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ABSTRACT 

PHYLOGENETIC AND POPULATION GENETIC ANALYSIS OF THE 

HUMBOLDT’S FLYING SQUIRREL USING HIGH-THROUGHPUT SEQUENCING 

DATA 

 

Stella Yuan 

 

The intraspecific genetic variation and diversity within the Humboldt’s flying 

squirrel (Glaucomys oregonensis) has not yet been characterized despite its elevation to 

full species in 2017. The San Bernardino flying squirrel (G. o. californicus) is thought to 

be the southernmost population of G. oregonensis and is restricted to the San Bernardino 

and San Jacinto Mountains in California, but recent surveys indicate they have been 

extirpated from the latter locality. In order to provide baseline genetic data across the 

geographic range of G. oregonensis, I had the following objectives: 1) investigate the 

intraspecific molecular variation in G. oregonensis with a focus on the subspecies 

distributed in California; 2) evaluate the genetic diversity within G. o. californicus; 3) 

estimate if gene flow is occurring between the rest of the species and G. o. californicus. 

Population genetic and phylogenetic analyses, incorporating nine microsatellite loci and 

the partial or entire mitochondrial cytochrome-b gene, were performed on a total of 147 

samples (tissue, hair, and museum specimen) using the Illumina high-throughput 

sequencing (HTS) platform; thereby bioinformatically coding alleles based on read count. 

My results support previously published work describing a south to north colonization of 
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the species after the Last Glacial Maximum and highlight the genetic distinctiveness of 

G. o. californicus. The ensuing data from this study contributes valuable information 

toward understanding the genetic diversity within G. oregonensis, provides material to 

inform future conservation decisions for G. o. californicus, and has novel implications for 

future HTS microsatellite genotyping. 
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INTRODUCTION 

Flying squirrels are nocturnal rodents in the family Sciuridae and are 

characterized by the furred patagium that extends from their wrists to their ankles. This 

adaptation is what allows them to glide from tree to tree and seemingly “fly”. Currently, 

there are 15 recognized genera of flying squirrels, but only one occurs in North America: 

Glaucomys (Thorington and Hoffmann 2005). Glaucomys is composed of three species: 

G. volans (southern flying squirrel), G. sabrinus (northern flying squirrel), and G. 

oregonensis (Humboldt’s flying squirrel) (Arbogast et al. 2017). G. volans is found in 

eastern North America from southern Quebec to Florida and has isolated populations in 

Mesoamerica (Dolan and Carter 1977), while G. sabrinus’ range covers most of Canada 

and Alaska with some populations extending into the contiguous United States (Wells-

Gosling and Heaney 1984). The third species, G. oregonensis, resides along the Pacific 

Coast of British Columbia and the United States (Washington, Oregon, and California), 

and was only revealed to be a reproductively isolated, distinct species of flying squirrel in 

2017 (Arbogast et al. 2017). This was surprising given that the estimated date of 

divergence between G. sabrinus and G. volans is 1.07 million years ago, while G. 

oregonensis diverged from the both of them ~1.32 million years ago (Arbogast et al. 

2017).  

The complex evolutionary history of G. oregonensis likely confounded their 

recognition as a separate species prior to 2017, making them a cryptic species: a species 

with a discrete evolutionary and genetic lineage, but no characterized morphological 
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differences to separate them from G. sabrinus. During the Pleistocene Epoch, repeated 

glacial cycles of global warming and cooling forced flora and fauna populations into 

refugia (areas containing sufficient suitable habitat) and created vicariant barriers to gene 

flow (Shafer et al. 2010). The types of habitat required by Glaucomys (deciduous 

hardwood forests for G. volans and coniferous/mixed coniferous-deciduous forests for G. 

sabrinus and G. oregonensis) were found south of their present distributions (Arbogast 

2007; Smith 2007). Thus, all three species settled in refugia south of the Laurentide and 

Cordilleran ice sheets (Arbogast 1999; Brunsfeld et al. 2001; Shafer et al. 2010). G. 

sabrinus resided in a southeastern U.S. refugium, G. volans resided in a Central 

American and southeastern U.S. refugium, and G. oregonensis remained in a Pacific 

Coast refugium similar to its contemporary distribution (Arbogast 1999; Arbogast 2007). 

As the ice receded after the Last Glacial Maximum, each species expanded northward 

from their respective refugia to their current-day ranges (Arbogast 2007; Smith 2012; 

Arbogast et al. 2017). However, because the Laurentide ice sheet retreated more quickly 

than the Cordilleran ice sheet, G. sabrinus was able to colonize a larger area than G. 

oregonensis, and the two species eventually united in Washington and British Columbia 

where they now live in sympatry (Arbogast 1999; Arbogast et al. 2017). There has been 

no evidence of hybridization between the two to date, and it is nearly impossible to tell 

them apart morphologically, so DNA analysis is required to discriminate between the two 

species (Arbogast et al. 2017).  

The present-day genetic structure and diversity of G. oregonensis is also likely 

linked to historical glacial cycles, which is commonly observed in mammalian taxa 
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(Arbogast et al. 2001; Shafer et al. 2010; Bozarth et al. 2011; Puckett et al. 2015; Sawyer 

and Cook 2016). Comparative phylogeographic studies have revealed an overall decrease 

in genetic variation from south to north in G. volans and G. sabrinus populations as a 

result of the northward post-glacial colonization (Arbogast et al. 2005; Petersen and 

Stewart 2006; Garroway et al. 2011). For example, the G. volans Mesoamerican 

populations contain higher mitochondrial nucleotide diversity as a whole compared to the 

eastern North American populations, which may have undergone one or several 

bottleneck and founder events (Kerhoulas and Arbogast 2010). For G. oregonensis the 

overall expansion was northward as well, but the particularly tumultuous glacial-

interglacial cycles in the Pacific Northwest may have isolated ancestral populations in 

multiple, independent refugia, potentially leading to more genetic substructure (Arbogast 

1999; Owen et al. 2003; Arbogast et al. 2017). This would not be uncommon for forest-

obligate lineages (Brunsfeld et al. 2001; Shafer et al. 2010; Hope et al. 2016).  

At present, there are eight named subspecies of G. oregonensis (Wells-Gosling 

and Heaney 1984; Arbogast et al. 2017), six of which are distributed in California (Fig. 

1), but to date there have not been any studies evaluating the intraspecific genetic 

variation within G. oregonensis. Amongst all of the California subspecies populations, 

the San Bernardino population (G. o. californicus) stands out as they are thought to be the 

southernmost limit of G. oregonensis, and as such they may be a reservoir of genetic 

diversity left behind after glacial expansion as observed in G. sabrinus and G. volans 

(Arbogast et al. 2005; Petersen and Stewart 2006; Weigl 2007; Garroway et al. 2011). 

From limited sampling, Arbogast et al. (2017) showed that G. o. californicus contained 
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four unique mitochondrial haplotypes, but their study was intended as an overall 

phylogeographic study, and thus included only seven individuals which is not ideal for 

population level studies (Hale et al. 2012). 

The San Bernardino subspecies is also noteworthy as it is an insular population 

that was historically restricted to the San Bernardino and San Jacinto Mountains, but 

recent surveys suggest they have been extirpated from the latter locality (Wolf 2010). The 

subspecies was petitioned to be listed under the Endangered Species Act in 2010 but was 

ultimately rejected (FWS 2016a) and is currently listed as a subspecies of special concern 

by the California Department of Fish and Wildlife (CNDDB 2019). Literature about this 

subspecies is scarce, plus they are faced with a smattering of anthropogenic threats 

including climate change and habitat fragmentation (Weigl 2007; Smith 2012). As 

individuals of G. o. californicus likely have no connectivity to other populations of flying 

squirrels (the nearest G. o. lascivus population is approximately 220 km away), these 

threats may have predisposed this population to reduced genetic diversity from forces 

such as genetic drift and/or founder effects. This is problematic as decreased genetic 

variation is correlated with a heightened risk of extinction, disease, and introgression, and 

may reduce the long-term viability of this subspecies (Keller and Waller 2002; Spielman 

et al. 2004; Marsden et al. 2016; Thatte et al. 2018; Ujvari et al. 2018). Depauperate 

genetic diversity due to low levels of gene flow and small effective population size have 

been documented in other disjunct G. sabrinus subspecies (Bidlack and Cook 2001, 

2002; Arbogast et al. 2005), and in fact one of these subspecies, G. s. coloratus (Carolina 
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northern flying squirrel), is listed as endangered under the U.S. Endangered Species Act 

(Currie and Cameron 2013). 

In order to bridge the knowledge gap in G. oregonensis, I conducted a study 

employing molecular markers (mitochondrial cytochrome-b and nuclear microsatellites) 

with three main objectives: 1) analyze the intraspecific genetic variation in G. 

oregonensis with a focus on the subspecific differences in California; 2) evaluate G. o. 

californicus genetic diversity; 3) estimate if gene flow is occurring between the rest of G. 

oregonensis and G. o. californicus. The decision to refrain listing of G. o. californicus 

was made prior to any genetic evaluation of this subspecies and by assessing their genetic 

diversity we can generate crucial data to help inform future conservation decisions and 

state management of this population. Moreover, their genetic diversity may prove to be 

crucial to the rest of the species because G. o. californicus was originally a subspecies of 

the widely distributed G. sabrinus, but is now known to be included within G. 

oregonensis which inhabit a reduced range in comparison to G. sabrinus. The genetic 

distinctiveness of several G. sabrinus subspecies have already been reported as essential 

to the species genetic variability (Bidlack and Cook 2001, 2002; Arbogast 2007; 

Kerhoulas and Arbogast 2010; Arbogast et al. 2017). In addition, G. oregonensis 

subspecies are defined based solely on morphology (Howell 1918). However, a 

combination of genetic and morphological evidence for subspecific delineations would be 

more appropriate (Balakirev et al. 2017; Jayat et al. 2017) since at times the genetic 

restructuring of subspecies can beget consequences for conservation (Puckett et al. 2015; 

Butynski and de Jong 2017; Gamage et al. 2017). 
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METHODS 

Sample collection 

A total of 147 G. oregonensis samples were obtained for this project from across 

the U.S. Pacific West Coast with a focus on the state of California (Fig. 1, Appendix A). 

The samples collected include six out of eight G. oregonensis subspecies; and of the 147 

samples, 51 were from G. o. californicus individuals. Subspecies classifications were 

based on geographic location, morphology, and/or designated by collectors. The U.S. 

Geological Survey (USGS), Humboldt State University Vertebrate Museum (HSU), 

Museum of Vertebrate Zoology at University of California Berkeley (MVZ), Natural 

History Museum of Los Angeles (LACM), University of Kansas Biodiversity Institute 

and Natural History Museum (KU), University of Michigan Museum of Zoology 

(UMMZ), and the University of California Los Angeles Dickey Bird and Mammal 

Collection (UCLA) provided 97 museum specimen samples (clips of fur, bone, or 

adherent muscle tissue) and 44 tissue samples; the San Diego Natural History Museum 

provided one hair sample from the field and two degraded tissue samples; and the Big 

Bear Alpine Zoo contributed three hair samples under an approved IACUC permit (HSU 

no. 18/19. B.40-A) from animals housed in captivity. Total genomic DNA from hair, 

degraded tissue, and museum samples were isolated using Qiagen QIAamp DNA Mini 

Kits (Qiagen, Valencia, CA) in a lab designated for degraded and ancient DNA, while 

DNA from tissue samples were processed in a designated, high quality DNA facility 
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using Qiagen DNeasy Blood and Tissue Kits (Qiagen, Valencia, CA). Hair samples were 

collectively referred to and treated as degraded museum samples (Appendix G). 
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Figure 1. Map of sample collection locations across the geographic distribution of 

Glaucomys oregonensis. A total of 147 samples were obtained and include six out of the 

eight total G. oregonensis subspecies (51 G. o. californicus, 65 G. o. lascivus, 13 G. o. 

fuliginosus, 11 G. o. stephensi, six G. o. flaviventris, one G. o. oregonensis). Orange 

circles indicate tissue samples (n = 44), purple triangles indicate museum samples (n = 

97), and blue squares indicate hair and degraded tissue samples (n = 6). 
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Polymerase Chain Reaction (PCR) amplification  

The entire (~1140 bp) cytochrome-b gene (cyt-b hereafter) was amplified in PCR 

using universal primers (Irwin et al. 1991; Oshida et al. 2000) for all tissue samples 

except: HSU-7616, HSU-8184, HSU-8188, HSU-8482, HSU-VM 3095, HSU-7615, and 

HSU-7747. Attempts to amplify the entire gene continuously failed for the 

aforementioned tissue samples, so instead an approximately 300 bp region of the cyt-b 

gene was amplified with the primer L14724 (Irwin et al. 1991) and a newly designed 

reverse primer, GOR_R1. The GOR_R1 primer was designed from a G. o. californicus 

GenBank sequence (AF063060) using Primer3 (Untergasser et al. 2012) and was mapped 

to published sequences and visualized in Geneious Prime v 2020.0.4 (Kearse et al. 2012). 

Primers were ordered from IDT at 35.4 nmol concentration, solubilized, and diluted to 

100 µM prior to PCR. An approximately 300 bp region of the cyt-b gene was also 

amplified in museum samples using L14724 and GOR_R1. Museum specimens contain 

highly degraded endogenous DNA which can be contaminated and in low concentration 

due to the preparation and age of the specimens (Hawkins et al. 2016a). Therefore, only 

short DNA fragments can be amplified from museum samples (Hawkins et al. 2016a). 

Two other primers, Gvo_R3 and Gvo_R4 (Kerhoulas and Arbogast 2010), were tested 

but did not amplify in PCR, probably because they were designed from G. volans 

sequences which resulted in binding site incongruence. Singleplexed PCR was performed 

in 16 µl reactions containing 2.0 µl of DNA template, 4.5 µl of ddH2O, 0.5 µl of each 

primer, and 8.5 µl of DreamTaq Green PCR Master Mix (Thermo Fisher Scientific Inc., 
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Waltham, MA) with the following thermocycler profile: 95°C for 1 min; 30 cycles 

(tissues) or 35 cycles (museum samples) of 95°C for 30 sec, 45°C for 30 sec, 72°C for 30 

sec; 72°C for 5 mins. Successful PCR amplifications were replicated twice in each 

sample to ensure validity, and a 1-1.5% agarose gel was run to visualize PCR products. 

All samples were also genotyped at 11 polymorphic microsatellite loci using 

primers previously characterized for G. sabrinus: GS-1, GS-2, GS-4, GS-8, GS-10, GS-

13, GS-16 (Zittlau et al. 2000), GLSA-12, GLSA-22, GLSA-52, and GLSA-65 (Table 1, 

Kiesow et al. 2011). Singleplexed PCR was performed in 16 µl reactions containing 2.0 

µl of DNA template, 4.5 µl of ddH2O, 0.5 µl of each primer, and 8.5 µl of DreamTaq 

Green PCR Master Mix. When amplifying microsatellites with the GS-2 and GS-4 

primers, 0.3 µl of ddH2O was substituted for bovine serum albumin (BSA, New England 

Biolabs, 12 mg) to promote reaction specificity. For all samples a touchdown PCR profile 

was used: 95°C for 1 min; 2 cycles of 95°C for 15 sec, 60°C for 30 sec, 72°C for 45 sec; 

2 cycles changing 60°C to 58°C; 2 cycles changing 58°C to 54°C; 2 cycles changing 

54°C to 52°C; 35 cycles of 95°C for 15 sec, 50°C for 30 sec, 72°C for 45 sec; 72°C for 5 

mins. Successful PCR amplifications were replicated twice in tissue samples and three 

times in all museum samples in order to alleviate potential allelic dropout in degraded 

samples (De Barba et al. 2017). A summary of the performance and rates of allelic 

dropout specifically for museum specimens were analyzed separately for this study 

(Yuan et al. in prep). A 1.5% agarose gel was run to visualize PCR products and confirm 

fragments of the desired size range were recovered. 
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DNA sequencing 

Illumina short read sequencing technologies are aimed at sequencing fragments 

up to 300-500 bp in length, so fragments larger than 300 bp must be sonicated or sheared 

before library preparation. After amplification, cyt-b PCR products that were over 300 bp 

were fragmented with NEBNext dsDNA Fragmentase (New England Biolabs, Ipswich, 

MA) at 37°C for 30 min (6 µl of each PCR replicate pooled together for a total of 12 µl 

per sample), cleaned with 1X Streptavidin magnetic (SPRI) beads (KAPA Pure Beads, 

KAPA Biosystems), and run on a 1% agarose gel to evaluate shearing results. 

Microsatellite and cyt-b replicates derived from the same individual were then pooled in 

equimolar concentrations via quantification from a NanoDrop Lite spectrophotometer 

and prepared for Illumina sequencing utilizing KAPA Illumina Library Prep Kits (KAPA 

Biosystems) with dual indexed iTru style indices (Glenn et al. 2019). The protocol 

closely adhered to the KAPA Illumina Library Prep Kit instructions but used a ¼ recipe 

for all enzyme reactions following Hawkins et al. (2016b); and PCR products were SPRI 

cleaned (KAPA Pure Beads, Rohland and Reich 2012) at a 1.5X concentration to remove 

residual primers and non-target fragments outside the desired size range. Libraries were 

amplified in 25 µl reactions consisting of 1.25 µl of each iTru adapter, 2.5 µl ddH2O, 7.5 

µl of adapter-ligated DNA, and 12.5 µl of KAPA HiFi HotStart ReadyMix. The 

thermocycler conditions for library amplification were: 98°C for 45 sec; 10 cycles 

(tissues) or 14 cycles (museum samples) of 98°C for 15 sec, 60°C for 30 sec, 72°C for 1 

min; 72°C for 5 mins. After library preparation all SPRI cleaned (1.5X) products were 
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quantified on an ABI QuantStudio 3 quantitative PCR machine to determine exact sample 

concentration and pooled in equimolar ratios across all individuals. These samples were 

then combined with samples from other non-related projects to fill the estimated number 

of sequencing reads. Amplicon sequencing of all samples was performed on an Illumina 

MiSeq 2x300 PE version 3 chemistry and run at the Center for Conservation Genomics, 

Smithsonian Conservation Biology Institute, Washington DC. Fifty-one samples had to 

be re-sequenced at the Laboratory of Analytical Biology, National Museum of Natural 

History, Smithsonian Institution on an Illumina MiSeq using a 2x250 PE version 2 Nano 

kit due to exceptionally low read depth. The previously amplified PCR products were 

pooled again for each individual, library prepped using the same aforementioned 

protocols, and placed in the second sequencing run. All reads were trimmed and quality 

filtered (Phred score ≤ 20) using FastQC v 0.11.9 (Andrews 2010) and CutAdapt v 1.18 

(Martin 2011) before being utilized in downstream applications. The basic CutAdapt 

command used was: cutadapt --report=minimal -q 20 -a 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT -o {R1_output.fastq} -p 

{R2_output.fastq} {R1_input.fastq.gz} {R2_input.fastq.gz}. 

 

Mitochondrial DNA (mtDNA) analysis  

Cytochrome-b sequences were mapped (Bowtie2 v 2.3.0, Langmead and Salzberg 

2012) to a previously published, complete CDS of a G. sabrinus cyt-b gene sequence 
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from GenBank (AF030390) in Geneious Prime v 2020.0.4 (Kearse et al. 2012). The 

samples HSU-7746 and MVZ-132650 were excluded in downstream phylogenetic 

analyses because they contained too many ambiguous sites, likely due to poor original 

DNA quality. The data were supplemented with two more G. sabrinus sequences from 

GenBank (AF011738 and AF359210) to construct a full (~1140 bp) and a 300 bp cyt-b 

alignment. Both alignments, with and without codon partitioning, were run in 

PartitionFinder v 2.1.1 (Lanfear et al. 2016) to find the best fit model of nucleotide 

substitution using the corrected Akaike Information Criterion (AICc). After alignments 

were manually inspected, phylogenetic trees were generated from them in Geneious 

Prime using Bayesian Inference (MrBayes v 3.2.7a; Ronquist et al. 2012) and maximum 

likelihood (PhyML v 3.3.20180621; Guindon et al. 2010). One million MCMC chains 

across two runs were performed with a heated chain at a temperature of 0.25 in MrBayes, 

and 500 bootstrap replications were run in PhyML. Lastly, a minimum spanning 

haplotype network (Bandelt et al. 1999) was constructed using PopART v 1.7 (Leigh and 

Bryant 2015) to visualize G. oregonensis genealogy and haplotype diversity was 

calculated using GenAlEx v 6.503 (Peakall and Smouse 2006, 2012). 

 

Microsatellite DNA analysis  

The CHIIMP v 0.3.1 (Barbian et al. 2018) pipeline was employed to generate 

microsatellite genotypes using high-throughput sequencing data because it was designed 

for degraded DNA sources (fecal samples). Figure 2 outlines the process used by 



14 

 

  

CHIIMP to call alleles (procured from Barbian et al. 2018). Genotyping occurred for all 

loci with 5 or more reads (counts.min = 5), sequences were considered potential alleles if 

they made up at least 5% of the filtered read count (fraction.min = 0.05), and all loci were 

assigned a length buffer of 20 bp. In order to ensure accurate genotypes were 

reconstructed, a subset of individuals had library preparation performed on each 

microsatellite amplification to assess levels of allelic dropout (Yuan et al. in prep). 

After generation of genotypes, summary statistics including FST, heterozygosity 

(observed and expected), and deviations from Hardy-Weinberg equilibrium were 

calculated in GenAlEx v 6.503 (Peakall and Smouse 2006, 2012) for each locus. The 

program STRUCTURE v 2.3.4 (Pritchard et al. 2000) was run to evaluate G. oregonensis 

subpopulation structure and search for admixture between G. oregonensis and G. o. 

californicus. This program implements a Bayesian algorithm to assign individuals to 

genetic groups based on allele calls without a priori information. An initial test was 

performed to evaluate the most likely number of genetic clusters (K), which ran 5 

iterations of each K (1-8 possible populations) at a burnin length of 10,000 followed by 

100,000 MCMC repetitions after burnin. For the initial test, the admixture model was 

used without inferring sampling location as a prior, allele frequencies were correlated, 

and the probability of the data was computed. The ΔK method described in Evanno et al. 

(2005) as a part of STRUCTURE HARVESTER v 0.6.94 (Earl and vonHoldt 2012) was 

utilized to find the most likely K. Following the preliminary analysis, two additional runs 

were performed on both the admixture and no admixture model. All of the same 

parameters were kept except for run length, which was modified to 10 iterations with a 
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burnin of 200,000 and 1,000,000 MCMC repetitions for each K (1-6). After the runs were 

completed, STRUCTURE HARVESTER was again run on these datasets, as well as 

CLUMPAK v 1.1 (Kopelman et al. 2015), to achieve a consensus result across all runs. 

Additionally, the program BOTTLENECK v 1.2.02 (Piry et al. 1999) was used to 

scan microsatellite genotypes for signatures of a recent population bottleneck in G. o. 

californicus. A one-tailed Wilcoxon signed rank test (Cornuet and Luikart 1996; Luikart 

and Cornuet 1998) was computed to assess heterozygosity excess, which can be found in 

populations directly following population reductions for approximately 5-15 generations. 

The two-phase mutation (TPM) model of microsatellite evolution, infinite allele model 

(IAM), and stepwise mutation model (SMM) were examined in runs with 10,000 

replications. For the TPM model, the mutation variance was set to 30 and the proportion 

of SMM in TPM was set to 5% (Huang et al. 2002; Cristescu et al. 2010).  
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Figure 2. Flowchart illustrating the CHIIMP high-throughput sequencing bioinformatics 

pipeline used to genotype microsatellites (obtained from Barbian et al. 2018). Stutter was 

defined as sequences one motif shorter than the potential allele sequences and PCR 

artifacts were defined as sequences 1 bp shorter or longer than the potential allele 

sequences. A selection of CHIIMP output is available in Appendix D.
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Table 1. List of primers used to amplify 11 microsatellite loci in 147 Glaucomys oregonensis samples. All of the GS primers 

were taken from Zittlau et al. (2000) and all of the GLSA primers were taken from Kiesow et al. (2011). 

Locus Sequence (5’- 3’) Repeat Motif Size Range 

(bp) 

Anneal Temp. 

(°C) 

GS-1 F: GCTGCCCTCATTTTATCCCC 

R: GCTTCGTGTGTATATGTGTGTGTG 

(GT)3(AT)2(GT)14 91–101 53.1 

 

GS-2 F: AACATTCTCGCCACATCTAA 

R: CTACACCCCCAGCCCTACAA 

(GT)16 96–124 F: 48.6 

R: 55.8 

GS-4 F: CTTCTTGAGTTGCTGGGGTGAC 

R: ATCTAAACCATAACACACACACA 

(GT)15 104–112 F: 55.1 

R: 49.3 

GS-8 F: ATGCCATCTCCCCTCTC 

R: GCTGTGCTTCCAACCTGT 

(GT)20 209–221 F: 50.6 

R: 52.7 

GS-10 F: CTATGCTGAGGAGGAGTGGTG 

R: CGTTTATGTGAAGAGCCTTG 

(GT)18 189–205 F: 53.8 

R: 48.4 

GS-13 F: CTGGTCTCTTGAGTTAGGTG 

R: TATTCCTTTCTTCTCTCCTCCC 

(GT)16 106–118 F: 49.1 

R: 50.3 

GS-16 F: AATGGAATAGGTATGAGTTGTC 

R: TGATGCTGCTTCTCTCTGG 

(GT)15 92–108 F: 46.9 

R: 51.4 

GLSA-12 F: AGCATATGGAACCCCATATCAG 

R: GGCAAGATTTGTATCCTTGG 

(GT)5A(TG)3TTT(GT)5 154–170 54.8 

GLSA-22 F: CCTGAAAATGATGCATGTGG 

R: AGAGTAGGCTGTTCCTTTGAGG 

(CA)15 168–188 54.8 

GLSA-52 F: TCCATCCACAGTGTGTGAGC 

R: CCT GGA GTC CAC TCAAGCAT 

(CA)16 210–254 57.5 

GLSA-65 F: TTT GGG AAT TGA GGC TAT GG 

R: TTC ACA GTG ACA GCA GGT GAC 

(GT)17 170–210 52.5 
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RESULTS 

A total of 13,824,680 raw reads were produced from the two sequencing runs 

(240,917 reads mapped to the cyt-b gene and 8,306,496 reads mapped to microsatellites). 

A summary table of read depth per sample is provided in Appendix B. 

 

Mitochondrial DNA results  

Identical minimum spanning haplotype networks were recovered from the two 

cyt-b alignments (~1140 bp and ~300 bp, Fig. 3). Thirteen unique haplotypes were 

uncovered from the dataset, which included three GenBank sequences and 145 

individuals sampled in this study (n = 148). One G. sabrinus sample, AF030390, grouped 

with G. oregonensis samples. According to GenBank, this individual was originally 

collected from Lewis County, Washington and consequently, is likely G. oregonensis. It 

is also evident from the haplotype network that G. o. californicus and G. o. lascivus do 

not form two discrete haplogroups but each contain a few unique haplotypes. 

Furthermore, in our dataset the haplotypes found in Oregon and Washington are not 

found in California (Fig. 4). But, due to the low sample size of individuals in Oregon and 

Washington, we refrain from over analyzing the results of these localities. Limited 

sampling of all subspecies except G. o. lascivus and G. o. californicus restricts the 

conclusions we can draw from the diversity statistics as well (Table 2). Nonetheless, it 

grants a peek into each subspecies’ genetic variation. G. o. fuliginosus had the highest 
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haplotype diversity (H = 0.625), while G. o. lascivus had the highest number of 

haplotypes (h = 5) and private haplotypes (hp = 3). Notably, G. o. californicus had the 

lowest haplotype diversity (H = 0.076) and two private haplotypes, one of which is from 

a San Jacinto individual (UCLA-7487).  

Based on results from PartitionFinder, the best-fit model of nucleotide 

substitution was GTR+G for both the full and 300 bp alignment without codon 

partitioning. This information was used to build trees incorporating maximum likelihood 

estimation and Bayesian inference (Appendix C). Within G. oregonensis, branches were 

not well supported in any of the trees likely due to the limited base pairs sequenced. The 

species level divergence between G. sabrinus and G. oregonensis, however, was well 

supported (100 in maximum likelihood bootstrap support and 1.0 posterior probability). 
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Figure 3. Cytochrome-b minimum spanning network constructed based on ~300 bp for 

108 Glaucomys oregonensis samples, ~1140 bp for 37 G. oregonensis samples, and 

~1140 bp for three G. sabrinus samples (n=148). Circle sizes are proportional to the 

number of samples and each dash mark represents a nucleotide substitution between the 

recovered haplotypes. From the original 147 G. oregonensis samples used in this study, 

two were excluded in phylogenetic analyses because they contained too many ambiguous 

sites (HSU-7746 and MVZ-132650). 
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Figure 4. a.) Distribution of Glaucomys oregonensis and G. sabrinus (N=2 from SE 

Alaska) cytochrome-b haplotypes. Each haplotype is designated with a different color 

and circle sizes are proportional to the number of samples. b.) Depicts the minimum 

spanning network and relationship between the recovered haplotypes. Each dash mark 

represents a nucleotide substitution between the recovered haplotypes. 
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Table 2. Mitochondrial genetic diversity of 145 Glaucomys oregonensis samples 

separated by subspecies. Summary statistics were calculated in GenAlEx (Peakall and 

Smouse 2006, 2012). From the original 147 G. oregonensis samples used in this study, 

two were excluded in phylogenetic analyses because they contained too many ambiguous 

sites (HSU-7746 and MVZ-132650). The abbreviations listed are as follows: number of 

individuals (n), number of haplotypes (h), number of private haplotypes (hp), and 

haplotype diversity (H). 

Population n h hp H 

G. o. californicus 51 3 2 0.076 

G. o. flaviventris 5 2 1 0.320 

G. o. fuliginosus 12 4 2 0.625 

G. o. lascivus 65 5 3 0.118 

G. o. oregonensis 1 1 0 0.000 

G. o. stephensi 11 2 1 0.463 

 

Microsatellite results 

Nine loci were successfully genotyped in CHIIMP with 1260 genotypes 

present (63 missing genotypes) across all samples and loci. A selection of outputs from 

CHIIMP are provided in Appendix D. The two loci with imperfect repeats, GS-1 and 

GLSA-12, were taken out of the dataset as they could not be analyzed by the program, 

leaving only dinucleotide microsatellite data for subsequent analyses. Overall, G. o. 

lascivus and G. o. californicus are quite diverse when examining mean allelic richness (A 

= 9.333 and A = 6.222 respectively, Table 3 and 4). Both populations were also out of 
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HWE at 7 out of 9 loci. Appendix E summarizes the genetic variation found in the other 

four sampled G. oregonensis subspecies.  

 

 

Table 3. Nuclear microsatellite summary statistics for Glaucomys oregonensis 

californicus at nine loci calculated in GenAlEx (Peakall and Smouse 2006, 2012). The 

abbreviations listed are as follows: number of individuals successfully genotyped at that 

locus (n), total number of alleles (A), number of private alleles (Ap), observed 

heterozygosity (Ho), expected heterozygosity (He), fixation index (F), and Hardy-

Weinberg Equilibrium deviation (HWE). Significant P-values are displayed in bold

 

 

 

 

Locus n A Ap Ho He F HWE 

GS-2 51 4 1 0.078 0.076 -0.028 1.000 

GS-4 49 9 1 0.612 0.721 0.151 <0.001 

GS-8 46 6 1 0.478 0.418 -0.144 <0.001 

GS-10 49 6 1 0.918 0.574 -0.599 0.004 

GS-13 50 8 2 0.900 0.597 -0.507 <0.001 

GS-16 48 4 0 0.896 0.544 -0.645 <0.001 

GLSA-22 50 6 1 0.980 0.676 -0.450 <0.001 

GLSA-52 33 5 0 0.485 0.582 0.167 <0.001 

GLSA-65 49 8 1 0.714 0.589 -0.214 0.427 

Mean 47.222 6.222 - 0.674 0.531 -0.252 - 

SE 1.839 0.596 - 0.098 0.063 0.104 - 
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Table 4. Nuclear microsatellite summary statistics for Glaucomys oregonensis lascivus at 

nine loci calculated in GenAlEx (Peakall and Smouse 2006, 2012). The abbreviations 

listed are as follows: number of individuals successfully genotyped at that locus (n), total 

number of alleles (A), number of private alleles (Ap), observed heterozygosity (Ho), 

expected heterozygosity (He), fixation index (F), and Hardy-Weinberg Equilibrium 

deviation (HWE). Significant P-values are displayed in bold.  

 

 

 

Pairwise FST calculations roughly reflect an isolation by distance model even 

when G. o. oregonensis is excluded due to low sample size (Table 5). For instance, G. o. 

californicus is most closely related to G. o. lascivus (FST = 0.053) and there is more 

differentiation between G. o. californicus and G. o. flaviventris (FST = 0.165). On the 

other hand, the STRUCTURE analysis placed the majority of G. o. californicus and G. o. 

lascivus individuals in different genetic clusters (Fig. 5). The mixture of white within the 

Locus n A Ap Ho He F HWE 

GS-2 65 9 2 0.231 0.229 -0.009 0.181 

GS-4 65 9 2 0.677 0.755 0.103 0.001 

GS-8 65 8 2 0.277 0.427 0.351 <0.001 

GS-10 65 12 3 0.877 0.799 -0.098 <0.001 

GS-13 65 13 5 0.892 0.809 -0.103 <0.001 

GS-16 65 11 4 0.938 0.741 -0.266 <0.001 

GLSA-22 64 7 0 0.984 0.773 -0.273 <0.001 

GLSA-52 52 6 0 0.712 0.753 0.055 0.118 

GLSA-65 64 9 2 0.516 0.577 0.106 <0.001 

Mean 63.333 9.333 - 0.678 0.651 -0.015 - 

SE 1.424 0.764 - 0.094 0.067 0.066 - 
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green genetic group could signify recent gene flow or mixed ancestry. The most likely 

number of genetic clusters for the data in the admixture model was K=2 and K=3 in the 

no admixture model (Appendix F). Thus, the STRUCTURE analysis supports at most 

three genetic groups.  

BOTTLENECK did not detect population bottleneck signatures in G. o. 

californicus, G. o. lascivus, or G. o. flaviventris (Table 6). Interestingly, bottlenecks were 

detected in G. o. fuliginosus and G. o. stephensi under the IAM (P = 0.003 and P = 0.001 

respectively) and TPM (P = 0.01 and P = 0.001 respectively) models of microsatellite 

evolution. 

 

Table 5. Pairwise population Fst values calculated in GenAlEx (Peakall and Smouse 

2006, 2012) for 51 Glaucomys oregonensis californicus, 65 G. o. lascivus, 13 G. o. 

fuliginosus, 11 G. o. stephensi, six G. o. flaviventris samples, and one G. o. oregonensis 

sample. 

 G. o. 

californicus 

G. o. 

flaviventris 

G. o. 

fuliginosus 

G. o. 

lascivus 

G. o. 

stephensi 

G. o. californicus 0.000     

G. o. flaviventris 0.165 0.000    

G. o. fuliginosus 0.157 0.068 0.000   

G. o. lascivus 0.053 0.093 0.093 0.000  

G. o. stephensi 0.127 0.034 0.046 0.064 0.000 
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Figure 5. Q-plots from STRUCTURE generated in CLUMPAK (Kopelman et al. 2015) 

illustrating which genetic cluster individuals were assigned to in the admixture (top) and 

no admixture models (bottom). Individuals are grouped by subspecies on the x-axis. The 

most likely number of genetic clusters presented in the admixture (K=2) and no 

admixture (K=3) models were computed in STRUCTURE HARVESTER (Evanno et al. 

2005, Earl and vonHoldt 2012). 

  



27 

 

  

Table 6. One-tailed Wilcoxon signed rank tests calculated in BOTTLENECK v 1.2.02 

(Piry et al. 1999) for each subspecies population and under each microsatellite mutation 

model. Significant P-values are indicated in bold with asterisks (* P < 0.05, ** P < 0.01, 

*** P < 0.001). 

Population IAM TPM SMM 

G. o. californicus 0.674 0.898 1.000 

G. o. flaviventris 0.248 0.248 0.590 

G. o. fuliginosus 0.003** 0.010** 0.500 

G. o. lascivus 0.500 0.715 0.997 

G. o. stephensi 0.001*** 0.001*** 0.082 
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DISCUSSION 

Genetic structure  

My study had three main objectives: 1) analyze the intraspecific genetic variation 

in G. oregonensis with a focus on the subspecific differences in California, 2) evaluate G. 

o. californicus genetic diversity, and 3) estimate if gene flow is occurring between the 

rest of G. oregonensis and G. o. californicus. In regard to the first objective, our 

microsatellite data supports previously published work describing a chiefly south to north 

migration of G. oregonensis (Arbogast 2007; Smith 2012; Arbogast et al. 2017). As 

populations colonized new land post-Last Glacial Maximum, founder effects would have 

induced a genetic diversity cline, with lower diversity observed in regions of newer 

colonization and more private alleles in the original populations (Hewitt 1996, 2004). 

Despite limited sampling of the more northern subspecies, we did find the same general 

cline in genetic diversity as found in G. sabrinus and G. volans (Arbogast et al. 2005; 

Petersen and Stewart 2006; Garroway et al. 2011). G. o. californicus and G. o. lascivus 

have a total of 28 private microsatellite alleles, more than their northern counterparts, and 

are sorted into two genetically different groups in STRUCTURE. The subsequent 

observation of increased mitochondrial haplotypes, especially exclusive haplotypes, in 

northern California (Fig. 4) suggests a pattern of multiple, independent refugia during 

glacial cycles (Brunsfeld et al. 2001; Shafer et al. 2010; Hope et al. 2016). Genetic 

variation would have increased in the area when slightly diverged populations interbred 
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after the ice receded (Petit et al. 2003; Shafer et al. 2010), thereby confounding the 

signatures of glaciation and potentially leading to outbreeding depression if local 

adaptations were diluted by admixture. Accordingly, the most common mitochondrial 

haplotype (depicted with the medium shade of blue in Fig. 4) appears to be an ancestral 

haplotype that may have originated in the south and moved northward as individuals 

expanded their range after the Last Glacial Maximum.  

Considering G. o. fuliginosus’ small sample size (n = 12), they are surprisingly 

diverse (H = 0.625), which implies there is more diversity to be discovered with 

increased sampling of this subspecies. Or alternatively, that the current subspecies 

delineations should be revised. This statement is introduced cautiously though, as more 

samples would be necessary to resolve subspecific designations. Our STRUCTURE 

analysis clearly supports up to three genetically recognizable populations: a G. o. lascivus 

population, a G. o. californicus population, and a population that is a mixture of the other 

sampled subspecies. Excluding G. o. oregonensis (n = 1), perhaps G. o. stephensi, G. o. 

flaviventris, and G. o. fuliginosus should be considered one subspecies with distinct 

population segments (DPS) pending morphological evaluation. Or they could be split into 

merely two subspecies. G. o. fuliginosus would encompass Oregon and Washington and 

G. o. stephensi and G. o. flaviventris would represent one subspecies. 

Nevertheless, it is apparent from our study that G. o. californicus is important to 

overall species diversity as stated in Arbogast et al. (2017). There are many exclusive 

alleles and haplotypes in this population, in addition to representing a single genetic 

cluster. It is assumed to be a fragmented and isolated population, but we did not detect a 
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prominent decrease in genetic diversity compared to the larger, more continuous G. o. 

lascivus population. A study conducted by Smith and Person (2007) showed that the 

minimum habitat size required to sustain isolated G. sabrinus populations in Alaska for 

100 years was 78,935 ha; and the San Bernardino Mountains are about 202,638 ha when 

calculated in Google Earth Pro v 7.3.2 by drawing a polygon over entirely forested areas. 

So, assuming the area is completely forested and contains other preferred habitat 

parameters, that location may be sufficient to support the current G. o. californicus 

population.  

We also did not detect a bottleneck in the San Bernardino population, though this 

may have been due to a variety of different factors. BOTTLENECK is only able to detect 

recent events so the ability to identify a bottleneck is strongly influenced by a species’ 

generation time and the time passed since the event (Piry et al. 1999; Cristescu et al. 

2010). As such, it is more difficult to identify deep bottleneck events in taxa with short 

generation times and when the proposed bottleneck may have occurred thousands of 

years ago. Cristescu et al. (2010) also noticed that bottlenecks were not detected when the 

number of loci used in the program was less than 11, and they further hypothesized that 

loci with imperfect repeats may encourage better bottleneck detection because they are 

less prone to DNA slipped strand mispairing (slippage). We used nine loci in our study, 

but all of them were dinucleotide microsatellites as the imperfect repeats could not be 

genotyped. For these reasons, there is a possibility that we were not able to detect a 

bottleneck because it occurred too many generations ago and/or our genetic markers did 

not provide enough resolution. 
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The third objective of the study was to estimate if gene flow was transpiring 

between the rest of G. oregonensis and G. o. californicus, and even though we were not 

able to answer this question in our study, we are able to offer some insight. The San 

Bernardino population does share some of its mitochondrial haplotypes with G. o. 

lascivus, but from nuclear DNA markers one would infer that they are two, very separate 

populations. In STRUCTURE there were a few individuals who were assigned to the 

white population (as depicted in Fig. 5) even though most of the San Bernardino 

subspecies was assigned to the green population. This gives the impression of gene flow 

on the surface, but six out of the seven individuals who were assigned to the white 

population (Fig. 5) were museum specimens collected from the San Jacinto Mountains in 

the early 1900s. The seventh individual was a museum sample collected in 1905 from the 

San Bernardino Mountains. We speculate that either G. o. lascivus retained San Jacinto, 

ancestral genotypes and G. o. californicus diverged, or that they were isolated in the San 

Bernardino Mountains at some point during glacial cycles. 

Finally, the GenBank sequence AF030390 was of a G. oregonensis not a G. 

sabrinus individual. This sample had the same cyt-b haplotype as other G. oregonensis 

samples from Washington and the species split with G. sabrinus is well-supported 

(Appendix C). Seeing as G. oregonensis was described fairly recently in 2017, there 

could be more samples housed in GenBank that are not G. sabrinus but G. oregonensis. 
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Genotyping by sequencing (GBS) 

Microsatellites have been the traditional DNA marker of choice for many 

population genetic studies but suffer from several issues like fragment size homology, 

ascertainment bias, and low throughput as a result of capillary electrophoresis genotyping 

(Darby et al. 2016; De Barba et al. 2017; Zhan et al. 2017). Some of these issues can be 

alleviated, however, if the process of genotyping microsatellites is converted to fit exact 

sequence data produced by high-throughput sequencing (HTS) platforms like Illumina 

(Vartia et al. 2016). Raw sequence data was generated in this study, but the analysis 

conducted used total fragment length as input, similar to traditional capillary sequencing. 

The data incorporating precise sequence content from this study is still being analyzed 

(Yuan et al. in prep), but we discuss some of the implications of GBS below. 

Access to raw sequences from HTS allows precise sizing of microsatellite 

fragments (Darby et al. 2016; Barbian et al. 2018; Šarhanová et al. 2018; Tibihika et al. 

2019). In other words, researchers are able to discern the exact length of a fragment down 

to the last base pair, which was difficult to do in capillary sequencing as machine 

calibrations often affected the genotyping process (Darby et al. 2016). Access to raw 

sequences also allows easy detection of variation either within the repeat motif or the 

flanking regions (Barbian et al. 2018; Šarhanová et al. 2018). Both of these factors 

contribute to what is arguably the greatest advantage of GBS: the reduction in 

microsatellite fragment size (length) homoplasy (Vartia et al. 2016; Barbian et al. 2018; 

Šarhanová et al. 2018). Size homoplasy arises when fragments of the same length are 
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considered the same alleles but there are hidden, underlying nucleotide differences 

between them (Darby et al. 2016). For example, in our dataset both LACM-920 and 

LACM-871 have a genotype of 84/84 at the GS-2 locus (Appendix D). But, while 

LACM-871 is truly homozygous, LACM-920 is not (Fig. 6). This allele variation would 

have been missed if we had genotyped the samples using capillary electrophoresis, but 

we were able to detect this variation using the CHIIMP pipeline (Barbian et al. 2018). 

 

Figure 6. GS-2 genotype for LACM-920. Both alleles are shown with the locus primers 

cut from the sequence. Using traditional capillary electrophoresis methods, the 

underlying nucleotide difference (highlighted in yellow) would have been missed. 

 

Along with this increased detection of previously masked alleles, researchers will 

inevitably notice a trend toward higher allelic diversity, more loci deviating from HWE, 

and increased heterozygosity in future studies (Tibihika et al. 2019). Some studies have 

shown that this helps clarify population genetic structure (Darby et al. 2016; Barbian et 

al. 2018; Šarhanová et al. 2018; Tibihika et al. 2019), and we are exploring that result 

with the samples from this study (Yuan et al. in prep). This allelic diversity increase is 

supposed to represent a more accurate dataset since it increases detail and resolution in 



34 

 

  

analyses without changing global genetic diversity statistics entirely (Barbian et al. 2018; 

Šarhanová et al. 2018). More research should be conducted on this subject, but if that 

holds true, GBS would become even more valuable for conservation and wildlife studies 

that use degraded DNA samples such as museum specimens and fecal samples. 

Microsatellites are still the preferred marker to test in conservation and wildlife 

studies because their codominant mode of inheritance, neutrality, and highly polymorphic 

character provide high resolution and statistical power to studies of genetic structure and 

kinship (forensics) (Lampa et al. 2013; Putnam and Carbone 2014; De Barba et al. 2017; 

Zhan et al. 2017; Pimentel et al. 2018). In recent years single nucleotide polymorphisms 

(SNPs) have increased in popularity, but SNP studies usually require many loci (Zhan et 

al. 2017) and restriction enzyme digesting (Darby et al. 2016), which makes the transition 

to testing SNPs on degraded samples difficult as the DNA template is already fragmented 

and of low-quality (Lampa et al. 2013; Hawkins et al. 2016a). Moreover, the large 

amount of data already available from traditionally analyzed microsatellites facilitates 

future dataset comparisons, with the exception of homoplasy presence discussed above, if 

future studies shift toward GBS pipelines (Lampa et al. 2013; Putnam and Carbone 2014; 

De Barba et al. 2017). 

Alongside the potential benefits of GBS, there are a few cons to consider. For 

one, it is still not possible to detect homoplasy that arises from convergence on the same 

length and sequence (Šarhanová et al. 2018), and it will likely become more difficult to 

compare across different types of datasets (GBS produced data versus traditional 

capillary sequencing). For instance, Barbian et al. (2018) discovered consistent allele 
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length differences (1 - 3 bp) between their capillary and GBS dataset. On top of this, the 

fundamental way alleles are named may need to change. Questions that should be 

discussed by researchers include: should total fragment length continue to be used as the 

allele definition, or should a shift be made toward naming alleles based on the true 

number of repeat motifs, or should every unique sequence be declared an allele (Darby et 

al. 2016; Šarhanová et al. 2018; Tibihika et al. 2019)?  

In addition, older programs that analyzed capillary sequencing data will now need 

to update their software and/or algorithms (Darby et al. 2016). Examples include how our 

raw CHIIMP output required extra processing to be run in programs such as 

STRUCTURE, and how the data should not be run in BOTTLENECK because it is 

analyzing allele mutation models. In line with this, once more research has been 

conducted on allelic dropout it will also be important to standardize the genotyping 

pipeline to a certain extent and increase efficiency. For example, De Barba et al. (2017), 

Barbian et al. (2018), Pimentel et al. (2018), and Tibihika et al. (2019), all have slightly 

different parameters for calling alleles and different pipelines, so what is the most 

accurate way to genotype the samples?  

 

Ecological and conservation implications  

Glaucomys oregonensis is a crucial component of its ecosystem as its association 

with important mycorrhizal fungi (truffles) and the endangered Strix occidentalis caurina 

(Northern spotted owl) is well documented (Carey 2002; Weigl 2007; Holloway et al. 
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2012; Smith 2012). The species is also a prey item for three other populations of concern; 

Pekania pennanti (fisher, CNDDB 2019; FWS 2016b), S. o. occidentalis (California 

spotted owl), which is a California subspecies of special concern that was rejected last 

year to be listed as endangered (CNDDB 2019; FWS 2019), and Martes caurina 

humboldtensis (Humboldt marten), which is listed as endangered under the California 

Endangered Species Act (FWS 2018; CNDDB 2019). Ergo, the continued wellbeing of 

G. oregonensis is essential to the health of its ecological community, and since 

subpopulations with unique genetic diversity like G. o. californicus are important 

contributors to the species gene pool, their continued survival is valuable as well. 

Evaluation of the San Bernardino population suggested the intensity of the threats 

they were exposed to, such as urban air pollution, habitat fragmentation, and wildfire 

treatment, was low, and the request for protection was denied (FWS 2016a). This was 

however, before a genetic profile was built, and stochastic events in the future may still 

endanger this population. Ecological studies have shown how G. oregonensis can be 

behaviorally plastic (Rosenberg and Anthony 1992; Smith 2007; Weigl  2007), possibly 

because they require only certain habitat necessities to persist, like nest sites and food 

(Waters and Zabel 1995; Carey 2002). Older forests usually have these essential habitat 

parameters, for example a higher abundance and variety of fungi and lichen, two staples 

in their diet, and can thus better sustain flying squirrel populations (Waters and Zabel 

1995; Pyare and Longland 2001; Meyer et al. 2005; Smith 2007, 2012). Therefore, the G. 

o. californicus population may be a self-perpetuating population at the moment, but to 

ensure the long term viability of this population, their habitat needs to remain largely 
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intact as increased stand turnover and habitat loss could lead to population declines 

(Holloway et al. 2012).  

When G. o. californicus was proposed for listing on the Endangered Species Act, 

the U.S. Fish and Wildlife Service began evaluating the population in and around the San 

Bernardino Mountains. During that time, they conducted surveys and expanded to citizen 

science measures to determine presence/absence data for the population. Around 76% of 

the San Bernardino Mountains and 65% of the San Jacinto Mountains are managed by the 

U.S. Forest Service, yet there have been no confirmed sightings of flying squirrels in the 

San Jacinto Mountains since the 1990s (FWS 2016a). Due to the unique mitochondrial 

haplotype recovered in the San Jacinto population from a sample collected in 1916 

(UCLA-7487) and the genetic relationship with G. o. lascivus, it is unnerving to consider 

if this population has been extirpated. While it is optimistic that the overall G. o. 

californicus genetic diversity is not in a current bottleneck, there are no other local 

populations available should genetic rescue or intervention need to be implemented in the 

future, so we recommend persistent vigilance and long-term monitoring of the population 

as small mammals are prone to boom-bust population cycles (Weldy et al. 2019). If 

flying squirrels are intended to be reintroduced to the San Jacinto habitat, the genetic data 

recovered here suggest that individuals with the G. o. lascivus nuclear profile, plus the 

most common (blue) mitochondrial haplotype, best represent that historical population 

although more data may be beneficial to confirm these findings. 
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CONCLUSIONS 

Overall, this study represents the most in-depth analysis of G. oregonensis to date, 

especially with regard to the subspecies in California. One hundred and forty-seven new 

mitochondrial and microsatellite profiles have been generated, with 51 of those taken 

from the San Bernardino flying squirrel. I recovered a pattern of mitochondrial diversity 

unlike similar studies in the eastern United States, likely due to the Pacific Coast 

retaining refugial populations of flying squirrels during the most recent retreat of the 

Laurentide and Cordilleran ice sheets (Arbogast 1999; Arbogast 2007). This has resulted 

in higher haplotypic diversity in northern California and fewer in the south, opposite of 

traditional northward colonization following glacial retreat (Kerhoulas and Arbogast 

2010; Bozarth et al. 2011). These results cannot be completely untangled from signatures 

of population bottlenecks or founder effects, however, baseline genetic data have now 

been established for this species and will likely be useful for comparison in future 

studies. 

And although the majority of my samples were museum specimen samples 

(Appendix G), which contain degraded endogenous DNA and possible exogenous DNA 

contamination (Hawkins et al. 2016a), a study using exclusively fresh tissue would not 

add much more to the data resolution. Previous studies have shown that loci amplification 

success varies more in museum samples and there may be an increase in the amount of 

nuclear copies of mitochondrial genes, but with a combination of stringent bioinformatics 

and lab protocols, data generated from degraded samples have proven to be quite reliable 
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(den Tex et al. 2010; Hawkins et al. 2016a; De Barba et al. 2017; Barbian et al. 2018; 

McDonough et al. 2018). Analyses investigating the specific amounts of allelic dropout 

in these samples is also being conducted to validate recovered genotypes (Yuan et al. in 

prep). 

In addition, as discussed previously, G. o. californicus appears to have suitable 

habitat for long-term viability even while isolated, so long as no additional stochastic 

events disrupt the current ecosystem and global climate change does not alter the current 

forest composition. The genetic diversity of this subspecies is still low, even with a robust 

sample size (including 44 out of the 50 known U.S. museum specimens), and it is 

possible that ancient bottlenecks did in fact occur in this population, despite our 

BOTTLENECK analysis not identifying a recent change. This is probably due to the 

limited ability of BOTTLENECK to reveal events beyond about 15 generations 

(maximally ~45 years in flying squirrels; Villa et al. 1999). Additionally, the now 

seemingly extirpated San Jacinto population appears to be quite genetically distinct from 

the San Bernardino population, a mere 40 kilometers away, which may indicate a 

significant amount of isolation between the two forms. Further surveys for the San 

Jacinto subpopulation should be performed, and if possible, sampled for a genetic profile 

to evaluate if our historical signatures exist in any remnant squirrels. 
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Appendix A 

List of Glaucomys oregonensis samples analyzed in this study (n = 147), consisting of 51 G. o. californicus, 65 G. o. lascivus, 

13 G. o. fuliginosus, 11 G. o. stephensi, six G. o. flaviventris samples, and one G. o. oregonensis sample. The museum and zoo 

abbreviations are as follows: BBAZ = Big Bear Alpine Zoo, Big Bear Lake, California; HSU = Humboldt State University 

Vertebrate Museum, Arcata, California; KU = University of Kansas Biodiversity Institute and Natural History Museum, 

Lawrence, Kansas; LACM = Natural History Museum of Los Angeles, Los Angeles, California; MVZ = Museum of 

Vertebrate Zoology at University of California Berkeley, Berkeley, California; SDNHM = San Diego Natural History 

Museum, San Diego, California; UCLA = University of California Los Angeles Dickey Bird and Mammal Collection, Los 

Angeles, California; UMMZ = University of Michigan Museum of Zoology, Ann Arbor, Michigan. Samples were from frozen 

tissue, degraded tissue, hair, or museum specimens (clips of fur, bone, adherent muscle tissue). Locality and year refer to 

collection locations and date, respectively. 

*HSU sample that has not been accessioned yet. 

 

Subspecies Catalog Number Type of Sample State Locality Year Latitude Longitude Datum 

G. o. californicus BBAZ-M16002 Hair in RNALater California San Bernardino Co. 2019 34.22951 -116.8585 WGS84 

G. o. californicus BBAZ-M16003 Hair in RNALater California San Bernardino Co. 2019 34.22951 -116.8585 WGS84 

G. o. californicus BBAZ-M16001 Hair in RNALater California San Bernardino Co. 2019 34.22951 -116.8585 WGS84 
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Subspecies Catalog Number Type of Sample State Locality Year Latitude Longitude Datum 

G. o. californicus SDNHM-001 Hair in RNALater California San Bernardino Co. 2019 34.24183 -117.1823 WGS84 

G. o. californicus SDNHM-002 Degraded Tissue 

(Whole Tail) 

California San Bernardino Co. 2016 34.24315 -117.0695 WGS84 

G. o. californicus SDNHM-003 Degraded Tissue 

(Whole Tail) 

California San Bernardino Co. 2016 34.24315 -117.0695 WGS84 

G. o. californicus UMMZ-79755 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79758 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79760 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79761 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79763 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79753 Museum California San Bernardino Co. 1920 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79754 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79756 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79757 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79759 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79762 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UMMZ-79764 Museum California San Bernardino Co. 1926 34.25387 -116.9227 NAD27 

G. o. californicus UCLA-17237 Museum California San Bernardino Co. 1920 34.25 -116.9333 WGS84 

G. o. californicus UCLA-2566 Museum California San Bernardino Co. 1927 34.21667 -116.9 WGS84 

G. o. californicus UCLA-2576 Museum California San Bernardino Co. 1920 34.21667 -116.9 WGS84 

G. o. californicus UCLA-2583 Museum California San Bernardino Co. 1920 34.21667 -116.9 WGS84 

G. o. californicus UCLA-2598 Museum California San Bernardino Co. 1920 34.21667 -116.9 WGS84 

G. o. californicus UCLA-2931 Museum California San Bernardino Co. 1920 34.21667 -117.25 WGS84 

G. o. californicus UCLA-17238 Museum California San Bernardino Co. 1920 34.25 -116.9333 WGS84 

G. o. californicus UCLA-2573 Museum California San Bernardino Co. 1920 34.21667 -116.9 WGS84 

G. o. californicus UCLA-2597 Museum California San Bernardino Co. 1920 34.21667 -116.9 WGS84 

G. o. californicus UCLA-7487 Museum California Riverside Co. 1916 33.72926 -116.7509 WGS84 

G. o. californicus KU-46261 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46262 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46263 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 
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Subspecies Catalog Number Type of Sample State Locality Year Latitude Longitude Datum 

G. o. californicus KU-46264 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46265 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46266 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46267 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46268 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus KU-46269 Museum California San Bernardino Co. 1926 34.22971 -116.9191 NAD27 

G. o. californicus LACM-921 Museum California Riverside Co. 1916 33.74617 -116.7145 NAD27 

G. o. californicus LACM-95619 Museum California Riverside Co. 1919 33.74617 -116.7145 NAD27 

G. o. californicus LACM-871 Museum California Riverside Co. 1915 33.74617 -116.7145 NAD27 

G. o. californicus LACM-8094 Museum California San Bernardino Co. 1942 34.25224 -116.8362 NAD27 

G. o. californicus LACM-920 Museum California Riverside Co. 1916 33.74617 -116.7145 NAD27 

G. o. californicus LACM-4826 Museum California San Bernardino Co. 1935 34.2495 -117.2952 NAD27 

G. o. californicus MVZ-176127 Museum California San Bernardino Co. 1973 34.14433 -116.9791 NAD27 

G. o. californicus MVZ-176128 Museum California San Bernardino Co. 1973 34.2405 -117.3244 NAD27 

G. o. californicus MVZ-2088 Museum California Riverside Co. 1908 33.72238 -116.7605 NAD27 

G. o. californicus MVZ-176126 Museum California San Bernardino Co. 1973 34.21944 -116.9697 NAD27 

G. o. californicus MVZ-5210 Museum California San Bernardino Co. 1905 34.25387 -116.9227 NAD27 

G. o. californicus MVZ-5211 Museum California San Bernardino Co. 1905 34.21944 -116.9697 NAD27 

G. o. californicus MVZ-7007 Museum California San Bernardino Co. 1905 34.25387 -116.9227 NAD27 

G. o. californicus HSU-VM 3095* Frozen Tissue 

(Whole Organism) 

California San Bernardino Co. 2002 34.22619 -117.0564 WGS84 

G. o. flaviventris MVZ-11002 Museum California Modoc Co. 1910 41.46038 -120.243 NAD27 

G. o. flaviventris MVZ-13303 Museum California Siskiyou Co. 1911 41.15268 -122.9632 NAD27 

G. o. flaviventris MVZ-13306 Museum California Siskiyou Co. 1911 41.15268 -122.9632 NAD27 

G. o. flaviventris MVZ-13309 Museum California Siskiyou Co. 1911 41.15268 -122.9632 NAD27 

G. o. flaviventris MVZ-132650 Museum California Mendocino Co. 1951 39.61266 -122.9493 NAD27 

G. o. flaviventris MVZ-132653 Museum California Mendocino Co. 1951 39.5228 -123.0911 NAD27 

G. o. fuliginosus MVZ-69214 Museum California Siskiyou Co. 1935 41.99797 -122.9055 NAD27 

G. o. fuliginosus MVZ-69216 Museum California Siskiyou Co. 1935 41.99797 -122.9055 NAD27 

G. o. fuliginosus HSU-4333 Museum Oregon Lane Co. 1983 44.23669 -122.1787 WGS84 
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Subspecies Catalog Number Type of Sample State Locality Year Latitude Longitude Datum 

G. o. fuliginosus HSU-4336 Museum Oregon Lane Co. 1983 44.17751 -122.4364 WGS84 

G. o. fuliginosus HSU-4563 Museum Oregon Josephine Co. 1985 42.13429 -123.4142 WGS84 

G. o. fuliginosus HSU-4870 Museum Oregon Josephine Co. 1984 42.08951 -123.4156 WGS84 

G. o. fuliginosus HSU-7615 Frozen Tissue Washington Skamania Co. 1999 46.00769 -122.0106 WGS84 

G. o. fuliginosus HSU-7746 Frozen Tissue Washington Skamania Co. 1999 46.37827 -121.5765 WGS84 

G. o. fuliginosus HSU-7747 Frozen Tissue Washington Skamania Co. 1999 46.37862 -121.5768 WGS84 

G. o. fuliginosus HSU-7748 Frozen Tissue Washington Skamania Co. 1999 46.37814 -121.5767 WGS84 

G. o. fuliginosus HSU-7749 Frozen Tissue Washington Skamania Co. 1999 46.36283 -121.6083 WGS84 

G. o. fuliginosus HSU-7750 Frozen Tissue Washington Skamania Co. 1999 46.00351 -122.0556 WGS84 

G. o. fuliginosus HSU-7751 Frozen Tissue Washington Skamania Co. 1999 46.00702 -122.0071 WGS84 

G. o. lascivus UMMZ-79766 Museum California El Dorado Co. 1926 38.92833 -120.1478 NAD27 

G. o. lascivus UMMZ-79769 Museum California Placer Co. 1926 39.16021 -120.141 NAD27 

G. o. lascivus UCLA-1913 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1915 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1920 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1923 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1899 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1911 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1912 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus UCLA-1928 Museum California El Dorado Co. 1919 38.75 -119.9833 WGS84 

G. o. lascivus KU-133429 Museum California Lassen Co. 1977 41.08368 -120.097 NAD27 

G. o. lascivus KU-142386 Museum California El Dorado Co. 1973 38.85444 -120.3699 NAD27 

G. o. lascivus KU-142906 Museum California Lassen Co. 1958 40.4164 -121.3345 NAD27 

G. o. lascivus KU-142911 Museum California Lassen Co. 1958 40.4164 -121.3345 NAD27 

G. o. lascivus KU-142912 Museum California Lassen Co. 1958 40.4164 -121.3345 NAD27 

G. o. lascivus KU-142916 Museum California Lassen Co. 1958 40.4164 -121.3345 NAD27 

G. o. lascivus KU-142921 Museum California Lassen Co. 1957 40.4164 -120.9363 NAD27 

G. o. lascivus KU-142927 Museum California Lassen Co. 1959 40.54684 -120.6519 NAD27 

G. o. lascivus LACM-10643 Museum California Tulare Co. 1938 36.10332 -118.5365 NAD27 
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Subspecies Catalog Number Type of Sample State Locality Year Latitude Longitude Datum 

G. o. lascivus LACM-4859 Museum California Fresno Co. 1936 36.7477 -118.9759 WGS84 

G. o. lascivus MVZ-21863 Museum California Mariposa Co. 1914 37.73669 -119.5982 NAD27 

G. o. lascivus MVZ-23457 Museum California Mariposa Co. 1915 37.73082 -119.3923 NAD27 

G. o. lascivus MVZ-24368 Museum California Fresno Co. 1916 37.2317 -119.235 NAD27 

G. o. lascivus MVZ-24376 Museum California Fresno Co. 1916 37.2317 -119.235 NAD27 

G. o. lascivus MVZ-30092 Museum California Tulare Co. 1919 36.57978 -118.7574 NAD27 

G. o. lascivus MVZ-31805 Museum California Mariposa Co. 1920 37.75431 -120.108 NAD27 

G. o. lascivus MVZ-109021 Museum California Tulare Co. 1934 36.65525 -118.8116 NAD27 

G. o. lascivus MVZ-201571 Frozen Tissue California Mariposa Co. 2003 37.71515 -119.665 WGS84 

G. o. lascivus MVZ-201572 Frozen Tissue California Mariposa Co. 2003 37.75139 -119.7915 WGS84 

G. o. lascivus MVZ-207299 Frozen Tissue California Mariposa Co. 2004 37.77441 -119.5692 WGS84 

G. o. lascivus MVZ-218050 Frozen Tissue California Tehama Co. 2006 40.34688 -121.6293 WGS84 

G. o. lascivus MVZ-222759 Frozen Tissue California Nevada Co. 2008 39.42091 -120.291 WGS84 

G. o. lascivus MVZ-228422 Frozen Tissue California Plumas Co. 2005 40.33739 -121.1094 WGS84 

G. o. lascivus MVZ-216223 Frozen Tissue California Mariposa Co. 2005 37.75817 -119.8003 WGS84 

G. o. lascivus MVZ-216224 Frozen Tissue California Mariposa Co. 2005 37.75817 -119.8003 WGS84 

G. o. lascivus MVZ-217498 Frozen Tissue California Shasta Co. 2004 40.48484 -121.4212 WGS84 

G. o. lascivus MVZ-222760 Frozen Tissue California Sierra Co. 2008 39.45815 -120.2862 WGS84 

G. o. lascivus MVZ-232971 Frozen Tissue California Madera Co. 2016 37.62826 -119.0868 WGS84 

G. o. lascivus MVZ-225094 Frozen Tissue California Shasta Co. 2008 41.12669 -122.2768 NAD27 

G. o. lascivus HSU-6328 Museum California Plumas Co. 1990 40.43144 -121.1087 WGS84 

G. o. lascivus HSU-6329 Museum California Plumas Co. 1990 40.43145 -121.1086 WGS84 

G. o. lascivus HSU-6347 Museum California Plumas Co. 1991 40.42127 -121.1169 WGS84 

G. o. lascivus HSU-6348 Museum California Plumas Co. 1991 40.42223 -121.1173 WGS84 

G. o. lascivus HSU-8177 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8178 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8179 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8180 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8181 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8182 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 
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Subspecies Catalog Number Type of Sample State Locality Year Latitude Longitude Datum 

G. o. lascivus HSU-8183 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8184 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-7891 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-7915 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8186 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8187 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8188 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8189 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8190 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8191 Frozen Tissue California Plumas Co. no 

date 

40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8192 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8193 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8194 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8195 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8196 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. lascivus HSU-8197 Frozen Tissue California Plumas Co. 1992 40.43322 -121.1094 WGS84 

G. o. oregonensis HSU-7616 Frozen Tissue Washington Thurston Co. 1999 46.88667 -123.1238 WGS84 

G. o. stephensi HSU-2102 Museum California Humboldt Co. 1976 40.7611 -123.8716 WGS84 

G. o. stephensi HSU-4199 Museum California Humboldt Co. 1982 40.93957 -123.6314 WGS84 

G. o. stephensi HSU-4200 Museum California Trinity Co. 1983 40.89175 -123.5828 WGS84 

G. o. stephensi HSU-4239 Museum California Trinity Co. 1982 40.83152 -123.4506 WGS84 

G. o. stephensi HSU-7142 Museum California Humboldt Co. 1992 40.846 -124.0536 WGS84 

G. o. stephensi HSU-7461 Museum California Humboldt Co. 1996 40.56975 -124.0352 WGS84 

G. o. stephensi HSU-7462 Museum California Humboldt Co. 1996 40.58429 -124.0356 WGS84 

G. o. stephensi HSU-7611 Museum California Humboldt Co. 2000 40.84623 -124.0155 WGS84 

G. o. stephensi HSU-8482 Frozen Tissue California Humboldt Co. 2011 40.7611 -123.8716 WGS84 

G. o. stephensi HSU-8481 Museum California Humboldt Co. 2012 40.88777 -124.0759 WGS84 

G. o. stephensi HSU-1836 Museum California Humboldt Co. 1975 40.7611 -123.8716 WGS84 
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Appendix B 

Table of read depth per sample. A total of 13,824,680 raw reads were produced from two 

Illumina MiSeq sequencing runs (240,917 cyt-b reads, and 8,306,496 microsatellite 

reads).  

*HSU sample that has not been accessioned yet. 

Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

BBAZ-M16001 22,778 279 10,534 11,965 

BBAZ-M16002 30,744 1,034 13,870 15,840 

BBAZ-M16003 30,792 1,153 14,754 14,885 

HSU-4563 32,264 618 13,739 17,907 

HSU-4870 68,334 2,597 36,200 29,537 

HSU-6328 9,784 130 5,879 3,775 

HSU-6329 39,320 488 29,133 9,699 

HSU-6347 25,470 414 13,236 11,820 

HSU-6348 13,224 189 8,915 4,120 

HSU-7142 18,984 547 12,721 5,716 

HSU-7461 31,336 385 17,201 13,750 

HSU-7462 60,998 1,942 36,315 22,741 

HSU-7611 19,890 672 14,019 5,199 

HSU-7615 322,690 22,606 201,994 98,090 

HSU-7616 347,194 36,176 240,331 70,687 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

HSU-2102 6,800 96 3,425 3,279 

HSU-7746 331,310 267 24,318 306,725 

HSU-7747 312,856 27,624 182,592 102,640 

HSU-7748 106,734 648 56,840 49,246 

HSU-7749 369,620 544 237,483 131,593 

HSU-7750 427,904 869 271,405 155,630 

HSU-7751 362,172 2,819 232,463 126,890 

HSU-8177 210,226 1,268 130,812 78,146 

HSU-8178 296,366 3,378 170,993 121,995 

HSU-8179 173,566 497 107,433 65,636 

HSU-8180 158,834 981 101,670 56,183 

HSU-8181 96,746 180 63,149 33,417 

HSU-8182 520,486 4,201 326,342 189,943 

HSU-8183 168,298 228 127,204 40,866 

HSU-8184 50,842 481 23,354 27,007 

HSU-7891 125,342 688 67,422 57,232 

HSU-7915 298,970 1,877 164,379 132,714 

HSU-8186 40,276 127 20,604 19,545 

HSU-8187 243,656 1,566 164,395 77,695 

HSU-8188 259,634 20,431 181,589 57,614 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

HSU-8189 64,562 185 51,620 12,757 

HSU-8190 180,092 169 131,759 48,164 

HSU-8191 208,424 73 154,432 53,919 

HSU-8192 119,262 136 95,572 23,554 

HSU-8193 246,582 2,112 183,815 60,655 

HSU-8194 89,102 97 54,929 34,076 

HSU-8195 225,412 983 172,587 51,842 

HSU-8196 92,424 431 64,354 27,639 

HSU-8197 154,962 662 102,091 52,209 

HSU-8482 410,454 24,968 284,708 100,778 

HSU-8481 18,916 643 11,496 6,777 

HSU VM-3095* 237,678 10,505 184,750 42,423 

HSU-4199 13,160 263 8,104 4,793 

HSU-4200 16,928 303 11,667 4,958 

HSU-4239 6,988 190 3,443 3,355 

HSU-4333 9,110 211 4,572 4,327 

HSU-4336 34,326 495 20,028 13,803 

HSU-1836 6,548 88 3,317 3,143 

KU-133429 36,564 988 21,509 14,067 

KU-142386 32,382 597 16,039 15,746 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

KU-142906 37,262 765 20,838 15,659 

KU-142911 31,756 394 17,573 13,789 

KU-142912 35,508 827 17,648 17,033 

KU-142916 31,730 850 17,893 12,987 

KU-142921 42,720 755 25,121 16,844 

KU-142927 39,478 779 21,363 17,336 

KU-46261 155,984 211 23,633 132,140 

KU-46262 55,132 855 34,655 19,622 

KU-46263 64,666 2,571 41,385 20,710 

KU-46264 103,032 5,149 46,846 51,037 

KU-46265 46,862 830 21,251 24,781 

KU-46266 38,420 547 18,043 19,830 

KU-46267 38,172 592 14,672 22,908 

KU-46268 37,008 586 18,648 17,774 

KU-46269 32,718 904 15,532 16,282 

LACM-10643 88,598 425 55,761 32,412 

LACM-4826 77,968 128 59,684 18,156 

LACM-4859 130,896 422 82,022 48,452 

LACM-8094 134,338 131 86,878 47,329 

LACM-871 88,088 137 55,244 32,707 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

LACM-920 118,516 76 80,079 38,361 

LACM-921 57,358 106 49,531 7,721 

LACM-95619 61,226 342 46,439 14,445 

MVZ-109021 60,338 585 51,133 8,620 

MVZ-11002 93,992 5,496 51,861 36,635 

MVZ-132650 72,014 38 46,233 25,743 

MVZ-132653 24,232 398 18,722 5,112 

MVZ-13303 94,652 473 61,959 32,220 

MVZ-13306 147,456 471 96,819 50,166 

MVZ-13309 65,664 210 48,152 17,302 

MVZ-176126 49,152 965 41,025 7,162 

MVZ-176127 26,326 308 20,875 5,143 

MVZ-176128 18,376 501 13,039 4,836 

MVZ-201571 69,494 53 36,303 33,138 

MVZ-201572 34,646 63 21,852 12,731 

MVZ-207299 92,676 134 56,354 36,188 

MVZ-2088 118,054 83 40,934 77,037 

MVZ-216223 180,588 311 92,674 87,603 

MVZ-216224 118,208 175 72,767 45,266 

MVZ-217498 66,184 72 40,635 25,477 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

MVZ-218050 104,662 155 44,928 59,579 

MVZ-21863 89,452 532 54,573 34,347 

MVZ-222759 149,288 159 79,156 69,973 

MVZ-222760 93,266 111 58,717 34,438 

MVZ-225094 153,356 141 106,636 46,579 

MVZ-228422 163,362 212 97,650 65,500 

MVZ-232971 92,482 62 68,999 23,421 

MVZ-23457 134,782 4,605 86,212 43,965 

MVZ-24368 50,368 366 40,506 9,496 

MVZ-24376 68,050 130 53,483 14,437 

MVZ-30092 60,456 1,315 43,424 15,717 

MVZ-31805 80,960 939 51,146 28,875 

MVZ-5210 129,212 1,179 72,461 55,572 

MVZ-5211 140,970 1,676 1,235 138,059 

MVZ-69214 86,142 140 65,507 20,495 

MVZ-69216 43,208 81 31,874 11,253 

MVZ-7007 135,060 2,004 82,788 50,268 

SDNHM-001 28,908 957 14,436 13,515 

SDNHM-002 27,552 692 17,139 9,721 

SDNHM-003 29,596 972 18,131 10,493 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

UCLA-17237 45,540 255 18,868 26,417 

UCLA-17238 22,918 301 14,775 7,842 

UCLA-1899 41,370 545 27,506 13,319 

UCLA-1911 52,782 247 25,521 27,014 

UCLA-1912 44,420 187 21,382 22,851 

UCLA-1913 49,254 148 28,875 20,231 

UCLA-1915 41,200 299 17,679 23,222 

UCLA-1920 37,344 115 20,223 17,006 

UCLA-1923 42,186 83 22,390 19,713 

UCLA-1928 52,342 253 32,836 19,253 

UCLA-2566 36,312 150 21,333 14,829 

UCLA-2573 45,686 467 24,420 20,799 

UCLA-2576 48,570 874 30,331 17,365 

UCLA-2583 41,492 573 24,758 16,161 

UCLA-2597 41,084 1,896 17,448 21,740 

UCLA-2598 28,546 347 16,216 11,983 

UCLA-2931 31,790 860 17,917 13,013 

UCLA-7487 40,548 330 2,519 37,699 

UMMZ-79753 46,750 309 25,734 20,707 

UMMZ-79754 23,060 439 9,615 13,006 
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Catalog Number Total raw reads mtDNA 

reads 

Microsatellite 

reads 

Other/non-

mapped reads 

UMMZ-79755 23,618 589 11,398 11,631 

UMMZ-79756 52,562 124 11,459 40,979 

UMMZ-79757 31,094 21 21,163 9,910 

UMMZ-79758 39,032 923 19,404 18,705 

UMMZ-79759 20,972 260 12,253 8,459 

UMMZ-79760 26,736 617 15,322 10,797 

UMMZ-79761 38,590 465 20,127 17,998 

UMMZ-79762 25,980 239 16,558 9,183 

UMMZ-79763 40,320 441 21,616 18,263 

UMMZ-79764 38,630 456 19,025 19,149 

UMMZ-79766 51,518 572 21,771 29,175 

UMMZ-79769 43,498 287 17,472 25,739 

Total 13,824,680 240,917 8,306,496 5,277,267 
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Appendix C 

Phylogenetic trees generated in maximum likelihood and Bayesian frameworks using a 

300 bp alignment of 145 G. oregonensis and three G. sabrinus cyt-b sequences. The 

model of nucleotide substitution used was GTR + G as selected by PartitionFinder 

(Lanfear et al. 2016). The split between species was well-supported, but the branch 

support within G. oregonensis was not, due to the limited base pairs sequenced.  
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Maximum likelihood tree built in PhyML (Guindon et al. 2010). 
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Bayesian phylogenetic tree built in MrBayes (Ronquist et al. 2012). Only supported 

nodes are shown. If no value is provided that bifurcation was not well supported.  
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Appendix D 

 

Selection of CHIIMP output 

Link to a webpage containing the full CHIIMP genotyping results. It includes 

information on allele alignments, PCR stutter, and samples with more than two prominent 

sequences: 

{HYPERLINK “/Users/HawkFarm/Documents/glaucomys_chiimp/Glaucomys 

Thesis_5%_5_20_9 loci/report.html”}

  

file:///C:/Users/user/Documents/glaucomys_chiimp/Glaucomys%20Thesis_5%25_5_20_9%20loci/report.html
file:///C:/Users/user/Documents/glaucomys_chiimp/Glaucomys%20Thesis_5%25_5_20_9%20loci/report.html
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Appendix E 

Nuclear microsatellite summary statistics for G. o. flaviventris, G. o. fuliginosus, G. o. 

oregonensis, and G. o. stephensi at nine loci. The abbreviations listed are as follows: 

number of individuals successfully genotyped at that locus (n), total number of alleles 

(A), number of private alleles (Ap), observed heterozygosity (Ho), expected 

heterozygosity (He), fixation index (F), and Hardy-Weinberg Equilibrium deviation 

(HWE). Significant P-values are displayed in bold. 

 

G. o. flaviventris 

 

  

Locus n A Ap Ho He F HWE 

GS-2 6 8.000 1.000 1.000 0.847 -0.180 0.628 

GS-4 5 6.000 1.000 1.000 0.780 -0.282 0.050 

GS-8 6 5.000 0.000 0.667 0.681 0.020 0.384 

GS-10 6 8.000 0.000 1.000 0.861 -0.161 0.363 

GS-13 6 6.000 1.000 0.833 0.778 -0.071 0.065 

GS-16 6 4.000 0.000 0.500 0.417 -0.200 0.995 

GLSA-22 6 7.000 1.000 1.000 0.833 -0.200 0.400 

GLSA-52 2 2.000 0.000 0.500 0.375 -0.333 0.637 

GLSA-65 6 3.000 0.000 1.000 0.569 -0.756 0.112 

Mean 5.444 5.444 - 0.833 0.682 -0.240 - 

SE 0.444 0.709 - 0.073 0.062 0.073 - 
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G. o. fuliginosus 

 

 

G. o. oregonensis      

Locus n A Ap Ho He F HWE 

GS-2 1 2.000 0 1.000 0.500 -1.000 0.317 

GS-4 1 2.000 0 1.000 0.500 -1.000 0.317 

GS-8 1 2.000 0 1.000 0.500 -1.000 0.317 

GS-10 1 2.000 0 1.000 0.500 -1.000 0.317 

GS-13 1 2.000 0 1.000 0.500 -1.000 0.317 

GS-16 1 1.000 0 0.000 0.000 - - 

GLSA-22 1 2.000 0 1.000 0.500 -1.000 0.317 

GLSA-52 1 1.000 0 0.000 0.000 - - 

GLSA-65 1 2.000 0 1.000 0.500 -1.000 0.317 

Mean 1.000 1.778 - 0.778 0.389 -1.000 - 

SE 0.000 0.147 - 0.147 0.073 0.000 - 

                       

Locus n A Ap Ho He F HWE 

GS-2 13 8.000 1.000 0.769 0.846 0.091 0.007 

GS-4 5 5.000 0.000 0.200 0.740 0.730 0.029 

GS-8 13 5.000 0.000 0.615 0.716 0.140 0.307 

GS-10 13 8.000 0.000 0.846 0.840 -0.007 0.008 

GS-13 13 7.000 0.000 0.846 0.787 -0.075 <0.001 

GS-16 13 4.000 0.000 0.308 0.512 0.399 0.012 

GLSA-22 13 7.000 1.000 1.000 0.787 -0.271 0.229 

GLSA-52 13 7.000 2.000 0.538 0.728 0.260 0.067 

GLSA-65 13 3.000 0.000 0.462 0.447 -0.033 0.931 

Mean 12.111 6.000 - 0.621 0.711 0.137 - 

SE 0.889 0.601 - 0.089 0.047 0.098 - 
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G. o. stephensi 

Locus n A Ap Ho He F HWE 

GS-2 11 7.000 0.000 0.909 0.826 -0.100 0.569 

GS-4 10 7.000 2.000 0.400 0.820 0.512 0.023 

GS-8 11 5.000 0.000 0.818 0.731 -0.119 0.058 

GS-10 11 10.000 1.000 0.909 0.888 -0.023 0.028 

GS-13 11 7.000 0.000 0.818 0.789 -0.037 0.469 

GS-16 11 5.000 0.000 0.818 0.669 -0.222 0.369 

GLSA-22 11 4.000 0.000 0.909 0.678 -0.341 0.015 

GLSA-52 11 5.000 1.000 0.455 0.653 0.304 0.418 

GLSA-65 11 2.000 0.000 0.455 0.434 -0.048 0.875 

Mean 10.889 5.778 - 0.721 0.721 -0.008 - 

SE 0.111 0.760 - 0.073 0.045 0.087 - 
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Appendix F 

Additional STRUCTURE HARVESTER (Earl and vonHoldt 2012) Data 

Evanno et al. (2005) correction of STRUCTURE output in the admixture model (K=2): 

 

Evanno et al. (2005) correction of STRUCTURE output in the no admixture model 

(K=3): 
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Appendix G 

Summary of Glaucomys oregonensis sample type and extraction protocol by subspecies. 

Subspecies Museuma Frozen 

Tissueb 

Frozen 

Tissue 

(Whole 

Organism)b 

Degraded 

Tissue 

(Whole 

Tail)a 

Hair in 

RNALatera 

Total 

(Subspecies) 

G. o. 

californicus 

44 0 1 2 4 51 

G. o. 

lascivus 

31 34 0 0 0 65 

G. o. 

flaviventris 

6 0 0 0 0 6 

G. o. 

fuliginosus 

6 7 0 0 0 13 

G. o. 

oregonensis 

0 1 0 0 0 1 

G. o. 

stephensi 

10 1 0 0 0 11 

Total 

(Sample 

Type) 

97 43 1 2 4 147 

 

aExtracted using Qiagen QIAamp DNA Mini Kits (Qiagen, Valencia, CA). 

bExtracted using Qiagen DNeasy Blood and Tissue Kits (Qiagen, Valencia, CA). 

 


