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ABSTRACT 

A TIME- AND STATE-BASED APPROACH TO ESTIMATE WINTER MOVEMENT 

AND SURVIVAL OF JUVENILE COHO SALMON (ONCORHYNCHUS KISUTCH) 

IN FRESHWATER CREEK, CALIFORNIA 

 

 

Nicholas Van Vleet 

 

 Accounting for life history diversity and overwinter survival of juvenile Coho 

Salmon is important to inform restoration and recovery efforts for this threatened species. 

Multiple seaward migration patterns of Coho Salmon have been identified, including 

spring fry migrants, fall and winter parr migrants, and spring smolt migrants. Previous 

studies have indicated that spring smolt migrants have low overwinter survival rates 

while they are rearing in upstream habitats, suggesting that freshwater overwinter 

survival may be one factor that limits smolt production. However, previous research did 

not account for the early emigration of fall and winter parr migrants from the study area, 

which most likely negatively biased their overwinter survival estimates. Furthermore, 

previous mark-recapture methods aggregated continuous detection data into course 

seasonal scales in order to estimate movement and survival. In an effort to refine previous 

methodology, I developed a multi-state model that allowed for estimation of early 

emigration and survival rates in space and time by having weekly time-varying occasions 

paired with discrete spatial states. I conducted extensive simulation trials to validate my 

use of the multi-state model on an existing 4-year PIT tag dataset in Freshwater Creek, 

California. Overwinter survival for spring smolt migrants was estimated as a function of 
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average length at time of fall tagging for each year, and ranged from 0.87 to 0.90. 

Conditional on survival, early emigration estimates ranged from 0.34-0.40 annually. 

Results from the top model suggested that fish size during initial capture in the fall had a 

positive effect on overwinter survival of spring smolt migrants, and a negative effect on 

early emigration rates of fall and winter parr migrants. Additionally, streamflow had a 

positive effect on early emigration rates of fall and winter parr migrants. These results 

provide evidence that substantial numbers of smaller juveniles are emigrating early from 

upstream rearing habitat. This implies that previous estimates of low overwinter survival 

of Coho salmon could be due to high emigration rates to alternative rearing locations. 

Given the apparent diversity within the juvenile portion of the life cycle of Coho Salmon, 

multiple emigration patterns should be considered in the design of future research, 

monitoring, and restoration projects. 
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INTRODUCTION 

Life history diversity and overwinter survival of juvenile Coho Salmon 

(Oncorhuynchus kisutch) both have important implications for population production. 

Recent studies have identified multiple patterns of seaward migration, including spring 

fry migrants, fall and winter parr migrants, and spring smolt migrants (Miller and Sadro 

2003; Koski 2009; Bennett et al. 2011; Roni et al. 2012; Craig et al. 2014; Jones et al. 

2014; Rebenack et al. 2015). Previous research on juvenile spring smolt migrants found 

that they have low survival throughout the winter in upstream rearing habitats, implying 

that overwinter survival may be a limiting factor in population viability (Brakensiek and 

Hankin 2007). However, these overwinter survival estimates may have been biased low 

because they did not account for fall and winter parr migrants. Moreover, accounting for 

multiple migration patterns can provide insight into how alternative rearing strategies can 

benefit a population.  For example, juvenile Coho may experience increased growth rates 

in the estuary (Canagaratnam 1959; Craig et al. 2014; Jones et al. 2014; Wallace et al. 

2015), which will subsequently influence size at ocean entry and thereby increase marine 

survival rates (Holtby et al. 1990). Furthermore, early migrants can make significant 

contributions to adult returns, with research in Oregon documenting 20-35% of the total 

spawning population migrated to the estuary as sub-yearling juveniles. (Jones et al. 

2014). Diversity in migration timing of juveniles may promote resiliency to 

environmental variation (e.g. drought) by spreading opportunity for population 

production throughout a dynamic landscape. In order to better plan conservation 
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decisions and restoration actions, further research is needed to better understand 

mechanisms that influence overwinter survival and downstream migration into estuaries.  

Coho Salmon in California have experienced dramatic declines in recent decades. 

Between 1940 and 1990, adult escapement estimates declined from a peak of 500,000 to 

less than 5,000 individuals (Brown et al. 1994). There are no recent statewide estimates 

of abundance, but most of the independent (i.e. self-sustaining) populations within 

California are at a high risk of extinction (National Marine Fisheries Service 2014). Coho 

Salmon are currently listed as federally threatened in the Southern Oregon/Northern 

California Evolutionarily Significant Unit (National Marine Fisheries Service 2014). 

Declines in the species are due to habitat degradation and loss, hatchery influences, 

overharvest, and climatic factors (Brown et al. 1994; National Marine Fisheries Service 

2014). By elucidating how movement and survival rates of salmon vary in space and 

time, we can make more informed decisions on how to prioritize restoration that will 

contribute to the recovery of Coho Salmon. 

Quality and quantity of habitat can affect important population parameters such as 

juvenile survival and production of Coho Salmon smolts. It has been suggested that loss 

of winter habitat, which are primarily shallow gradient pools, could be limiting smolt 

production (Mason 1969; Nickelson et al. 1992). Streams in the Pacific Northwest 

undergo a large range of streamflow conditions with the onset of rains in the fall and 

winter. Juvenile salmonids, including Coho Salmon, will seek velocity refuge and cover 

during periods of high streamflow and flood events (Taylor 1988; McMahon and 

Hartman 1989; Fausch 1993; Vehanen et al. 2000). Velocity refugia, in the form of 



3 

 

  

backwaters and alcoves, provide shelter for juvenile Coho Salmon during high 

streamflows (Bell et al. 2001), and could be important to conserve energy and avoid 

displacement. If the quantity, and quality, of winter habitat is limited within a stream, it 

may be beneficial for individuals to move and seek out new habitat.   

Animals make significant migrations for many reasons, and movement patterns 

can be correlated with biotic and abiotic factors. In a general sense, individuals tend to 

remain stationary if their biological needs (e.g., food, space, cover) are met, and will 

move if they are not (Taylor and Taylor 1977). When habitat is limited, competition for 

resources can facilitate movement. With Coho Salmon, downstream movement of spring 

fry migrants can be caused by aggressive interactions among conspecifics (Chapman 

1962). This displacement of submissive fish could be a causal mechanism in the seaward 

migration of juveniles (Miller and Sadro 2003; Roni et al. 2012; Jones et al. 2014; 

Wallace et al. 2015). During periods of higher streamflow, downstream migrants are 

typically smaller on average (Hartman et al. 1982; Harvey 1987; Bennett et al. 2011; 

Rebenack et al. 2015). Downstream movement of these smaller fish may be a result of 

submissive behavior, displacement, or a volitional response to increased streamflow.  

Previous research has shown that streamflow can have a positive relationship in 

downstream migration of juvenile salmonids (Hartman et al. 1982; Tschaplinski and 

Hartman 1983; Giannico 2000), and recent studies have shown a potential correlation 

between streamflow and early seaward migration of juvenile Coho Salmon (Miller and 

Sadro 2003; Bennett et al. 2011; Rebenack et al. 2015). Although research has shown that 

streamflow is correlated with juvenile Coho Salmon movements, the relationship 
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between streamflow and the probability of early emigration into estuarine rearing habitats 

has not yet been quantified. 

One method that has been used to study the factors that affect movement and 

survival of juvenile Coho Salmon is to track individual movements through space and 

time using passive integrated transponder tags (PIT) and antennas. Each animal marked 

with a PIT tag can be identified by decoding the tag with either handheld antennas at a 

trap site, or stationary antennas in the stream. Previous research using this technology has 

been used to study some important demographic processes of juvenile salmon, including 

growth (Quinn and Peterson 1996; Roni et al. 2012), survival (Peterson et al. 1994; 

Ebersole et al. 2006), and migration rates (Horton et al. 2011; Armstrong et al. 2013). 

One study using PIT tags and antennas found that winter migration to seasonally 

available habitat in tributaries can increase survival and growth rates for juvenile Coho 

Salmon (Ebersole et al. 2006). Other studies have shown increased growth rates for 

individuals that migrate to estuarine habitat (Jones et al. 2014; Wallace et al. 2015). 

Although survival rates for the early migrants are unknown, their contributions to adult 

returns can be significant. Bennett et al. (2015) observed that roughly 75% of juveniles 

migrated in fall and winter to the ocean, and that adult returns were comprised of 0-77% 

of these early migrants. This wide range illustrates the importance of life history diversity 

within a species and could indicate a potential portfolio effect, in which variability in 

adult returns are buffered by alternate juvenile rearing strategies.  

Mark-recapture models are used to estimate important population parameters such 

as survival and movement from PIT tag data. These models use unique markings of 
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individuals to generate encounter histories over time for a subsample of the population. 

The frequency of observed encounter histories are the data input for a probabilistic 

model, which is used to estimate the parameters of interest. Previous research has used 

the Cormack-Jolly-Seber (CJS) model to estimate survival (Brakensiek and Hankin 2007; 

Welch et al. 2008; Furey et al. 2016) and emigration rates (Rebenack et al. 2015) of 

salmonids. However, emigration and apparent survival cannot be estimated concurrently 

within the same CJS model. Furthermore, previous studies estimating survival and 

movement of juvenile salmonids typically aggregate continuous detection data into 

coarse seasonal scales.  

In contrast to CJS models, multi-state models can estimate survival and 

movement from mark-recapture data within the same model framework (Arnason 1973; 

Brownie et al. 1993; Nichols and Kendall 1995). The multi-state model can also be used 

to estimate survival rates in space and time by pairing time-varying occasions with 

discrete spatial states that animals can transition between. Recently, multi-state models 

have been used to estimate survival and movement of fishes in the southeast of the 

United States (Norman et al. 2009), as well as salmonids on both the east (Horton et al. 

2011), and west coasts (Perry et al. 2010).   

By applying a multi-state model to PIT tag data collected over multiple years in a 

watershed in Northern California, we can estimate how covariates affect survival and 

emigration rates, and explore how model structure can influence parameter estimates. In 

this study, I used a novel approach to explore factors that affect juvenile Coho Salmon 

movement and survival in Freshwater Creek, California. Specifically, the objectives of 
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my study were to: 1) Determine how varying the interval length of continuous data can 

influence estimates of a multi-state mark-recapture model, and 2) use a multi-state model 

fit to juvenile Coho Salmon PIT tag data to: a) estimate early emigration rates, b) 

estimate overwinter survival rates, and c) examine the potential effects of fish size and 

streamflow on winter movement and survival in Freshwater Creek.  
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MATERIALS AND METHODS 

Study Site 

 The Freshwater Creek watershed is a small coastal stream network that empties 

directly into Humboldt Bay in northern California (Figure 1). The watershed has a 

number of significant tributaries, including: Ryan Creek, Wood Creek, McCready Gulch, 

Cloney Gulch, Graham Gulch, Little Freshwater Creek, and South Fork Freshwater 

Creek. Freshwater Creek has a watershed area of roughly 79 km2. The watershed is 

mostly forested, and has been extensively logged. Common riparian vegetation found 

throughout the watershed includes coastal redwood (Sequoia sempervirens), Douglas fir 

(Pseudotsuga menziesii), Sitka spruce (Picea sitchensis), red alder (Alnus rubra), bigleaf 

maple (Acer macrophyllum), and willow species (Salix spp.). Four species of salmonids 

consistently inhabit the basin including Coho Salmon, Chinook Salmon (O. tshawytscha), 

Steelhead Trout (O. mykiss), and Cutthroat Trout (O. clarkii clarkii). Other native fish 

commonly found throughout the basin include Pacific Lamprey (Entosphenus 

tridentatus), Western Brook Lamprey (Lampetra richardsoni), Threespine Stickleback 

(Gasterosteus aculeatus), Prickly Sculpin (Cottus asper), Coastrange Sculpin (Cottus 

aleuticus). 
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Figure 1. Freshwater Creek watershed including locations of PIT antenna arrays and the 

downstream migrant trap on Freshwater Creek.  
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The lower portions of Freshwater Creek converge with Humboldt Bay, forming 

estuarine habitat. The estuary is subject to a high degree of diurnal, seasonal, and annual 

variation in streamflow, temperature, salinity and turbidity. At periods of lower 

streamflow, tidal influence can change the direction of flow, and allow for saltwater 

intrusion. During winter freshets, brackish water in lower Freshwater Creek will recede 

into the bay and the creek will have negligible salinities (Wallace et al. 2015).  

Humboldt State University operates a juvenile fish trap in Freshwater creek, and 

currently has 6 independent PIT antenna arrays installed throughout the basin (Figure 1) 

as part of a life cycle monitoring station. The fish trap is operated from early March to the 

end of June and catches are processed daily. Four antennas are located in the upper basin, 

and two are in lower Freshwater Creek.  All of the antennas within the Freshwater Creek 

watershed are run from October through June, and aside from outages caused by large 

flow events, these antennas are monitoring continuously throughout that time.  

Methods 

Fish capture and processing 

Juvenile Coho were captured and tagged in the fall within Freshwater Creek from 

2013 through 2016. All fish capture and handling procedures were approved under 

Humboldt State University Institutional Animal Care and Use Committee (IACUC 

11/12.F.55-A, 15/16.F.79-A). Freshwater Creek was divided into sampling reaches, with 

discrete upper and lower boundaries, that were consistent inter-annually. Sampling was 

conducted in reaches that had significant adult spawning either within or above the reach 
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that would sufficiently seed the area sampled with juvenile Coho Salmon. Every year, the 

initial capture and tagging of fish was completed in October and November during 

periods of mostly low streamflow conditions. It was important to capture and tag fish 

before the onset of winter freshets, as increased streamflow could result in permanent 

emigration from the study area, resulting in a violation of mark-recapture model 

assumptions (see below). Fish were captured with beach seine nets in pools within 

reaches. Captured juvenile Coho Salmon were first anesthetized by immersion in a 40 

mg/L solution of tricane methanesulfunate (MS-222) buffered to neutral pH. 

Measurements were then taken for fork length (± 1 mm) and wet weight (± 0.1 g). PIT 

tags (12 mm Half Duplex (HDX) tags) were then inserted into juveniles that met the 

National Marine Fisheries Service minimum size requirements, which was 65 mm in 

2013/2014 and 70 mm in 2015/2016. Fish were allowed to recover from the effects of 

anesthesia before being released to the pool in which they were captured. Tagged fish 

were available for subsequent detection at antenna sites as well as the juvenile fish trap 

when operation commenced in the spring. All fish sampling in this study adhere to the 

guidelines of California Department of Fish and Wildlife (CDFW) Coastal Monitoring 

Program (CMP) regional protocol (Adams et al. 2011). 

Multi-state model 

I used a multi-state model to estimate survival and movement of juvenile Coho Salmon 

within Freshwater Creek. My model consisted of two states in space, with model 

parameters that vary temporally. The two model states were 1) upper Freshwater Creek 

(hereafter upstream), and 2) lower Freshwater Creek (hereafter downstream). The 
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upstream state consists of natal rearing habitat upstream of tidal influence. The 

downstream state provides non-natal rearing habitat and includes the estuary. Fish 

residing upstream throughout the fall and winter are defined as spring migrants, and 

individuals that migrate downstream before spring are defined as early migrants. Between 

each sampling occasion fish can either perish, survive and remain in their current state, or 

survive and transition to the downstream state. A detection from any antenna within a 

state was counted as an encounter of that individual in that particular state. The Howard 

Heights antenna, located approximately 0.5 km downstream of the Howard Heights Road 

bridge, was the furthest upstream antenna in the downstream state and the designated 

boundary between the upstream and downstream states. An example of some of the 

possible encounter histories and their interpretations are shown below in Table 1. General 

parameters for a multi-state model include: survival probability, transition probability, 

and detection probability. Each of these parameters can be allowed to vary between states 

and occasions to increase model complexity and improve model fit.  Model notation and 

definitions were adopted from Cooch and White (2017), and are listed below in Table 2. 

. 
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Table 1. Example of possible encounter histories with my multi-state model, where A is 

defined as upstream, and B is defined as downstream. This example assumes no upstream 

movement (i.e., from state B to state A), as does my model. 

 

Encounter History Interpretation 

AABBB Individual was captured and marked in state A on occasion 1, 

was recaptured in state A on occasion 2, and was captured in 

state B on occasions 3, 4, and 5 

 

AA0BB Individual was captured and marked in state A on occasion 1, 

was recaptured in state A on occasions 2, was not captured on 

occasion 3, and was captured in state B on occasions 4 and 5 

 

AAAA0 Individual was captured and marked in state A on occasion 1, 

was recaptured in state A on occasions 2-4, and was not 

recaptured on occasion 5 

 

BBB0B Individual was captured and marked in state B on occasion 1, 

was recaptured in state B on occasions 2 and 3, was not 

captured on occasion 4, and was recaptured in state B on 

occasion 5 

 

BB0B0 Individual was captured and marked in state B on occasion 1, 

was recaptured in state B on occasion 2, was not captured on 

occasion 3, was recaptured in state B on occasion 4, and was 

not recaptured on occasion 5 
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Table 2. Multi-state model parameter notation and definitions. 

Notation Definition 

𝑆𝑖
𝑟 The probability of survival in state r from time i to i + 1, given that the 

animal was present in state r at time i 

 

ѱ𝑖
𝑟𝑠 The probability of transition from state r at time i to state s at time i + 1, 

given that the animal was alive at time i + 1    

 

𝑝𝑖
𝑠 The probability of detection in state s at time i 
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Model time interval simulations. PIT tag antennas collect detection data 

continuously, but multistate models operate on discrete time intervals, and it was unclear 

how parameter estimates could be affected by aggregating continuous detection data into 

discrete time intervals. I thus ran a series of multi-state model simulation trials to 

determine the most appropriate discrete time interval that resulted in the least amount of 

imposed error in the estimation of the parameters of interest (spring migrant survival, and 

early emigration probabilities). I define imposed error as the relative difference between 

the estimator and the target value (i.e., the generating model value). Additionally, as the 

discrete time intervals approach continuous time, parameter estimates for movement and 

survival will also approach the probability boundaries of  0 or 1, respectively. Close 

proximity of parameters to the boundaries causes numerical estimation problems for 

mark-recapture models (Lebreton and Cefe 2002; White et al. 2006); therefore, I varied 

the time step length to evaluate model performance as survival, movement and detection 

probabilities approach the boundary.  

I conducted the simulations in the R programming language (R Core Team 2013) by 

generating encounter histories for a multi-state model with known parameter values. My 

simulation trials consisted of stochastic generating models with three variations in 

overwinter survival (0.3, 0.4, 0.5), winter movement (0.1, 0.2, 0.3), and sample size (500, 

2000, 5000) (Table 3). Approximations were made for generating model specifications to 

exemplify Freshwater Creek data. I designed my simulations to have three states: 1) 

upstream, 2) downstream, and 3) ocean (unobservable state).  I made the assumption that 

fish only move from the upstream state towards the ocean state, and that fish that enter 
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the ocean have permanently emigrated from the system (Figure 2). Individuals were only 

marked on the first occasion, with 80% being marked in the upstream state and 20% 

marked in the downstream state. Data was simulated 1000 times for each generating 

model and each variation in sample size. Encounter history data was simulated on a daily 

time step for a total of 240 days.  
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Table 3. Generating model parameters and values for the number marked (M) in addition 

to survival (S), detection (p), and movement (ѱ) rates. Generating model values were on a 

seasonal scale. State (A or B), and season (Winter or Spring) are denoted by parameter 

subscripts. 

Parameter Generating Model Value(s) 

M 500, 2000, 5000 

SA_Winter 0.3, 0.4, 0.5 

SA_Spring 0.6 

SB_Winter 0.3 

SB_Spring 0.6 

pA_Winter 0.2 

pA_Spring 0.3 

pB_Winter 0.2 

pB_Spring 0.5 

ѱAB_Winter 0.1, 0.2, 0.3 

ѱAB_Spring 0.5 

ѱBC_Winter 0.2 

ѱBC_Spring 0.5 

ѱBA,, ѱCA, ѱAC 0 
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Figure 2. Illustration showing movement restrictions between states.  States are defined 

as: A = upstream, B = downstream, and C= Ocean (unobservable state). 
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These encounter histories were then analyzed in multi-state model framework 

using RMark (Laake 2013) to estimate parameters. The multi-state model that I used 

consisted of two states, and thus the encounter histories only included detections in the 

upstream and downstream state, as the ocean state had a detection probability of 0. The 

simulated daily encounter histories were aggregated into 8, 15, and 24 day time intervals. 

The aggregated time intervals were chosen because they divide evenly into 240. For 

computational ease, the seasons were both 120 days in length. The multi-state model was 

then used to estimate parameters. Seasonal constraints for winter and spring were utilized 

with the purpose of simplifying model structure. 

Freshwater Creek model. In multi-state models, the number of parameters can 

increase rapidly with an increasing number of occasions and states. With complex 

models, utilizing model constraints is an effective means to simplify model structure and 

reduce the number of parameters in both single and multi-state models (Lebreton et al. 

1992, 2009). Given the sparse detection rate I observed in individual encounter histories, 

I applied temporal constraints to reduce model complexity. A conceptual diagram of my 

model structure is shown below in Figure 3. My two constraints were seasonal (i.e., 

winter and spring). Winter lasted from tagging through occasion 22 and then spring lasted 

for the rest of the sampling year (i.e. through occasion 39).  This seasonal constraint 

assumes survival, transition, and detection probabilities has a constant mean value within 

each season (i.e., winter and spring).  Although mean parameter values are constant 

within season, parameter estimates can vary as a function of environmental (e.g., 

streamflow) or individual (e.g., fork length) covariates. The cutoff between winter and 



19 

 

  

spring (occasion 22) coincided with the installation of the juvenile fish trap in March, as 

this will likely change the capture probability for fish that migrate downstream.  

 

 

Figure 3. Conceptual diagram of a multi-state model with five time-varying occasions 

constrained to two seasons. The states are defined as: ‘A’ upper Freshwater Creek, and 

‘B’ lower Freshwater Creek.  
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Before running an a priori candidate model set, I ran a set of models without 

covariates to evaluate model convergence and estimate goodness of fit (Appendix A). In 

this model run, I included a range of models from the least complex model that still 

included meaningful parameters, up to the most complex model that I thought that the 

data would support. Upstream movement was fixed to 0 for all models. Using an all 

combinations approach, I ran a set of nine models in R (R Core Team 2013) with the 

package “RMark” (Laake 2013). The general model was chosen by selecting the most 

complex model that properly converged. Goodness of fit was assessed by using the 

median ĉ approach in Program Mark with models that included group covariates (i.e. year 

and reach) (White and Burnham 1999). The median ĉ approach is unable to incorporate 

individual covariates (i.e. length) so I could not include any of those models in the 

goodness of fit candidate model set. Median ĉ was used to account for over dispersion, 

correct parameter variance estimates, and to calculate the Quasi-Akaike’s Information 

Criterion corrected for sample size (QAICc) used for model selection (Symonds and 

Moussalli 2011). 

After assuring the goodness of fit was reasonable, I designed multi-state models 

that incorporated group, individual, and environmental covariates (Table 4). I selected 

each of these covariates with a priori hypotheses regarding how biological and physical 

conditions would affect early migration and winter survival rates. Season was used as a 

covariate for survival, movement, and detection probabilities to account for differences 

between the two emigration patterns for both early migrants and spring migrants. The use 

of season as a covariate for movement was essential in separating the two emigration 
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patterns. Furthermore, I hypothesized that season could affect survival, as there are 

inherent seasonal differences within Freshwater Creek (e.g., streamflow, turbidity, 

temperature). I also hypothesized that there were seasonal differences in detection 

probability, as increased streamflow in the winter could reduce detection probability by 

causing outages at antenna sites. Additionally, higher streamflow would increase the 

space that a fish can occupy, and could increase their chances of swimming outside of the 

detection range of the antenna. I also included year and reach as covariates to model 

detection probability as a function of when and where fish were tagged. Year was 

included to account for any annual variation in detection. Reach was included because 

some reaches had more antennas that fish would encounter during emigration; thus, these 

fish would be expected to have a higher detection probability. Length was used as a 

covariate for survival because previous research has shown a positive relationship 

between survival and length (Quinn and Peterson 1996; Brakensiek and Hankin 2007). 

However, these models did not account for emigration, which is why I also included 

length as a covariate for movement. Weekly average streamflow was also used as a 

covariate for movement, as previous research has shown this to be an important factor in 

downstream migration (Hartman et al. 1982; Tschaplinski and Hartman 1983; Giannico 

2000).   
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Table 4. Covariates used in the multi-state model, and their descriptions. 

Covariate Covariate Description 

Length Fork length (mm) at time of fall tagging 

Flow Average weekly streamflow (cfs) of Little River 

Year Year of fall tag group 

Season Temporal constraint of either winter or spring 

Reach Survey reach of tagged fish at time of fall tagging 
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Most covariate data was recorded on initial fish capture. Covariate data for 

individual length, year, and reach were obtained at the time of tagging in the fall, and 

uploaded to the CDFW database. Survey reaches were delineated in relation to the 

nearest downstream antenna. There is no streamflow gage on Freshwater Creek, so I used 

the Little River gage as a proxy. Little River is larger, but is the closest gauged watershed 

of comparable size with a watershed area of 119 km2. Streamflow data was obtained for 

Little River gage by using the R package “dataRetrieval” (Hirsch and De Cicco 2015).  

Although the multi-state model was run on a short discrete time intervals within a 

season, I was most interested in estimating survival and movement probabilities on a 

seasonal scale, thus, I converted the discrete time interval parameter estimates and 

confidence intervals into seasonal estimates by bootstrapping. I sampled from a normal 

distribution (n=10000) using beta parameter estimates and standard errors output on the 

discrete time interval output from RMark. These values were then converted from the 

logit scale to the probability scale. Winter survival was calculated by taking the product 

of all the probability estimates within the season. Winter movement estimates were 

calculated by: 

ѱ𝑊𝑖𝑛𝑡𝑒𝑟 = 1 − ∏1
21(1 − ѱ𝑡) 

where ѱ𝑊𝑖𝑛𝑡𝑒𝑟 is the probability of having moved in any time interval within a winter, 

and ѱ𝑡 is the probability for movement during a given time interval within a winter. 

Winter estimates and confidence intervals were obtained by taking the median and 95% 

quantile values from the bootstrap samples.  
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As with all mark-recapture models, multi-state models make a number of 

assumptions, some of which are violated by the PIT tag data in this study. The major 

assumptions of multi-state models are (Williams et al. 2002): 

1. Every marked animal present in state r at sampling period i has the same 

probability of being recaptured; 

2. Every marked animal in state r immediately following sampling in period i 

has the same probability of surviving until period i + 1.  

3. Marks are neither lost nor overlooked, and are recorded correctly. 

4. Sampling periods are instantaneous (or relatively short periods), and 

recaptured animals are released immediately. 

5. The fate of each animal with respect to capture and survival probability is 

independent of the fate of any other animal. 

In this study, the assumption of equal recapture probability is the most likely assumption 

to be violated. Proximity of individuals to antennas will likely influence individual 

detection probability. Furthermore, the number of antennas downstream of an 

individual’s initial tagging location may also affect detection rates. However, bias in 

survival estimates caused by heterogeneity in capture probabilities has been shown to be 

negligible (Williams et al. 2002). I accounted for some of the variation in detection 

probability by incorporating group covariates for reach and year tagged. 



25 

 

  

RESULTS 

Estimation of Survival and Movement 

Model time interval simulations 

Using simulated data, I found that the relative amount of imposed error was 

lowest for the smallest time step (8 days) and that precision increased proportional to 

sample size (Figure 4 and Figure 5). Point estimates were obtained by taking the median 

from the distribution of the generating model estimates, and 95% confidence intervals 

were calculated by taking the lower 0.025 and upper 0.975 quantile values. Imposed error 

was calculated by taking the difference between the log-odds of the real parameter 

estimate and the log-odds of the generating model probability. A value of zero for 

imposed error would indicate that there is no difference between the real parameter 

estimate and the target probability of the generating model. Estimates with a positive 

value for imposed error would indicate that they are higher than the generating model 

probability, and negative values are lower than the generating model probability. 

Broadly, the simulations indicate that a smaller time step length reduces the amount of 

imposed error, and precision increases with an increasing sample size. Finally, all 

confidence intervals for both parameters overlapped zero with the eight-day time step, 

demonstrating that this formulation of the multi-state model could theoretically generate 
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reliable parameter estimates for the two parameters I was most interested in: 1) winter 

survival of spring migrants, and 2) early migration rates. 
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Figure 4. Imposed error for winter survival in the upstream state as a function of time 

step length for 9 generating model values. Each error bar and point represent the median 

and 95% quantile values for 1000 model iterations. 
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Figure 5. Imposed error for winter movement from upper Freshwater Creek to lower 

Freshwater Creek as a function of time step length for 9 generating model values. Each 

error bar and point represent the median and 95% quantile values for 1000 model 

iterations. 
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I also calculated unexpected error for overwinter survival and winter movement, 

by taking the relative difference between the model estimate, and the expected value. 

Discretization of continuous data violates the assumption of instantaneous sampling 

periods. Thus, for overwinter survival, an individual need only survive until the 

beginning of the last winter occasion. The expected value for overwinter survival is 

defined as: 

𝑆𝐸 = 𝑆𝐷𝑎𝑖𝑙𝑦^𝐷𝐿𝑂  

Where SE is the expected overwinter survival rate, SDaily is the daily survival rate in the 

generating model, and DLO is the number of days until the beginning of the last 

occasion. As shown below in Figure 6, a large amount of the amount of unexpected error 

in survival appears to be accounted for, in that the median values are relatively centered 

on 0. Considering the expected value for overwinter movement, an individual can move 

between the beginning of the first occasion up until the beginning of the last occasion, 

and is thus defined as  

ѱ𝐸 = (1 −  (ѱ𝐷𝑎𝑖𝑙𝑦)^𝐷𝐿𝑂) − (1 − (ѱ𝐷𝑎𝑖𝑙𝑦)^𝐷𝐹𝑂) 

Where ѱE is the expected winter movement rate, ѱDaily is the daily movement rate in the 

generating model, DLO is the number of days until the last occasion, and DFO is the 

number of days in the first occasion. As shown below in Figure 7, it appears that there 

some unexpected error in movement that remains unaccounted for. While there appears 

to be little to no unexpected error when the generating values for winter movement are 
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0.3, and overwinter survival is 0.3, the amount of unexpected error seems to increase with 

decreasing movement and increasing survival rates.   
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Figure 6. Unexpected error for winter survival in the upstream state as a function of time 

step length for 9 generating model values. Each error bar and point represent the median 

and 95% quantile values for 1000 model iterations.  
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Figure 7. Unexpected error for winter movement from upper Freshwater Creek to lower 

Freshwater Creek as a function of time step length for 9 generating model values. Each 

error bar and point represent the median and 95% quantile values for 1000 model 

iterations. 

 

Freshwater Creek model 

Based on the results of my simulations, I used a weekly time interval for the 

Freshwater Creek multi-state model. This resulted in an encounter history with 39 

occasions. Continuous stationary antenna data and daily trap recaptures were aggregated 
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into the weekly time intervals and all tagging and detection data hereafter will be 

summarized by week.  

Over the four-year period of the study, 2003 juvenile Coho Salmon were tagged 

in the fall throughout Freshwater Creek (Table 5). In each year, the number of tagged fish 

ranged from 245-610 individuals in the upstream state, and 60-97 individuals in the 

downstream state. Although fall tagging took place over multiple weeks each year, for 

modeling purposes I considered it to have occurred only during the last week fish were 

tagged and released each year. 
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Table 5. Total number of fish tagged in fall. Date fall tagging ended varied annually.   

Year Total Tagged Tagged in  

State A 

Tagged in  

State B 

Last Fall Tagging 

Occasion 

2013 707 610 97 1 

2014 509 443 66 2 

2015 329 245 84 3 

2016 458 398 60 6 

Total 2003 1696 307 NA 
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PIT tag antennas and the downstream migrant trap detected juveniles as they 

moved throughout Freshwater Creek. In the upstream state, there were 381 unique 

weekly detections, of which 127 were observed during the fall and winter, and 254 were 

observed during the spring. In the downstream state, there were 1057 unique weekly 

detections, of which 198 were observed during the winter, and 859 were observed during 

the spring (Figure 8). Only 3 fish were detected moving from the downstream state to the 

upstream state. Given that the sample size was too small to estimate upstream movement, 

I fixed the upstream transition probability to zero. I censored the 3 fish that were 

observed moving upstream in the occasion during which they were detected in the 

upstream state, so they did not affect any subsequent parameter estimates. Fish that were 

detected in both states during a week were assigned to the downstream state in the 

encounter history.  
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Figure 8. Unique weekly detections (vertical bars) and Little River average weekly 

streamflow (black line) for each occasion in: (a) 2013-2014, (b) 2014-2015, (c) 2015-

2016, and (d) 2016-2017. Detections are for all antennas as well as the juvenile fish trap. 

The thin grey vertical line represents the break between winter and spring. 
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Goodness of fit was evaluated in Program Mark by estimating the overdispersion 

parameter median ĉ. The global model I used to assess goodness of fit was: 

S(Season*Stratum*Year) ѱ(Season*Year) p(Season*Stratum*Year+Reach). This was 

the most complex model that converged for all parameters of interest. The global model 

was estimated to have a median ĉ value of 1.5, indicating an acceptable level of 

overdispersion (Cooch and White 2017). This median ĉ value was used to calculate the 

QAICc values to select the most parsimonious model (Table 6).  Median ĉ was also used 

to adjust the standard errors and 95% confidence intervals for all model parameters. 

An assortment of individual, environmental, and group covariates were 

incorporated into the candidate model set. Fork length of fish tagged in the fall was used 

as an individual covariate in the survival and movement models. Size of tagged fish 

ranged from 65-125 mm fork length with a mean of 74 mm and standard deviation of 9.5 

mm. Average weekly streamflow was used as an environmental covariate in the 

movement model. Streamflow measurements on Little River ranged from 3.11-5690 cfs, 

with a mean of 165.19 cfs and standard deviation of 281.32 cfs. Group covariates for 6 

reaches and 4 years for time at fall tagging were used in the detection model. These group 

covariates were not used for survival or movement models, as I was more interested in 

individual and environmental covariate effects. 

 

 



38 

 

  

Table 6. Candidate model set for survival (S) and movement (ѱ) probabilities. All models used the global model for detection 

(p) probability:  p(Season*Year*Strata+Reach) 

Model Num. 

Par 

QAICc Delta QAICc Weight QDeviance 

S(Season*Strata+Length) 

ѱ (Season*Length*Flow) 

33 9388.54 0 0.63 9321.87 

S(Season*Strata+Length) 

ѱ (Season*Length+Season * Flow) 

31 9389.59 1.05 0.37 9327.00 

S(Season*Strata) 

ѱ (Season) 

28 9408.87 20.33 2.42E-05 9408.87 

S(Season*Strata) 

ѱ (Season*Length+Season*Flow) 

30 9420.26 31.73 8.11E-08 9359.71 

S(Season*Strata) 

ѱ (Season*Length*Flow) 

32 9420.58 32.05 6.91E-08 9355.95 
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I selected the most parsimonious model from my candidate set using QAICc 

model selection, by selecting the simplest model within two QAICc units of the best 

fitting model. Based on my selection criteria, the model I used for inference was: 

S(Season*Strata+Length) ѱ (Season*Length*Flow) p(Season*Year*Strata+Reach). 

Although the chosen model had less support than the top ranked model, it had fewer 

parameters, and a delta QAICc difference of only 1.05. Overwinter survival for spring 

smolt migrants was estimated as a function of average length at time of fall tagging for 

each year, and ranged from 0.87 (95% CI 0.78-0.92) to 0.90 (95% CI 0.81-0.94) (Table 

7). Without accounting for permanent emigration, early migrant survival during the 

winter was estimated as a function of average length at time of fall tagging for each year, 

and ranged from 0.59 (95% CI 0.54-0.64) to 0.65 (95% CI 0.60-0.69) (Table 7). The 

results for the top model suggest that fish length at time of tagging has a positive effect 

on overwinter survival (Figure 9), given a beta estimate of 0.341 (SE 0.068). Early 

emigration rates were estimated independently for each of the four years, as it used 

environmental covariate for streamflow, and ranged from 0.34 (95% CI 0.32-0.36) to 

0.40 (95% CI 0.38-0.43) (Table 7. Yearly Overwinter survival and early migration rates, 

streamflow (cfs) at Little River gauging station, and mean fork length at time of fall 

tagging. Mean weekly streamflow was used as an environmental covariate to predict 

emigration rates. Fish length had a negative relationship with estimates of early migration 

rates (beta value = -0.265, SE = 0.104), and thus smaller fish were more likely to migrate 
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downstream (Figure 10). Estimates for early emigration rates used the average sized fish 

when calculating weekly movement. Results from the top model also suggest that early 

migration rates were positively affected by streamflow (beta value = 0.182, SE = 0.118; 

Figure 11). 
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Figure 9. Overwinter survival rate (95% confidence interval is shaded in grey) of spring 

smolt migrants in the upstream state as a function of fish fork length. A rug plot along the 

x-axis displays the distribution of fish fork lengths when fish were originally tagged in 

October or November. 
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Table 7. Yearly Overwinter survival and early migration rates, streamflow (cfs) at Little River gauging station, and mean fork 

length at time of fall tagging. Mean weekly streamflow was used as an environmental covariate to predict emigration rates. 

Years Spring Smolt 

Migrant Overwinter 

Survival 

 (95% CI) 

Early Migrant 

Overwinter 

Survival  

 (95% CI) 

Early Migration  

(95% CI) 

Mean Winter 

Streamflow 

(range) 

Mean Fork 

Length in 

Fall 

2013-2014 0.87 (0.78-0.92) 0.59 (0.54-0.64) 0.36 (0.34-0.38) 61 (8-576) 73.8 

2014-2015 0.89 (0.80-0.93) 0.63 (0.59-0.68) 0.35 (0.33-0.38) 170 (5-838) 78.1 

2015-2016 0.89 (0.80-0.93) 0.63 (0.58-0.68) 0.38 (0.35-0.41) 248 (3-874) 77.4 

2016-2017 0.90 (0.81-0.94) 0.65 (0.60-0.70) 0.38 (0.35-0.41) 341 (5-817) 79.6 
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Figure 10. Early migration rate (95% confidence interval is shaded in grey) of juvenile 

Coho Salmon from the upstream state to the downstream state during the winter months 

as a function of fish fork length. A rug plot along the x-axis displays the distribution of 

fish fork lengths when fish were originally tagged in October or November. 
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Figure 11. Early migration rates (95% confidence interval is shaded in grey) of juvenile 

Coho Salmon from the upstream state to the downstream state during the winter months 

as a function of streamflow. A rug plot along the x-axis displays the observed average 

weekly streamflow recorded on the Little River gauge. 
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DISCUSSION 

I conducted this study to provide robust estimates of survival rates for spring 

migrants as well as early emigration rates for juvenile Coho Salmon, and to examine 

factors that affect movement and survival in Freshwater Creek. An extensive set of 

simulation trials were performed to test the feasibility of this multi-state model and 

evaluate the effects of varying the time step lengths with continuous data. Upon 

completion of the simulations, the multi-state model was used for a four-year dataset to 

estimate winter survival and early emigration rates and examine covariate effects on 

model parameters. My results provide evidence that substantial numbers of juveniles are 

emigrating downstream in the fall and winter, indicating that maintaining high quality 

estuarine rearing habitat could promote resiliency within the population. This implies that 

previous estimates of low overwinter survival of Coho salmon within Freshwater Creek 

could be due to high emigration rates to alternative rearing locations. I expand on these 

conclusions and management implications throughout this discussion. 

Model Simulations 

 My simulation trials provide insight into the use of aggregating continuous 

detection data in mark-recapture models. Recent research has shown the importance of 

using simulations to explore the use of continuous data in both closed (Borchers et al. 

2014) and open (Barbour et al. 2013) mark-recapture models. I found that decreasing the 
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time interval reduced the amount of imposed error, which contrasts with results from 

Borchers et al. (2014). One explanation for this difference could be that Borchers et al. 

(2014) used a spatially explicit capture recapture model, where shortening the time 

interval length would reduce the amount of time for mixing between marked and 

unmarked individuals, and thus newly captured individuals would be more likely to be 

recaptured. 

It is interesting to note that in my simulations the 95% confidence interval for the 

imposed error did not overlap the generating model value for the movement parameter 

with the longest time interval of 24 days (figure 5). Barbour et al. (2013) made a similar 

observation with the apparent survival parameter estimates obtained from a CJS model. 

They found that apparent survival estimates had consistently positive values for imposed 

error when aggregating continuous detection data. Overall, I found that decreasing the 

time-step length reduced the amount of imposed error for both survival and movement.  

My simulations were made to imitate processes in Freshwater Creek, and 

subsequently test the performance of my multi-state model. The generating model used a 

daily time step to simulate encounter histories and then aggregated the data into various 

time intervals. Similar to the findings of Barbour et al. (2013), I found that I had 

consistent positive values for imposed error for my survival estimates. This imposed error 

is a result of violation of the assumption that sampling occasions are instantaneous. 

Sampling occasions are not instantaneous when continuous time data is aggregated into 
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discrete units. It is important to note that when aggregating continuous data into discrete 

time bins, the multi-state model will estimate survival up until the beginning of the last 

occasion. If it is known exactly what the model is estimating, then there shouldn’t be any 

source of unexpected error. However, for winter movement, there appears to be some 

unexpected error that remains unaccounted for. I speculate that for the multi-state model, 

this unexpected error is because an individual’s transition probability is conditional on 

survival.  

Benefits of Multi-state Model 

My methods differ significantly from previous research estimating overwinter 

survival and movement. One key difference is that this study uses a multi-state model, 

which simultaneously estimates survival and movement. With proper designation of 

model states, multi-state models can account for permanent emigration from the study 

area. Horton et al. (2011) observed that CJS model estimates were consistently biased 

low when compared to a multi-state model because the CJS model does not account for 

permanent emigration from the study area. My multi-state model accounted for 

emigration from upper Freshwater Creek, as all fish migrating downstream are subject to 

detection in lower Freshwater Creek. Broadly, use of the multi-state model reduces bias, 

as it accounts for survival and movement in the same model structure. 
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Another difference in my approach is that by dividing the continuous antenna 

detections into many discrete time intervals, I was able to separately estimate survival 

and movement as a function of both time (week) and space (upper and lower Freshwater 

Creek). Preceding studies on juvenile Coho survival censored winter detections, and 

aggregated spring detection data at the trap to estimate winter survival. My multi-state 

model use data from both winter and spring, and aggregates detection data into weekly 

bins rather than seasonal units of time. Therefore, if a fish is detected in more than one 

week at a site, the detections are noted in different occasions in the encounter history for 

all unique weekly detections. Overall, this approach uses more of the available data, 

which could decrease the amount of imposed error, and increase precision in parameter 

estimates. 

 It should also be noted that classification of spring smolt migrants and early 

migrants also varied between my study and results from previous studies in Freshwater 

Creek. Previously, to have been considered a spring smolt migrant, fish would have had 

to survive throughout the winter and migrate to the downstream migrant trap (Rebenack 

et al. 2015; Ward and Anderson 2016). My project utilized an antenna further upstream 

near the Howard Heights bridge to classify early migrants and spring smolt migrants. I 

took this approach to improve detection in my lower Freshwater Creek during the winter, 

as individual detections were sparse at the antenna below the downstream migrant trap.    
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Apart from model structure, one final difference when comparing my project to 

previous studies, is that I used PIT tag/antenna data for fish that were on average larger. 

All fish in my model were tagged exclusively with HDX tags, where previous studies 

used a mix of HDX and full-duplex (FDX) tags (Rebenack et al. 2015; Ward and 

Anderson 2016). FDX tags are smaller, which allows for tagging smaller fish. However, 

FDX tags cannot be detected at any of the stationary channel-spanning antennas on 

Freshwater Creek. FDX tags could only be detected with handheld antennas used at the 

time of tagging in the fall, or recapture in the spring at the trap. HDX tags could be 

detected at all stationary antenna sites as well as the trap. Any inference made from my 

results is limited to fish that are greater than or equal to 65 mm in length, which was the 

size allowable for PIT tagging during the course of the study.  

Freshwater Creek Results and Management Implications 

My estimate for overwinter survival of spring smolt migrants is substantially 

higher than previous estimates throughout the Pacific Northwest, but these estimates are 

not directly comparable due to the formulation of the different models used. I estimated 

that survival for spring smolt migrants ranged from ranged from 0.87 (95% CI 0.78-0.92) 

to 0.90 (95% CI 0.81-0.94), whereas previous estimates in Freshwater Creek have ranged 

from 3-49% (Rebenack et al. 2015; Ward and Anderson 2016). Likewise, estimates of 

overwinter survival in other coastal streams in California (45%), Oregon (4-13%) , 
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Washington (5-15%)  and British Columbia (67-72%) were also lower than my estimate 

(Tschaplinski and Hartman 1983; Ebersole et al. 2006; Brakensiek and Hankin 2007; 

Roni et al. 2012). However, my estimates account for early emigrants, whereas previous 

studies did not. If I transform my estimates to apparent survival by taking the product of 

overwinter survival and overwinter fidelity to the upstream state (i.e., 1 - early emigration 

probability), my estimates of apparent overwinter survival range from 0.55-0.58, which 

are still higher than previous results from Freshwater Creek. Perhaps other differences in 

methodology, as described in the above section, could explain these contrasting results 

for overwinter survival estimates.  

In addition to spring migrant survival, overwinter survival for early emigrants was 

also estimated as a parameter in the multi-state model. Specifically, these estimates are 

for juvenile Coho Salmon that moved into and reared in lower Freshwater Creek during 

the fall and winter. Estimates for early migrant overwinter survival ranged from 0.59 

(95% CI 0.54-0.64) to 0.65 (95% CI 0.60-0.69), and was substantially lower than that of 

juveniles that reared upstream. However, my early migrant survival estimates are 

analogous to apparent survival in CJS models, as it is likely that at any given week, 

substantial numbers of fish could permanently migrate to an unobservable state (e.g., 

Humboldt Bay, Pacific Ocean). 

Based on results from my model, smaller fish were predicted to have lower winter 

survival rates in the upstream rearing state when compared to larger conspecifics. There 
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could be multiple explanations for this relationship. For example, a size-dependent 

dominance hierarchy could reduce fitness for smaller individuals competing for resources 

such as food, cover, and flow refugia (Chapman 1962). Alternatively, predators in 

Freshwater Creek may be limited by gape size, and prey more frequently on smaller fish, 

as has been demonstrated with other salmonids (Parker 1971; Hargreaves and LeBrasseur 

1986). Studies suggesting that fish size has a positive effect on winter survival rates 

(Quinn and Peterson 1996; Ebersole et al. 2006), did not account for a size-dependent 

relationship with early migration. Use of the multi-state model was advantageous in 

evaluating the relationship between fish size and survival of spring migrants, as it 

accounted for early migrants within the model. 

Estimates for early migration rates indicate that a large percentage of juveniles 

migrate downstream in the fall and winter in Freshwater Creek. Over four years, 

estimates for early migration in this study ranged from 0.34 (95% CI 0.32-0.36) to 0.40 

(95% CI 0.38-0.43), which was slightly larger than previous estimates within Freshwater 

Creek (2-35%) (Rebenack et al. 2015; Ward and Anderson 2016), were comparable to 

Oregon estimates (25-40%) (Miller and Sadro 2003; Jones et al. 2014), and were lower 

than Washington estimates (44-84%) (Roni et al. 2012). These results suggest that early 

migration into the estuary or ocean is common life history strategy for Coho salmon and 

these non-natal rearing habitats are potentially extremely valuable to population 

production and sustainability.  
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Based on results from my model, smaller fish were predicted to have higher rates 

of early migration when compared to larger conspecifics. Roni et al. (2012) also observed 

a similar size dependent relationship for early migrants. It may be that with limited 

habitat, a dominance hierarchy influences the downstream displacement of smaller fish, 

as was demonstrated by Chapman (1962). However, historically low abundances of 

adults returning in recent years could suggest that density-independent drivers could be 

affecting early emigration. Perhaps juvenile Coho Salmon emigrate early to the estuary to 

have access to new rearing opportunities that may provide better food resources. 

Moreover, multiple migration patterns may exist to promote resiliency within a 

population. Perhaps these smaller individuals are utilizing estuarine food resources to 

achieve a larger size before ocean entry. Coho Salmon that rear in the estuary may have 

higher growth rates than fish that remain upstream (Koski 2009), and larger individuals 

generally have higher marine survival (Holtby et al. 1990; Bennett et al. 2015). Perhaps 

more importantly, recent studies in Oregon and Washington have shown that early 

migrants can make substantial contributions to adult returns (Jones et al. 2014; Bennett et 

al. 2015). Further research in Freshwater Creek, with increased tagging rates of both 

early- and spring- migrants, is necessary to more accurately determine if there are any 

differences in marine survival rates between individuals that express these two different 

life histories.  
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Stream flow appeared to have a positive effect on rates of early emigration. 

However, this relationship was not as strong as was suspected, as the 95% confidence 

interval for the beta parameter overlapped 0. I speculate that the reason for this is because 

that in addition to stream flow affecting movement rates, timing of increased runoff is 

also important. Perhaps there is a major redistribution of fish with the first round of 

winter freshets, followed by minimal movement, as was observed by Roni et al. (2012). 

In a general sense, fish could move when stream flow increases, but that rate of 

movement decreases through time. Stream flow has previously been shown to affect 

movement rates of juvenile Coho Salmon (Hartman et al. 1982; Tschaplinski and 

Hartman 1983; Giannico and Healey 1998), but the exact mechanism has yet to be 

examined. It may be that these fish are being forced downstream during higher flows, or 

they are moving of their own volition to exploit estuarine resources. If juvenile Coho 

Salmon are moving involuntarily in response to higher streamflow, variation in 

precipitation and runoff patterns due to drought, climate change, or the Pacific Decadal 

Oscillation could affect early emigration rates. Alternatively, fish may be moving 

voluntarily as connectivity increases with higher streamflow. Perhaps early migration is 

an expression of an alternate life history strategy that could promote resiliency within the 

population. Research has shown that diversity within adult salmonids provides stability 

within metapopulations (Schindler et al. 2010; Carlson and Satterthwaite 2011). It could 
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be that diversity within juvenile portion of the life-cycle, specifically differences in 

migration timing, may have a portfolio effect on the population level.  

Potential Biases and Future Research 

Although my research has accounted for some of the bias inherent in previous 

methodology, some potential biases remain. This project did not account for any PIT tag 

loss or mortality as a result of tagging, but any tag loss or tag induced mortality would 

bias survival low. I assumed that the effects of mortality related to tagging were minimal. 

Rebenack (2015) found zero PIT tag induced mortality in her study, and methods for 

tagging remained unchanged for my project in Freshwater Creek. Tag loss was estimated 

to be 5% in Prairie Creek, California (Bell et al. 2001). However my project utilized fish 

that were larger by 10 mm in fork length, and other research suggests fork length has a 

positive effect on tag retention rates (Tiffan et al. 2015). Another source of potential bias 

is the presence of fish that do not migrate downstream during the course of the study. 

Some juvenile Coho salmon do stay in Freshwater Creek for up to two years. Bell (2007) 

found that 28% of fish displayed the 2-year residency life history in for one of the years 

in his study, and that the 2-year residency has a negative relationship with fish size. It is 

possible any potential bias caused by 2-year residency was somewhat reduced by the size 

of fish that I was tagging, as the individuals used in my project were larger than those 

used by Bell (2007) and Rebenack (2015).  
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It was advantageous to work in Freshwater Creek, as it has many antenna sites. 

However, none of the PIT tag readers can detect fish that are tagged with FDX tags. Use 

of FDX tags would allow for tagging and therefore detection of smaller fish, but antennas 

that can detect both HDX and FDX tags are costly, and many monitoring and research 

projects are limited by funding. It would also be interesting to use my study design in 

other coastal streams in northern California to compare results among different basins. 

However, other basins typically do not have as many antenna sites as Freshwater Creek. 

The use of time varying occasions on a weekly time step makes for a very low return rate 

in the encounter history, so it would seem that having more antennas in the study area 

would be beneficial. It is likely that my project would have not been possible without the 

large quantity of PIT tag antennas maintained throughout Freshwater Creek.  

Although my modeling approach provides new insight into the dynamics of 

winter survival and movement of juvenile Coho Salmon, there is potential for future 

research. I did not account for individual heterogeneity in detection probability. An 

individual fish must move and swim past an antenna to be detected. Some fish will move 

during some weeks, and others will not. I used group covariates for the year and tagging 

reach to account for some sources of variation in detection probability, but there is likely 

heterogeneity on the individual level that I was unable to account for with my model in 

Program Mark. A Bayesian approach using a random effect for individual heterogeneity 

in detection could be used to potentially improve model performance.  
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Conclusions 

Previously low estimates for apparent overwinter survival using CJS models  

(Rebenack et al. 2015; Ward and Anderson 2016) suggested that survival of juvenile 

Coho Salmon during the winter could limit smolt production of spring migrants in 

Freshwater Creek, but these estimates were inherently biased low because they did not 

include emigration from study area. This potential source of bias was suspected by 

Brakensiek and Hankin (2007), and demonstrated by Rebenack et al. (2015) and this 

study. My results provide evidence that a large percentage of these apparent mortalities in 

Freshwater Creek are early emigrants. High rates of early migration downstream could 

indicate a lack of suitable winter rearing habitat, or a life history strategy that provides 

juveniles with opportunities for increased growth in an estuarine environment. Future 

research examining relationships between density of juveniles and early migration rates 

could provide some insight into potential drivers in downstream movement. Preferred 

winter habitat for juvenile Coho Salmon rearing upstream consists of pools having low 

water velocity including backwaters, alcoves, and beaver ponds (Nickelson et al. 1992; 

Bell et al. 2001). My results provide evidence that survival rates are high for fish that rear 

upstream throughout the winter. Thus, restoration aimed at increasing the amount of 

winter rearing habitat may increase retention in natal rearing environments. However, 

given that a large percentage of juveniles are moving downstream in the fall and winter, 

restoration in the estuary would likely benefit the early migrants. Freshwater Creek and 
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many other estuaries in the Pacific Northwest have been highly altered. Streams have 

been diked and channelized, resulting in a reduction in habitat loss and degradation. 

Restoration aimed at providing fish passage through modification of tide gates, as well as 

creation of new off-channel features are often utilized immediately (Wallace et al. 2015). 

Historically, research and restoration for Coho Salmon has been focused on improving 

habitat higher in the watershed. However, given that large percentages of juveniles utilize 

downstream rearing environments, further research and monitoring would likely be 

important in guiding restoration efforts that promote resiliency and potential recovery of 

Coho Salmon. 
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APPENDIX A 

Appendix A: Model parameters and associated models for survival (S), movement (ѱ), 

and detection (p). All possible combinations of each parameter model were run. 

Model Parameter and Model Description 

S~  

   Season*Strata Survival is estimated independently for each 

season and strata 

 

   Season*Strata*Year Survival is estimated independently for each 

season, strata and year 

 

   Season*Strata*Year+Reach Survival is estimated independently for each 

season, strata and year, with an additive effect of 

reach 

 

 ѱ (A to B)~  

   Season Movement is estimated independently for each 

season  

 

   Season*Year+Reach Movement is estimated independently for each 

season and Year, with an additive effect of reach 

 

p~  

   Season*Year+Reach Detection is estimated independently for each 

season and year, with an additive effect of reach 

 

   Season*Strata*Year Detection is estimated independently for each 

season, strata and year 

 

   Season*Strata*Year+Reach Detection is estimated independently for each 

season, strata and year, with an additive effect of 

reach 
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APPENDIX B 

Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model. 

 
install.packages("RMark") 

install.packages("dplyr") 

library(RMark) 

library(dplyr) 

 

 

#Assign number of simulations to run and create matrix to store results for parameters of interest 

nsims<-1000 

results<-matrix(nrow=nsims, ncol=6)  

colnames(results) <- c("S8day", "Psi8day", "S15day", "Psi15day", "S24day", "Psi24day") 

 

 

   

nA=1600                       #Number Marked in State A 

nB=400                        #Number Marked in State B 

nC=0                          #Number Marked in State C 

occasions=241                 #Number of Occasions 

seasons <- (occasions-1)/2    #Number of intervals per season  

 

#Seasonal Survival in states A, B, and C 

SA_Winter <- 0.3 

SA_Spring <- 0.6 

SB_Winter <- 0.3 

SB_Spring <- 0.6 

SC_Winter <- 0.3 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

SC_Spring <- 0.3 

 

 

#Seasonal detection in states A, B, and C 

pA_Winter <- 0.2 

pA_Spring <- 0.3 

pB_Winter <- 0.2 

pB_Spring <- 0.5 

pC_Winter <- 0 

pC_Spring <- 0 

 

#Seasonal movement in states A, B, and C 

psiAB_Winter <- 0.2 

psiAB_Spring <- 0.5 

psiBC_Winter <- 0.2 

psiBC_Spring <- 0.5 

psiCB_Winter <- 0 

psiCB_Spring <- 0 

 

#Daily Survival 

SA1 <- SA_Winter^(1/seasons) 

SA2 <- SA_Spring^(1/seasons) 

SB1 <- SB_Winter^(1/seasons) 

SB2 <- SB_Spring^(1/seasons) 

SC1 <- SC_Winter^(1/seasons) 

SC2 <- SC_Spring^(1/seasons) 

 

#Daily Detection 

pA1 <- 1-((1-pA_Winter)^(1/seasons)) 

pA2 <- 1-((1-pA_Spring)^(1/seasons)) 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

pB1 <- 1-((1-pB_Winter)^(1/seasons)) 

pB2 <- 1-((1-pB_Spring)^(1/seasons)) 

pC1 <- pC_Winter/seasons 

pC2 <- pC_Spring/seasons 

 

#Daily Movement (No movement from A to B or from C to B in this simulation) 

psiAB1 <- 1-((1-psiAB_Winter)^(1/seasons)) 

psiAB2 <- 1-((1-psiAB_Spring)^(1/seasons)) 

psiBC1 <- 1-((1-psiBC_Winter)^(1/seasons)) 

psiBC2 <- 1-((1-psiBC_Spring)^(1/seasons)) 

psiCB1 <- psiCB_Winter/seasons  

psiCB2 <- psiCB_Spring/seasons 

 

#This step provides parameter values in each state for each interval/occasion  

#Parameter values are constant within a season 

surv.vectA = c(rep(SA1,seasons), rep(SA2,seasons))   

surv.vectB = c(rep(SB1,seasons), rep(SB2,seasons))    

surv.vectC = c(rep(SC1,seasons), rep(SC2,seasons))    

 

 

detect.vectA = c(rep(pA1,seasons), rep(pA2,seasons))  

detect.vectB = c(rep(pB1,seasons), rep(pB2,seasons))  

detect.vectC = c(rep(pC1,seasons), rep(pC2,seasons))  

 

 

psi.vectAB <- c(rep(psiAB1,seasons), rep(psiAB2,seasons))   

psi.vectBC <- c(rep(psiBC1,seasons), rep(psiBC2,seasons))    

psi.vectCB <- c(rep(psiBC1,seasons), rep(psiCB2,seasons))   
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

for (s in 1:nsims) 

{ 

#Creates State Matrix (This represents the 'true' or latent state of the individual) 

  stateMat <- data.frame(matrix(nrow=nA+nB+nC, ncol=(occasions)))  

  names(stateMat) = c(1:occasions)  

   

  #Populate first occasion with marked animals 

  stateMat[,1] = c(rep(1, nA), rep(2, nB), rep(3, nC))   

     

     

  #Create Encounter History Matrix (This represents the observed state of the individual) 

  EH = data.frame(matrix(nrow=nA+nB+nC, ncol=(occasions)))  

  names(EH) = c(1:occasions)  

  EH[,1] = c(rep(1, nA), rep(2, nB), rep(3, nC)) #Populate first occasion with marked animals 

   

  ################################################## 

  #Simulates encounter history on a daily time step  

  ################################################## 

  for (row in 1:nrow(EH)) 

  { 

    for (col in 2:ncol(EH)) 

    { 

       

      if(stateMat[row,col-1]==1) #If animal was in state A in occ-1... 

      { 

        survA = runif(1) 

         

        if(survA <= surv.vectA[col-1]) #If animal survived in state A... 

        {  
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
  

 

          transAB <- runif(1)          

          if(transAB >= psi.vectAB[col-1]) #If animal stayed in state A after surviving...  

          {   

            stateMat[row,col]=1 #Assigns 1 in State Matrix for animal that is in state A 

             

            detectA = runif(1) 

            if(detectA <= detect.vectA[col-1]) #If animal was detected in state A... 

            { 

              EH[row, col]=1 #Assigns 1 in Encounter History for animal detected in state A 

            }else #...animal not detected in state A 

               

            { 

              EH[row, col]=0 #Assigns 0 in Encounter History for animal that was not detected  

            } 

             

          }else#...animal survived in state A and moved to state B  

             

          { 

            stateMat[row,col]=2 #Assigns 2 in State Matrix for animal that is in state B 

            detectB = runif(1) 

            if(detectB <= detect.vectB[col-1]) #If animal was detected in State B... 

            { 

              EH[row,col]=2 #Assigns 2 in Encounter History for animal detected in state B 

            }else #...animal not detected in state B 

               

            { 

              EH[row, col]=0 #Assigns 0 in Encounter History for animal that was not detected 

            } 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

          } 

        }else#...animal did not survive in state A and was not encountered 

 

        { 

          stateMat[row,col:ncol(stateMat)]=0 #Assigns 0 in State Matrix for dead animal 

          EH[row, col:ncol(EH)] = 0 #Assigns 0 in Encounter History for animal that was not detected 

          break 

        }   

         

      }else#...animal was not in state A on occ-1 

         

         

        if(stateMat[row,col-1]==2) #If animal was in state B in occ-1... 

        {   

          survB = runif(1) 

          if(survB <= surv.vectB[col-1]) #If animal survived in state B... 

          { 

            transBC <- runif(1) 

            if(transBC >= psi.vectBC[col-1]) #If animal stayed in state B after surviving... 

            { 

              stateMat[row,col]=2 #Assigns 2 in State Matrix for animal that is in state B 

              detectB = runif(1) 

               

              if(detectB <= detect.vectB[col-1]) #If animal was detected in state B...  

              { 

                EH[row, col]=2 #Assigns 2 in Encounter History for animal detected in state B 

              } else #...animal not detected in State B 

                 

              { 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

                EH[row, col]=0 #Assigns 0 in Encounter History for animal that was not detected 

              }               

            }else #...Animal survived in state B and moved to state C 

               

            { 

              stateMat[row,col]=3 #Assigns 3 in State Matrix for animal that is in state C 

              detectC = runif(1) 

               

              if(detectC <= detect.vectC[col-1]) #If animal was detected in State C...  

              { 

                EH[row,col]=3 #Assigns 3 in Encounter History for animal detected in state C 

              }else #...Animal not detected in State C 

                 

              { 

                EH[row, col]=0 #Assigns 0 in Encounter History for animal that was not detected 

              } 

            } 

             

          }else #Animal did not survive and was not detected        

             

             

          { 

            stateMat[row,col:ncol(stateMat)]=0 #Assigns 0 in State Matrix for dead animal 

            EH[row, col:ncol(stateMat)] = 0 #Assigns 0 in Encounter History if dead or undetected  

            break 

             

          } 

           

        }else#...Animal was not in State A or B in occ-1 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
           

          if(stateMat[row,col-1]==3) #If animal was in State C in occ-1...  

          {   

            survC = runif(1) 

            if(survC <= surv.vectC[col-1]) #If animal survived in state C... 

            {     

              transCB <- runif(1) 

              if(transCB >= psi.vectCB[col-1]) #If animal stayed in state C after surviving 

              {     

                stateMat[row,col]=3 #Assigns 3 in State Matrix for animal that is in state C 

                detectC = runif(1) 

                 

                if(detectC <= detect.vectC[col-1]) #If animal was detected in State C...  

                { 

                  EH[row, col]=3 #Assigns 3 in Encounter History for animal detected in state C 

                }else #...animal was not detected in State C  

                   

                { 

                  EH[row, col]=0 #Assigns 0 in Encounter History for animal that was not detected 

                } 

                 

              }else#...animal survived in State C and moved to State B 

                 

                 

              { 

                stateMat[row,col]=2 #Assigns 2 in State Matrix for animal that is in state B 

                detectB = runif(1) 

                 

                if(detectB <= detect.vectB[col-1]) #If animal was detected in State B... 

                {   

                  EH[row,col]=2 #Assigns 2 in Encounter History for animal detected in state B 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

                }else #...animal was not detected in State B 

                   

                { 

                  EH[row, col]=0 #Assigns 0 in Encounter History for animal that was not detected 

                } 

              } 

               

            }else # Animal did not survive and was not detected       

               

            { 

              stateMat[row,col:ncol(stateMat)]=0 #Assigns 0 in State Matrix for dead animal 

              EH[row, col:ncol(stateMat)] = 0 #Assigns 0 in Encounter History if dead or undetected 

              break 

               

            } 

             

          }else #...animal was not in State A, B, or C in occ-1 (It was dead)   

             

             

          { 

            stateMat[row,col]=0 #Assigns 0 in Encounter History if dead or undetected 

          } 

    } 

  } 

 

EH <- replace(EH, EH==1,"A") 

EH <- replace(EH, EH==2,"B") 

 

#################################### 

#Aggregates data into 8 day time step 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
#################################### 

 

intLength <- 8 

index <- seq(2, dim(EH)[2], by=intLength) 

newDat <- data.frame(matrix(nrow=dim(EH)[1], ncol=length(index))) 

 

for(i in index[-length(index)]) 

{ 

  if(i==index[1]) 

  { 

    newDat[,1] <- EH[,1] 

    newcol = 2 

     

  }else  

    { 

    newcol = newcol+1 

    } 

   

  startcol <- i 

  endcol <- i+intLength-1 

   

  temp <- apply(EH[,startcol:endcol], 1, paste, collapse = '') 

  newDat[,newcol] <- 0 

   

  #individuals detected in both state A and B are assigned to state B 

  newDat[grep('A', temp), newcol] <- "A"  

  newDat[grep('B', temp), newcol] <- "B"   

} 

 

#Format data for use in RMark 

mark.final<-data.frame(apply(newDat, 1, paste, collapse="")) 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

colnames(mark.final) <- "ch" 

mark.final$ch<-as.character(mark.final$ch) 

#Process data 

mstrata.process=process.data(mark.final,model="Multistrata") 

 

#Create design data (Fixing movement from B to A to zero) 

mstrata.ddl=make.design.data(mstrata.process,parameters= 

                               list(Psi=list(subtract.stratum=c("A","B")))) 

mstrata.ddl$Psi$fix=with(mstrata.ddl, ifelse(mstrata.ddl$Psi$stratum=="B" & 

                                             mstrata.ddl$Psi$tostratum=="A", 0, NA)) 

 

#Create column in design data for season(Winter = 1, Spring = 0)  

 

mstrata.ddl$S$Winter=1 

mstrata.ddl$S$Winter[mstrata.ddl$S$occ>(max(mstrata.ddl$S$occ)/seasons)]=0 

mstrata.ddl$S$Winter=factor(mstrata.ddl$S$Winter) 

 

mstrata.ddl$p$Winter=1 

mstrata.ddl$p$Winter[mstrata.ddl$p$occ>(max(mstrata.ddl$p$occ)/seasons)]=0 

mstrata.ddl$p$Winter=factor(mstrata.ddl$p$Winter) 

 

mstrata.ddl$Psi$Winter=1 

mstrata.ddl$Psi$Winter[mstrata.ddl$Psi$occ>(max(mstrata.ddl$p$occ)/seasons)]=0 

mstrata.ddl$Psi$Winter=factor(mstrata.ddl$Psi$Winter) 

 

#Create parameter-specific models 

p.WinterPlusStratum=list(formula=~-1+Winter:stratum) 

S.WinterPlusStratum=list(formula=~-1+Winter:stratum) 

Psi.WinterPlusStratum=list(formula=~-1+Winter:stratum:tostratum) 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

#Run model 

model <-mark(mstrata.process, mstrata.ddl, model.parameters=list(S=S.WinterPlusStratum,  

             p=p.WinterPlusStratum,Psi=Psi.WinterPlusStratum), adjust = FALSE) 

 

model.results <- suppressWarnings(summary(model, se=T)) 

results[s,1]<- model.results$reals$S[1,3] #extracts survival est 

results[s,2] <- model.results$reals$Psi[1,3] #extracts Psi 

 

#After storing results, this will remove any mark files from the working directory 

rm(model) 

cleanup(ask = FALSE) 

 

##################################### 

#Aggregates data into 15 day time step 

##################################### 

 

intLength <- 15 

index <- seq(2, dim(EH)[2], by=intLength) 

newDat <- data.frame(matrix(nrow=dim(EH)[1], ncol=length(index))) 

 

for(i in index[-length(index)]) 

{ 

  if(i==index[1]) 

  { 

    newDat[,1] <- EH[,1] 

    newcol = 2 

     

  }else  

  { 

    newcol = newcol+1 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

  } 

   

  startcol <- i 

  endcol <- i+intLength-1 

   

  temp <- apply(EH[,startcol:endcol], 1, paste, collapse = '') 

  newDat[,newcol] <- 0 

   

  #individuals detected in both state A and B are assigned to state B 

  newDat[grep('A', temp), newcol] <- "A"  

  newDat[grep('B', temp), newcol] <- "B"   

} 

 

 

#Format data for use in RMark 

mark.final<-data.frame(apply(newDat, 1, paste, collapse="")) 

colnames(mark.final) <- "ch" 

mark.final$ch<-as.character(mark.final$ch) 

 

#Process data 

mstrata.process=process.data(mark.final,model="Multistrata") 

 

#Create design data (Fixing movement from B to A to zero) 

mstrata.ddl=make.design.data(mstrata.process,parameters= 

                               list(Psi=list(subtract.stratum=c("A","B")))) 

mstrata.ddl$Psi$fix=with(mstrata.ddl, ifelse(mstrata.ddl$Psi$stratum=="B" & 

                                             mstrata.ddl$Psi$tostratum=="A", 0, NA)) 

 

#Create column in design data for season(Winter = 1, Spring = 0) 

mstrata.ddl$S$Winter=1 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

mstrata.ddl$S$Winter[mstrata.ddl$S$occ>(max(mstrata.ddl$S$occ)/seasons)]=0 

mstrata.ddl$S$Winter=factor(mstrata.ddl$S$Winter) 

mstrata.ddl$p$Winter=1 

mstrata.ddl$p$Winter[mstrata.ddl$p$occ>(max(mstrata.ddl$p$occ)/seasons)]=0 

mstrata.ddl$p$Winter=factor(mstrata.ddl$p$Winter) 

 

mstrata.ddl$Psi$Winter=1 

mstrata.ddl$Psi$Winter[mstrata.ddl$Psi$occ>(max(mstrata.ddl$p$occ)/seasons)]=0 

mstrata.ddl$Psi$Winter=factor(mstrata.ddl$Psi$Winter) 

 

#Create parameter-specific models 

p.WinterPlusStratum=list(formula=~-1+Winter:stratum) 

S.WinterPlusStratum=list(formula=~-1+Winter:stratum) 

Psi.WinterPlusStratum=list(formula=~-1+Winter:stratum:tostratum) 

 

#Run model 

model2 <-mark(mstrata.process, mstrata.ddl, model.parameters=list(S=S.WinterPlusStratum,  

              p=p.WinterPlusStratum,Psi=Psi.WinterPlusStratum), adjust = FALSE) 

 

model2.results <-suppressWarnings(summary(model2, se=T)) 

results[s,3]<- model2.results$reals$S[1,3] #extracts survival est 

results[s,4] <- model2.results$reals$Psi[1,3] #extracts Psi 

 

#After storing results, this will remove any mark files from the working directory 

rm(model2) 

cleanup(ask = FALSE) 

 

 

##################################### 

#Aggregates data into 24 day time step 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

##################################### 

 

intLength <- 24 

index <- seq(2, dim(EH)[2], by=intLength) 

newDat <- data.frame(matrix(nrow=dim(EH)[1], ncol=length(index))) 

 

for(i in index[-length(index)]) 

{ 

  if(i==index[1]) 

  { 

    newDat[,1] <- EH[,1] 

    newcol = 2 

     

  }else  

  { 

    newcol = newcol+1 

  } 

   

  startcol <- i 

  endcol <- i+intLength-1 

   

  temp <- apply(EH[,startcol:endcol], 1, paste, collapse = '') 

  newDat[,newcol] <- 0 

   

  #individuals detected in both state A and B are assigned to state B 

  newDat[grep('A', temp), newcol] <- "A"  

  newDat[grep('B', temp), newcol] <- "B"   

} 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

#Format data for use in RMark 

mark.final<-data.frame(apply(newDat, 1, paste, collapse="")) 

colnames(mark.final) <- "ch" 

mark.final$ch<-as.character(mark.final$ch) 

 

 

#Process data 

mstrata.process=process.data(mark.final,model="Multistrata") 

 

#Create design data (Fixing movement from B to A to zero) 

mstrata.ddl=make.design.data(mstrata.process,parameters= 

                               list(Psi=list(subtract.stratum=c("A","B")))) 

mstrata.ddl$Psi$fix=with(mstrata.ddl, ifelse(mstrata.ddl$Psi$stratum=="B" & 

                                             mstrata.ddl$Psi$tostratum=="A", 0, NA)) 

 

#Create column in design data for season(Winter = 1, Spring = 0) 

mstrata.ddl$S$Winter=1 

mstrata.ddl$S$Winter[mstrata.ddl$S$occ>(max(mstrata.ddl$S$occ)/seasons)]=0 

mstrata.ddl$S$Winter=factor(mstrata.ddl$S$Winter) 

 

mstrata.ddl$p$Winter=1 

mstrata.ddl$p$Winter[mstrata.ddl$p$occ>(max(mstrata.ddl$p$occ)/seasons)]=0 

mstrata.ddl$p$Winter=factor(mstrata.ddl$p$Winter) 

 

mstrata.ddl$Psi$Winter=1 

mstrata.ddl$Psi$Winter[mstrata.ddl$Psi$occ>(max(mstrata.ddl$p$occ)/seasons)]=0 

mstrata.ddl$Psi$Winter=factor(mstrata.ddl$Psi$Winter) 

 

#Create parameter-specific models 

p.WinterPlusStratum=list(formula=~-1+Winter:stratum) 
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Appendix B: R code for simulating an encounter histories of aggregated detection data evaluation in a multi-state mark-

recapture model (continued). 
 

S.WinterPlusStratum=list(formula=~-1+Winter:stratum) 

Psi.WinterPlusStratum=list(formula=~-1+Winter:stratum:tostratum) 

 

#Run model 

model3 <-mark(mstrata.process, mstrata.ddl, model.parameters=list(S=S.WinterPlusStratum,  

              p=p.WinterPlusStratum,Psi=Psi.WinterPlusStratum), adjust = FALSE) 

 

model3.results <-suppressWarnings(summary(model3, se=T)) 

results[s,5]<- model3.results$reals$S[1,3] #extracts survival est 

results[s,6] <- model3.results$reals$Psi[1,3] #extracts Psi 

 

#After storing results, this will remove any mark files from the working directory 

rm(model3) 

cleanup(ask = FALSE) 

 

} 

 

#Creates a csv file for the simulation results  

write.csv(results, "G:/My Drive/Sim Results/N2000_S0.3_Psi0.1.csv")  
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APPENDIX C 

Appendix C: Weekly survival probabilities for state and season. 

State Season Estimate 95% CI 

Lower 

95% CI 

Upper 

Upstream Winter 0.996565 0.9806255 0.999399 

Upstream Spring 0.99618 0.5787837 0.9999798 

Downstream Winter 0.979132 0.9624786 0.9884819 

Downstream Spring 0.845668 0.8193503 0.8687652 
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APPENDIX D 

Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River. 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2013 1 0.0186392 0.0143961 0.0241022 10.92 

2013 2 0.0185994 0.0143446 0.0240855 8.43 

2013 3 0.0185976 0.0143422 0.0240848 8.32 

2013 4 0.0185947 0.0143385 0.0240836 8.14 

2013 5 0.0186099 0.0143582 0.0240899 9.09 

2013 6 0.0186486 0.0144083 0.0241062 11.50 

2013 7 0.0188448 0.0146614 0.0241927 23.69 

2013 8 0.0186422 0.0144000 0.0241035 11.11 

2013 9 0.0189544 0.0148016 0.0242438 30.44 

2013 10 0.0187110 0.0144891 0.0241331 15.40 

2013 11 0.0186420 0.0143998 0.0241034 11.10 

2013 12 0.0186093 0.0143573 0.0240896 9.05 

2013 13 0.0185873 0.0143288 0.0240805 7.68 

2013 14 0.0189656 0.0148159 0.0242491 31.13 

2013 15 0.0187453 0.0145334 0.0241481 17.53 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2013 16 0.0186211 0.0143727 0.0240946 9.79 

2013 17 0.0189545 0.0148017 0.0242438 30.45 

2013 18 0.0206420 0.0167994 0.0253408 129.83 

2013 19 0.0302127 0.0204476 0.0444300 576.14 

2013 20 0.0218101 0.0179106 0.0265355 194.06 

2013 21 0.0204891 0.0166349 0.0252135 121.16 

2013 22 0.0000084 0.0000035 0.0000200 496.96 

2013 23 0.0036733 0.0026241 0.0051397 239.87 

2013 24 0.1434735 0.1260445 0.1628635 78.69 

2013 25 0.0003909 0.0002302 0.0006637 334.64 

2013 26 0.0270525 0.0225258 0.0324587 154.54 

2013 27 0.1836166 0.1609144 0.2087251 66.25 

2013 28 0.2768944 0.2412790 0.3155804 43.77 

2013 29 0.2387373 0.2084365 0.2719297 52.21 

2013 30 0.3142394 0.2734990 0.3580574 36.19 

2013 31 0.1695755 0.1487540 0.1926519 70.33 

2013 32 0.3080193 0.2681234 0.3510044 37.41 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2013 33 0.3594213 0.3127056 0.4089633 27.64 

2013 34 0.3972657 0.3458282 0.4510784 20.84 

2013 35 0.4189399 0.3649459 0.4749480 17.05 

2013 36 0.4371690 0.3811209 0.4948688 13.90 

2013 37 0.4485212 0.3912422 0.5071993 11.96 

2013 38 0.4138762 0.3604688 0.4693889 17.93 

2014 1 0.0185457 0.0142747 0.0240633 5.07 

2014 2 0.0188144 0.0146223 0.0241789 21.81 

2014 3 0.0205327 0.0166822 0.0252491 123.64 

2014 4 0.0196268 0.0156394 0.0246053 71.04 

2014 5 0.0188602 0.0146811 0.0241997 24.64 

2014 6 0.0197518 0.0157900 0.0246827 78.44 

2014 7 0.0239385 0.0192417 0.0297469 302.90 

2014 8 0.0205934 0.0167476 0.0252997 127.08 

2014 9 0.0218053 0.0179067 0.0265298 193.81 

2014 10 0.0237178 0.0191407 0.0293566 292.07 

2014 11 0.0377155 0.0206691 0.0678467 838.36 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2014 12 0.0233509 0.0189559 0.0287349 273.83 

2014 13 0.0199432 0.0160168 0.0248079 89.68 

2014 14 0.0193573 0.0153088 0.0244498 54.93 

2014 15 0.0220603 0.0181127 0.0268448 207.38 

2014 16 0.0200180 0.0161041 0.0248591 94.04 

2014 17 0.0207087 0.0168699 0.0253984 133.59 

2014 18 0.0251617 0.0196865 0.0321098 361.26 

2014 19 0.0208049 0.0169702 0.0254837 139.00 

2014 20 0.0196030 0.0156105 0.0245910 69.63 

2014 21 0.0193186 0.0152607 0.0244288 52.61 

2014 22 0.3094455 0.2693556 0.3526225 37.13 

2014 23 0.2960258 0.2577697 0.3373788 39.82 

2014 24 0.0300814 0.0252144 0.0358532 149.92 

2014 25 0.0564776 0.0488876 0.0651652 122.15 

2014 26 0.1483973 0.1303404 0.1684711 77.02 

2014 27 0.1494396 0.1312490 0.1696589 76.68 

2014 28 0.2651701 0.2311838 0.3021890 46.28 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2014 29 0.3340836 0.2906811 0.3804904 32.36 

2014 30 0.3703984 0.3222826 0.4212329 25.64 

2014 31 0.3931736 0.3422317 0.4465506 21.56 

2014 32 0.4076382 0.3549625 0.4625257 19.02 

2014 33 0.4155893 0.3619826 0.4712707 17.63 

2014 34 0.4297039 0.3744857 0.4867285 15.19 

2014 35 0.4436024 0.3868519 0.5018638 12.80 

2014 36 0.4617670 0.4031017 0.5215106 9.70 

2014 37 0.4697895 0.4103120 0.5301377 8.34 

2014 38 0.4791011 0.4187080 0.5401113 6.76 

2015 1 0.0185194 0.0142405 0.0240526 3.41 

2015 2 0.0185466 0.0142760 0.0240637 5.13 

2015 3 0.0185905 0.0143330 0.0240818 7.88 

2015 4 0.0186896 0.0144615 0.0241238 14.07 

2015 5 0.0186435 0.0144017 0.0241041 11.19 

2015 6 0.0189977 0.0148567 0.0242645 33.10 

2015 7 0.0189996 0.0148592 0.0242654 33.22 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2015 8 0.0186128 0.0143620 0.0240911 9.27 

2015 9 0.0213612 0.0175157 0.0260285 169.78 

2015 10 0.0359396 0.0206490 0.0618380 781.17 

2015 11 0.0388731 0.0206768 0.0719070 874.26 

2015 12 0.0307111 0.0204792 0.0458160 595.42 

2015 13 0.0219644 0.0180368 0.0267240 202.29 

2015 14 0.0220271 0.0180866 0.0268027 205.63 

2015 15 0.0361863 0.0206525 0.0626565 789.27 

2015 16 0.0269676 0.0200930 0.0361078 442.55 

2015 17 0.0281500 0.0202606 0.0389892 492.95 

2015 18 0.0210264 0.0171946 0.0256898 151.35 

2015 19 0.0198035 0.0158517 0.0247157 81.48 

2015 20 0.0217688 0.0178761 0.0264864 191.85 

2015 21 0.0202593 0.0163802 0.0250336 108.01 

2015 22 0.0002031 0.0001129 0.0003654 362.30 

2015 23 0.0000005 0.0000002 0.0000016 613.50 

2015 24 0.0001489 0.0000805 0.0002753 375.41 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2015 25 0.0092223 0.0071018 0.0119682 200.76 

2015 26 0.1141247 0.1002943 0.1295876 89.78 

2015 27 0.2080113 0.1819765 0.2366930 59.70 

2015 28 0.1607547 0.1410964 0.1825697 73.03 

2015 29 0.1183268 0.1039977 0.1343343 88.05 

2015 30 0.1752154 0.1536425 0.1991049 68.66 

2015 31 0.2726592 0.2376316 0.3107456 44.67 

2015 32 0.3339041 0.2905255 0.3802880 32.40 

2015 33 0.3443190 0.2995653 0.3920166 30.43 

2015 34 0.3862870 0.3361877 0.4389157 22.78 

2015 35 0.4130124 0.3597056 0.4684394 18.08 

2015 36 0.4254102 0.3706765 0.4820354 15.93 

2015 37 0.4373121 0.3812482 0.4950245 13.88 

2015 38 0.4506923 0.3931822 0.5095506 11.59 

2016 1 0.0185486 0.0142785 0.0240645 5.25 

2016 2 0.0213747 0.0175282 0.0260429 170.52 

2016 3 0.0207860 0.0169506 0.0254667 137.94 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2016 4 0.0219992 0.0180645 0.0267675 204.14 

2016 5 0.0203887 0.0165247 0.0251332 115.43 

2016 6 0.0207989 0.0169640 0.0254782 138.66 

2016 7 0.0233202 0.0189395 0.0286845 272.29 

2016 8 0.0260742 0.0199204 0.0340630 403.02 

2016 9 0.0209159 0.0170839 0.0255853 145.21 

2016 10 0.0370693 0.0206631 0.0656288 817.85 

2016 11 0.0235332 0.0190504 0.0290395 282.93 

2016 12 0.0215162 0.0176568 0.0261967 178.22 

2016 13 0.0233421 0.0189512 0.0287204 273.39 

2016 14 0.0323087 0.0205569 0.0504326 655.22 

2016 15 0.0258860 0.0198776 0.0336482 394.52 

2016 16 0.0271822 0.0201279 0.0366165 451.85 

2016 17 0.0209618 0.0171301 0.0256282 147.76 

2016 18 0.0355676 0.0206432 0.0606143 768.84 

2016 19 0.0280979 0.0202544 0.0388585 490.77 

2016 20 0.0365130 0.0206568 0.0637484 799.93 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2016 21 0.0241899 0.0193482 0.0302059 315.13 

2016 22 0.0000015 0.0000005 0.0000042 569.78 

2016 23 0.0047526 0.0034688 0.0065086 228.94 

2016 24 0.0000028 0.0000010 0.0000073 543.90 

2016 25 0.0000404 0.0000194 0.0000839 430.52 

2016 26 0.0119737 0.0094095 0.0152259 189.61 

2016 27 0.0085597 0.0065529 0.0111743 203.93 

2016 28 0.0077469 0.0058837 0.0101942 208.18 

2016 29 0.0006255 0.0003839 0.0010192 314.76 

2016 30 0.0242692 0.0200662 0.0293263 159.24 

2016 31 0.1070526 0.0940478 0.1216141 92.82 

2016 32 0.0669164 0.0582684 0.0767433 114.52 

2016 33 0.1662258 0.1458479 0.1888216 71.34 

2016 34 0.2418833 0.2111437 0.2755350 51.48 

2016 35 0.2745092 0.2392247 0.3128579 44.28 

2016 36 0.3013322 0.2623489 0.3434114 38.75 

2016 37 0.3648825 0.3174673 0.4150728 26.64 
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Appendix D: Weekly early emigration rates, and average weekly streamflow at Little 

River (continued). 

Year Week Estimate 95% CI 

Lower 

95% CI 

Lower 

Average 

Streamflow 

(cfs) 

2016 38 0.3957026 0.3444539 0.4493496 21.11 
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APPENDIX E 

Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged. 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Downstream 2013 Winter 978 0.017 0.013 0.022 

Downstream 2013 Spring 978 0.074 0.059 0.091 

Downstream 2014 Winter 978 0.025 0.019 0.033 

Downstream 2014 Spring 978 0.055 0.043 0.071 

Downstream 2015 Winter 978 0.007 0.004 0.011 

Downstream 2015 Spring 978 0.042 0.031 0.057 

Downstream 2016 Winter 978 0.014 0.010 0.020 

Downstream 2016 Spring 978 0.040 0.030 0.054 

Upstream 2013 Winter 979 0.004 0.003 0.005 

Upstream 2013 Spring 979 0.022 0.016 0.030 

Downstream 2013 Winter 979 0.028 0.021 0.037 
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Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged (continued). 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Downstream 2013 Spring 979 0.117 0.095 0.144 

Upstream 2014 Winter 979 0.004 0.003 0.005 

Upstream 2014 Spring 979 0.017 0.012 0.026 

Downstream 2014 Winter 979 0.041 0.030 0.055 

Downstream 2014 Spring 979 0.089 0.072 0.109 

Upstream 2015 Winter 979 0.003 0.002 0.005 

Upstream 2015 Spring 979 0.008 0.004 0.015 

Downstream 2015 Winter 979 0.011 0.007 0.019 

Downstream 2015 Spring 979 0.068 0.051 0.090 

Upstream 2016 Winter 979 0.002 0.001 0.004 

Upstream 2016 Spring 979 0.009 0.006 0.013 

Downstream 2016 Winter 979 0.023 0.016 0.033 

Downstream 2016 Spring 979 0.065 0.050 0.084 
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Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged (continued). 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Upstream 2013 Winter 980 0.003 0.002 0.005 

Upstream 2013 Spring 980 0.021 0.015 0.029 

Downstream 2013 Winter 980 0.026 0.019 0.035 

Downstream 2013 Spring 980 0.111 0.088 0.139 

Upstream 2014 Winter 980 0.004 0.002 0.005 

Upstream 2014 Spring 980 0.016 0.011 0.025 

Downstream 2014 Winter 980 0.039 0.028 0.053 

Downstream 2014 Spring 980 0.084 0.066 0.106 

Upstream 2015 Winter 980 0.003 0.002 0.005 

Upstream 2015 Spring 980 0.008 0.004 0.014 

Downstream 2015 Winter 980 0.011 0.006 0.018 

Downstream 2015 Spring 980 0.064 0.048 0.086 

Upstream 2016 Winter 980 0.002 0.001 0.003 
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Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged (continued). 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Upstream 2016 Spring 980 0.008 0.006 0.012 

Downstream 2016 Winter 980 0.022 0.015 0.032 

Downstream 2016 Spring 980 0.061 0.047 0.080 

Upstream 2013 Winter 981 0.006 0.004 0.008 

Upstream 2013 Spring 981 0.034 0.025 0.046 

Downstream 2013 Winter 981 0.042 0.031 0.057 

Downstream 2013 Spring 981 0.170 0.136 0.211 

Upstream 2014 Winter 981 0.006 0.004 0.008 

Upstream 2014 Spring 981 0.027 0.018 0.040 

Downstream 2014 Winter 981 0.062 0.045 0.086 

Downstream 2014 Spring 981 0.131 0.104 0.163 

Upstream 2015 Winter 981 0.005 0.003 0.008 

Upstream 2015 Spring 981 0.013 0.007 0.023 
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Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged (continued). 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Downstream 2015 Winter 981 0.018 0.010 0.029 

Downstream 2015 Spring 981 0.102 0.075 0.136 

Upstream 2016 Winter 981 0.003 0.002 0.006 

Upstream 2016 Spring 981 0.014 0.009 0.020 

Downstream 2016 Winter 981 0.035 0.024 0.052 

Downstream 2016 Spring 981 0.097 0.073 0.128 

Upstream 2013 Winter 1004 0.006 0.005 0.009 

Upstream 2013 Spring 1004 0.038 0.028 0.050 

Downstream 2013 Winter 1004 0.046 0.034 0.063 

Downstream 2013 Spring 1004 0.185 0.149 0.227 

Upstream 2014 Winter 1004 0.007 0.005 0.009 

Upstream 2014 Spring 1004 0.029 0.020 0.044 

Downstream 2014 Winter 1004 0.068 0.049 0.093 
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Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged (continued). 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Downstream 2014 Spring 1004 0.143 0.114 0.177 

Upstream 2015 Winter 1004 0.006 0.003 0.009 

Upstream 2015 Spring 1004 0.014 0.008 0.025 

Downstream 2015 Winter 1004 0.019 0.012 0.032 

Downstream 2015 Spring 1004 0.111 0.083 0.147 

Upstream 2016 Winter 1004 0.004 0.002 0.006 

Upstream 2016 Spring 1004 0.015 0.010 0.022 

Downstream 2016 Winter 1004 0.039 0.027 0.056 

Downstream 2016 Spring 1004 0.106 0.081 0.139 

Upstream 2013 Winter 1014 0.007 0.005 0.009 

Upstream 2013 Spring 1014 0.040 0.029 0.054 

Downstream 2013 Winter 1014 0.049 0.035 0.067 

Downstream 2013 Spring 1014 0.194 0.154 0.241 
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Appendix E: Weekly detection probabilities for state, year tagged, season, and reach tagged (continued). 

State Year 

Tagged 

Season Reach 

Tagged 

Estimate 95% CI 

Lower 

95% CI 

Upper 

Upstream 2014 Winter 1014 0.007 0.005 0.010 

Upstream 2014 Spring 1014 0.031 0.021 0.047 

Downstream 2014 Winter 1014 0.072 0.051 0.100 

Downstream 2014 Spring 1014 0.150 0.117 0.190 

Upstream 2015 Winter 1014 0.006 0.003 0.010 

Upstream 2015 Spring 1014 0.015 0.008 0.027 

Downstream 2015 Winter 1014 0.020 0.012 0.034 

Downstream 2015 Spring 1014 0.117 0.087 0.157 

Upstream 2016 Winter 1014 0.004 0.002 0.007 

Upstream 2016 Spring 1014 0.016 0.011 0.024 

Downstream 2016 Winter 1014 0.041 0.028 0.060 

Downstream 2016 Spring 1014 0.112 0.084 0.147 

Upstream 2013 Winter 978 0.000 0.000 0.000 
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APPENDIX F 

Appendix F: Top model beta parameter estimates for survival (S), detection (p), and movement (ѱ) probabilities.  

Parameter Type Beta Parameter Estimate Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

S Intercept 5.670 1.086 3.542 7.798 

S Spring -0.107 3.998 -7.944 7.730 

S Downstream -1.822 1.253 -4.277 0.633 

S Length 0.341 0.068 0.207 0.475 

S Spring*Downstream -2.041 4.089 -10.055 5.973 

p Intercept -6.118 0.238 -6.583 -5.652 

p Spring 1.826 0.237 1.361 2.290 

p 2014 0.041 0.272 -0.491 0.574 

p 2015 -0.122 0.363 -0.832 0.589 

p 2016 -0.581 0.383 -1.332 0.170 

p Downstream 2.045 0.261 1.533 2.557 
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Appendix F: Beta parameter estimates for survival (S), detection (p), and movement (ѱ) probabilities (continued). 

Parameter Type Beta Parameter Estimate Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

p Reach 979 0.512 0.158 0.203 0.821 

p Reach 980 0.449 0.173 0.109 0.788 

p Reach 981 0.948 0.178 0.600 1.296 

p Reach 1004 1.047 0.176 0.703 1.392 

p Reach 1014 1.107 0.187 0.740 1.474 

p Spring*2014 -0.291 0.391 -1.057 0.476 

p Spring*2015 -0.898 0.532 -1.940 0.144 

p Spring*2016 -0.355 0.469 -1.274 0.564 

p Spring*Downstream -0.284 0.301 -0.874 0.306 

p 2014*Downstream 0.367 0.354 -0.326 1.060 

p 2015*Downstream -0.781 0.500 -1.760 0.199 

p 2016*Downstream 0.403 0.477 -0.533 1.338 

p Spring*2014*Downstream -0.427 0.463 -1.335 0.481 
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Appendix F: Beta parameter estimates for survival (S), detection (p), and movement (ѱ) probabilities (continued).  

Parameter Type Beta Parameter Estimate Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

p Spring*2015* Downstream 1.205 0.644 -0.057 2.467 

p Spring*2016* Downstream -0.114 0.546 -1.184 0.956 

ѱ Intercept -3.829 0.126 -4.076 -3.581 

ѱ Winter*Length -0.265 0.104 -0.469 -0.061 

ѱ Spring*Length -0.125 0.092 -0.304 0.055 

ѱ Winter*Flow 0.182 0.118 -0.049 0.413 

ѱ Spring*Flow -4.924 0.279 -5.471 -4.377 

 


