that lions utilize roughly the same habitat to kill 

multiple prey types. Based on this study’s resource selection functions, the most 

important factor at a fine scale is the obstructed horizontal visibility. At a coarser scale, 

lions killed their prey closer to water, on steeper slopes, in lower conifer densities and in 
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areas with larger western juniper basal area. If drought persists in the study area, it may 

be beneficial for managers to construct supplemental water sources. I recommend these 

water sources be placed in areas that have relatively flat slope, low conifer densities, and 

small western juniper basal area, yet also have high visibility for the prey utilizing them.  
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APPENDIX A 

Appendix A: A Linear Discriminant Function for Habitat Characteristics at Kill Sites 

 

I trained a discriminant function analysis using a random subset of 60% of the kill site 

data, and reserved the remaining 40% for testing. The proportion of trace for separation 

was 69.19% for LD1, 29.45% for LD2, and 1.36% for LD3. With the training data, the 

linear discriminants accurately predicted the species of 71.19% of the kill sites. Using the 

testing data, the linear discriminant functions accurately predicted the species for 61.54% 

of the kill sites.  

 

Table A1. The species predicted by the discriminant function based on the subset of 

training data. The predicted values are depicted by the rows and the actual species 

are represented by the columns. For the training data, the linear discriminant 

functions accurately predicted 71.2% of the species.  

 

  Actual 

  Mule Deer Feral horse Pronghorn Coyote 

Predicted 

Mule Deer 41 11 2 1 

Feral horse 0 0 0 0 

Pronghorn 1 0 0 0 

Coyote 1 0 1 1 
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Figure A1. A linear discriminant function which depicts how LD1 and LD2 are 

separating differences in kill site characteristics of 4 species preyed on by 

mountain lions in Modoc and Lassen counties, CA between 2016– 2018. 

 

 

Table A2. The species predicted by the discriminant function based on the subset of 

testing data. The predicted values are depicted by the rows and the actual species 

are represented by the columns. For the testing data, the linear discriminant 

functions accurately predicted 61.5% of the species.  

 

    Actual 

  Mule Deer Feral horse Pronghorn Coyote 

Predicted 

Mule Deer 24 7 5 3 

Feral horse 0 0 0 0 

Pronghorn 0 0 0 0 

Coyote 0 0 0 0 
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APPENDIX B 

Appendix B: Home Ranges and Western Juniper Basal Area 

The figures below show the home ranges for GPS collared mountain lions within Modoc 

and Lassen counties, CA. The home ranges were created using 95, 85, and 50% kernel 

density estimates in program adehabitat in R studio. The home ranges are overlaid on a 

LEMMA western juniper basal area layer, with darker red indicating western juniper of 

larger basal area per hectare. 
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Figure B1. Female 95% kernel density estimates for GPS collared mountain lions in 

Modoc and Lassen counties, CA. Larger western juniper basal area is indicated by 

darker shades of red. 
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Figure B2. Male 95% kernel density estimates for GPS collared mountain lions in Modoc 

and Lassen counties, CA. Larger western juniper basal area is indicated by darker 

shades of red. 
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Figure B3. Female 85% kernel density estimates for GPS collared mountain lions in 

Modoc and Lassen counties, CA. Larger western juniper basal area is indicated by 

darker shades of red. 
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Figure B4. Male 85% kernel density estimates for GPS collared mountain lions in Modoc 

and Lassen counties, CA. Larger western juniper basal area is indicated by darker 

shades of red. 
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Figure B5. Female 50% kernel density estimates for GPS collared mountain lions in 

Modoc and Lassen counties, CA. Larger western juniper basal area is indicated by 

darker shades of red. 
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Figure B6. Male 50% kernel density estimates for GPS collared mountain lions in Modoc 

and Lassen counties, CA. Larger western juniper basal area is indicated by darker 

shades of red. 

  



85 

 

 

 

APPENDIX C 

Appendix C: An Index of Similarity in Diets among Collared Individuals 

 

A Morasita Horn Index of Similarity (Horn 1966) depicting how similar the diets were 

for each of the collared mountain lions in Modoc and Lassen counties, CA. Values of 1.0 

indicate perfect similarity and values of 0 indicate no overlap in diets between study 

animals. Mountain lion ID numbers are on each of the axes, with F representing female 

and M representing male within the lion ID. Individual M166 is highlighted in green to 

highlight how dissimilar his diet was from the other lions. M166 preyed predominantly 

upon feral horses.  

 

 

Figure C1. A Morasita Horn Index of Similarity for the diets of GPS collared mountain 

lions in Modoc and Lassen counties, CA. Individual M166 is highlighted in green 

to emphasize how his diet differed from other study animals.   

F158 1.00

F159 0.77 1.00

F163 0.84 0.94 1.00

F164 0.88 0.96 0.95 1.00

F180 0.72 0.99 0.91 0.94 1.00

F182 0.72 0.99 0.91 0.94 1.00 1.00

M157 0.81 0.97 0.98 0.96 0.95 0.95 1.00

M160 0.84 0.72 0.86 0.80 0.67 0.67 0.81 1.00

M161 0.85 0.98 0.96 0.98 0.96 0.96 0.97 0.77 1.00

M166 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.08 0.01 1.00

M168 0.72 0.99 0.91 0.94 1.00 1.00 0.95 0.67 0.96 0.00 1.00

M178 0.66 0.61 0.66 0.72 0.59 0.59 0.67 0.55 0.63 0.01 0.59 1.00

M179 0.77 0.98 0.92 0.95 0.97 0.97 0.98 0.72 0.97 0.01 0.97 0.68 1.00

M181 0.18 0.20 0.24 0.20 0.18 0.18 0.22 0.22 0.20 0.00 0.18 0.13 0.19 1.00

M184 0.65 0.54 0.66 0.63 0.51 0.51 0.61 0.78 0.59 0.00 0.51 0.59 0.55 0.16 1.00

ID F158 F159 F163 F164 F180 F182 M157 M160 M161 M166 M168 M178 M179 M181 M184
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APPENDIX D 

Appendix D: Prey Selection 

 

The table below compiles data showing ungulate populations within the study area, in 

Modoc and Lassen counties, CA. Feral horse estimates were provided from the Modoc 

National Forest and were acquired by conducting aerial surveys. Mule deer, pronghorn 

and elk numbers were provided from California Department of Fish and Wildlife. 

Population estimates were generated for each of the hunt units. These hunt units if Mule 

deer estimates were a combination of aerial surveys and road surveys. Pronghorn and elk 

estimates were based on aerial surveys conducted. Proportions of ungulates in the diet of 

mountain lions was based on GPS cluster investigations of 17 collared lions. The 

proportion is only representative of ungulates in the diet, all non-ungulate prey were 

removed.  

 

Table D1. The proportion of ungulates available in the study area compared to 

proportions of ungulates observed in the diets of GPS collared mountain lions in 

Modoc and Lassen counties, CA. 

 

Species Population 

estimate 

Number 

consumed 

Proportion of 

ungulates available 

Proportion of 

ungulates in diet 

Mule deer 12362 163 70.15 79.90 

Feral horses 2246 29 12.75 14.22 

Pronghorn 1006 9 5.71 4.41 

Elk 2007 3 11.39 1.47 

 


