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ABSTRACT 

DENSITY AND DISTRIBUTION OF PISCIVOROUS FISHES IN THE 

SACRAMENTO – SAN JOAQUIN DELTA 

 

 

Christopher M. Loomis 

 

Predatory fishes, including numerous introduced species, are common to the 

Sacramento – San Joaquin Delta, but abundance data for most species is insufficient to 

determine the Delta-wide distribution and ecological impacts of these species. Predatory 

fishes (e.g. Striped Bass, Largemouth Bass have long been suspected of contributing to 

the decline of native species, including salmonids, but data has been insufficient to 

investigate this hypothesis. In this study, I present a novel method to assess predator fish 

populations across the southern Delta using DIDSON acoustic cameras and analyze the 

environmental associations that form the landscape and fine-scale distribution of 

predatory fishes. I found that a mobile application of DIDSON acoustic cameras can be 

an effective method to enumerate predator fishes in a non-disruptive manner; however, 

factors affecting detection including environmental conditions and habitat complexity 

should be evaluated to refine these methods. Additionally, species differentiation of 

DIDSON footage would benefit from a larger library of acoustic footage of known 

predator fish species. I found that predator fish distributions were primarily driven by 

spatial and structural habitat components with little evidence of temporal trends, though 
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high temporal variation was apparent. Landscape-scale distribution was primarily driven 

by channel sinuosity, variation in depth, and the number of patches of submerged aquatic 

vegetation (SAV) within reaches. On a fine scale, predators were generally more likely to 

be found near shallow, littoral habitats, submerged and emergent vegetation, and human-

made structures. These results provide both guidance on how to implement a new survey 

method to assess the abundance of juvenile salmon predators in the Delta and insight into 

management actions that could affect predator populations in the Delta.  
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INTRODUCTION 

 

The Sacramento – San Joaquin Delta (hereafter referred to as the Delta) is one of 

the most invaded estuaries in the world and has undergone drastic changes in species 

composition (Cohen and Carlton 1998). Non-native predatory fish in the Delta include 

largemouth bass (Micropterus salmoides), striped bass (Morone saxatilis), white catfish 

(Ameiurus catus), channel catfish (Ictalurus punctatus), sunfishes (Lepomis spp.) and 

black crappie (Pomoxis nigromaculatus); however, basic population information for most 

of these species is lacking in the Delta (reviewed in Grossman et al. 2013, Nobriga and 

Feyrer 2007, UC Davis 2017). Although it has long been suspected that these non-native 

predators are significantly affecting the survival of salmonids and other native species of 

the Delta, empirical evidence linking salmonid mortality to predation is missing. A recent 

review of salmonid predation studies in the Delta suggests the effect of piscivorous fishes 

on salmonid survival is among the most poorly understood factors affecting mortality, 

due in part to the difficulties in quantifying its effects (reviewed in Grossman et al. 2013). 

Models based on current population trends, habitat conditions, and diet analyses suggest 

that striped bass alone could consume up to 29% of the emigrating salmonid population 

per year and impose a 28% chance of winter-run chinook extinction within 50 years 

(Lindley and Mohr 2003, Sabal et al 2015). 

Recent research has investigated the effects of predators on emigrating juvenile 

salmon by studying relative predation rates within predator treatment reaches of the San 
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Joaquin River Delta (Hayes et al. 2017). This research combined acoustic surveys of 

predator densities with relative predation rates measured by predation event recorders 

(PER; Demetras et al. 2016). A PER is a free-drifting buoy which can track when and 

where a live tethered smolt is predated via a magnetic switch, timer, and GPS device. 

Hayes et al. (2017) found that PERs were effective in measuring fine scale relationships 

between environmental conditions and predation, but results from predator manipulation 

studies (i.e., translocation of predators from one reach to another) suggest that relative 

predation rates were not dependent on local predator abundances. However, the authors 

note that predator density manipulations may have been insufficient to create a detectable 

change in predation, and acoustic surveys may not have reflected actual predator 

abundances present during PER deployment due to temporal asynchrony between PER 

deployments and acoustic surveys (Hayes et al. 2017).  

The acoustic surveys conducted by Hayes et al. (2017) used traditional 

hydroacoustic methods that are excellent for surveying large areas but have the 

disadvantage of poor target resolution. Poor resolution results in uncertainty of target 

size, shape, count and species, particularly near scattering boundaries (e.g. dense 

vegetation or benthic structures which mask other nearby objects) or in horizontal 

applications where aspect angle has significant influence on the reflected sound of targets 

(i.e. the target strength) (Ona 1999, Horne 2000, McQuinn and Winger 2003, Burwen et 

al 2007, Xie et al. 2007, Martignac et al 2014).  

Multibeam imaging sonars, also known as acoustic cameras, such as the Dual-

frequency Identification Sonar (DIDSON, Sound Metrics Corp.) have emerged as a 
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useful fisheries tool as a complement or alternative method. DIDSON uses a wide field of 

view (29 degrees horizontal by 14 degrees vertical) and up to 96 fan-shaped beams to 

capture sharp spatial resolution. A single frame produces an image of ensonified targets 

and when combined with a high rate of capture (up to 21 frames per second), near video-

quality footage can be recorded. This allows for visually intuitive processing where 

reviewers can easily distinguish fish from non-fish and observe fish movements, 

behavior, size, and shape (Martignac et al. 2014, Mora et al. 2015, Kane-Sutton and 

Gelwick 2013, Xie et al. 2007, Hateley and Gregory 2005). As with tradition 

hydroacoustic methods, DIDSON also allows users to survey at night or in zero-visibility 

water, making it a versatile tool for ecological studies of aquatic systems. 

Unlike traditional acoustic surveys, DIDSON deployments are typically stationary 

(i.e. fixed to one position in space with only one field of view), thus, there are no 

fisheries survey standards for mobile applications of DIDSON (Bonar et al 2009). 

However, recent experimental applications of DIDSON prove its effectiveness in mobile 

riverine applications (Able et al. 2014, Mora et al. 2015). The DIDSON has also been 

shown to be both accurate and precise when compared to traditional riverine survey 

methods for enumerating fish given a well-aimed camera (Holmes et al 2006, Hightower 

et al. 2013, Tuser et al. 2014, Mora et al. 2015). Furthermore, the DIDSON has proven an 

effective tool for estimating abundance and distribution of fishes in estuarine systems 

(Becker et al. 2011, Becker and Suthers 2014).    

The goal of this study was to obtain estimates of predator fish density throughout 

the Delta using DIDSON acoustic cameras and then build linear models to relate predator 
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densities and predator locations to environmental covariates. Traditional survey methods 

to assess fish densities in a system like the Delta (e.g. trawl, seine, electroshocking) are 

highly invasive and too time and labor intensive to be applied over broad regions. 

DIDSON surveys are non-invasive and allow users to observe fish behavior in relatively 

undisturbed ecological settings (Xie et al. 2008, Cane-Sutton and Gelwick 2013, Becker 

et al. 2011, Becker and Suthers 2014, Able et al. 2014, Martignac et al. 2014, Mora et al. 

2015). Understanding the relationship between predator fishes and the habitat of the 

Delta may help identify key management directives to reduce the effects predators have 

on salmonids. For instance, invasive submerged aquatic plants, which affect recreational 

and commercial boat access, water conveyance, and natural ecological processes in the 

Delta, have been linked with the proliferation of invasive predator species (Herbold and 

Moyle 1989, Freyer and Healey 2003, Nobriga and Feyrer 2007, Ruhstaller and Piepho 

2014). Many of these plants are high priority targets of annual weed control efforts and 

understanding their relationship with predator species may better direct the efforts to 

abate plant populations. This information may also help researchers to bridge the gaps 

between salmonid mortality and predation and provide valuable insight into the 

ecological relationships at play within the Delta. A secondary objective of this research is 

to provide recommendations for future studies and highlight key findings that could help 

inform management decisions to control non-native predator populations in the Delta. 
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METHODS 

Site Selection 

To achieve a spatially balanced design within the Delta I selected study sites 

using generalized random tessellation stratified (GRTS) sampling (Brown et al. 2015). 

GRTS sampling allows for evenly distributed sample selection across a broad region 

while incorporating randomization and spatially explicit probability weighting to account 

for areas of interest or other metrics to further refine the sampling distribution. In this 

study, the southern Delta, excluding the Sacramento River, was divided into eight sub-

regions based on waterway type and potential route choices a salmonid might make 

during emigration (Buchanan et al 2013, Figure 1). The GIS shapefile representing these 

regions was used as the sample frame for an unequal GRTS sample, giving each region 

equal probability of being sampled independent of area. I randomly generated 74 

candidate sites from these regions in order to provide at least 3 candidate sites for each 

region, which included auxiliary sites in case candidate sites did not fit the criteria for 

surveying. Of those sites, a subset of 21 were selected for field sampling due to 

constraints in time, personnel, and funding (Figure 1). 

I selected three of the randomly drawn sites for repeat sampling and I visited the 

remaining 18 sites only a single time throughout the study. The three repeat sites, which 

were visited each week throughout the study duration, were located in the lower 

mainstem San Joaquin River (site 01), Turner Cut (site 28), and the upper mainstem San 
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Joaquin River (site 25).  I selected these sites for repeat sampling in order to: 1) capture a 

broad range of habitat types, 2) continue a dataset from previous predation research 

efforts (site 25), 3) capture in-season changes in predator densities by re-visiting sites 

and, 4) address management interests in the salmonid survival of a human-constructed 

channel that has significant influence on flow in the Delta (Turner Cut, site 28).  

I surveyed single-visit sites in the order they were drawn during GRTS selection 

if they met my criteria for surveying. If I rejected a site during preliminary review of 

candidate sites the next auxiliary site was selected and evaluated. I rejected sites based on 

the following criteria: 

1. Proximity 

o If a site was within three river kilometers of another site, the first site 

generated was accepted and the second was rejected. 

2. Accessibility 

o Sites were rejected where physical and/or legal barriers prevented 

reasonable access to a site. 

3. Safety  

o Boat traffic and floating or submerged obstacles are significant hazards 

while working and transiting throughout the Delta. The Delta has many 

important commercial shipping channels and is also a popular recreational 

boating destination. Given that much of the surveying would require 

nighttime boating, I would also consider hazards of nocturnal navigation. 



7 

 

  

If these circumstances posed a significant threat to people or equipment as 

a result of accessing or surveying a site, the site was rejected. 

o Weather and natural conditions such as flow and waves may also be 

hazardous to people and equipment. Sites were subject to immediate 

rejection if conditions became unsafe during a survey. 

 

 

Figure 1. Left panel: Left panel: A map of the locations of the original site selection using 

GRTS method. Larger circles represent the first 21 main sites drawn and smaller 

circles represent auxiliary sites, which would have been visited in order of the 

draw number had a main site been rejected. Right panel: A map of the sites 

sampled during the field season. Regions used in the GRTS selection are 

indicated in the left panel and are also color coded.  
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At each survey site I demarcated a 1 km reach that contained the GRTS-drawn 

coordinates. Generally, reach endpoints were marked 500 meters upstream and 

downstream of the GRTS location. If the channel at a site was excessively wide (greater 

than 120 m) I also demarcated a survey width boundary based on what I could reasonably 

and safely survey given the limited survey time available, typically less than 180 m. 

Following the same guidelines for rejection listed above, the 1 km reach was adjusted to 

accommodate local conditions. For example, if the 500 meter section downstream of a 

GRTS point included the entrance to a busy marina, I shifted the reach boundaries 

upstream so that surveys would not impede boat traffic.  

Materials and Setup 

Two boat-mounted DIDSON units were used to survey potential salmon 

predators. Prior to conducting field surveys, I obtained approval of these methods to 

survey for vertebrate animals from the Humboldt State University Institutional Animal 

Care and Use Committee on 03 March 2017 (IACUC Number 16/17.F.15-A). I used 

adjustable pole mounts to attach the DIDSONs to opposite sides (port and starboard) of a 

6 m aluminum jet boat (Figure 2). Like all acoustic equipment, DIDSONs gather 

information on the environment by transmitting a sound wave and processing the 

returning sound, much like a bat using echolocation to navigate. To avoid acoustic noise 

created by cross-communication between the two DIDSONs, they were aimed in opposite 

directions (pers. comm. Sound Metrics staff, 2017). Aiming the DIDSONs perpendicular 

to (and away from) the vessel, which was driven parallel to the length of the channel, 
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allows for a broad field of view focusing on both littoral and mid-channel habitats. This 

orientation provided the best resolution, and the most accurate morphometric 

measurements, of fish swimming perpendicular to the DIDSON beam (Hateley and 

Gregory 2005, Hightower et al 2013, Tuser et al. 2014).  

Adjustable pole mounts allowed fine-tuning of the pan, tilt, and height 

adjustments of the DIDSON units (Cronkite and Enzenhofer, 2005). I set the mounts to a 

height of 1 m below the gunnel, putting the DIDSON approximately 30 cm below the 

surface of the water. I set the DIDSONs range to a 10 m window length (the maximum 

viewing window length in high frequency mode) and started the viewing window 2.08 m 

from the lens to maximize the viewing range and exclude areas immediately adjacent to 

the survey vessel since I expected fish to avoid areas within close range of the vessel 

(Figure 2). To maximize correspondence with PER observations, the DIDSONs were 

tilted approximately 10 degrees downward from horizontal to capture the upper water 

column just below the water’s surface with minimal interference from the surface (Figure 

2). The panning angle was kept at 90 degrees from the direction of travel.  
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Figure 2. Survey vessel setup. Distances are not drawn to scale. 

 

Survey Methods 

Within each 1-km sample reach, I conducted DIDSON acoustic surveys along 

longitudinal transects. The number and extent of transects conducted was determined by 

the shape and width of a site in order to maximize the area surveyed and avoid 

overlapping transects. Given the survey vessel was 2.5 m wide and the DIDSON settings 

allowed for a 12.08 m viewing range (2.08 m window start + 10 m window length), the 

vessel had a maximum survey width of 26.66 meters (Figure 2). Transect paths were 

offset approximately 12 m from the shore or the edge of the survey area to ensure that the 

full DIDSON beam was contained within the reach. The number of independent transects 
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conducted in a site was determined to maximize the amount of area surveyed while 

avoiding overlapping transects as dictated by the geometry of a site. For instance, sites 

that were less than 90 m wide were surveyed by two longitudinal transects parallel to the 

shoreline to accommodate the 26.66 m wide survey width while avoiding overlap. At 

sites 90 m wide or greater, additional transects were completed where they would not 

overlap shoreline transects. At sites with channel widths varying between 60 m and 

greater than 90 m along the length of the reach, additional transects would only cover the 

length of stream where overlap of other transects would not occur (Figure 3). Transects 

would be replicated as time allowed. I surveyed sites during the last two hours of daylight 

and the first hour after sunset when predator and prey activity are typically high 

(Demetras et al. 2016). This typically allowed enough time for five to six 1 km length 

surveys which. 

During surveys, an electric trolling motor propelled the boat to avoid disturbing 

fish along transects (Xie et al 2008, Able et al. 2014) and fine-tune the survey speed. 

Surveys were completed at approximately 2 km/hr and survey speed was monitored via a 

Garmin global positioning system (GPS) installed on the survey vessel. This survey 

speed optimized video resolution and the number of transects that could be completed. At 

2 km/hr under normal weather conditions, a single 1 km transect would take 

approximately 30 minutes to survey, allowing for approximately six 1 km transects 

within the three-hour survey window; however, poor survey conditions and/or technical 

difficulties often resulted in fewer transects.  
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Figure 3. Survey methodology for three typical site structures. Top left panel: Survey 

design for site 23, a site with channel widths consistently greater than 90 m. Three 

independent transects were conducted and time allowed for one transect to be 

replicated. Top right panel: Survey design for site 10, a narrow, uniform channel 

75 m wide. Two independent transects were conducted and each was replicated. 

Bottom left panel: Survey design for site 12, a site with variable width between 80 

m and 170 m. Three independent transects were conducts, two were replicated, 

and one was truncated (center, T7) to avoid overlapping the other two transects in 

the narrower portion of the survey area. 
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In order to create a spatial record of the survey effort and geolocate observed fish, 

surveyed areas were tracked using Global Positionsing Systems (GPS). Two GlobalSat 

USB GPS receivers linked to each DIDSON camera recorded transect paths. Each 

DIDSON stored GPS positions for each acoustic frame recorded which allowed for a 

geolocation for every fish observed. I visually inspected survey tracks for accuracy and 

the distance between fixes was used to identify potential sources of error. Because seven 

GPS fixes were recorded for every second of a survey, distances between fixes should 

always be very small. When consecutive GPS fixes were greater than 10 m apart, a 

threshold based on the accuracy of the GPS units, I inferred that a position error was 

present. These types of errors were common, occurring in nearly every transect, but not 

in abundance (typically much less than 5% of fixes). I replaced the GPS fixes associated 

with those errors with new sets of coordinates that were interpolated between correct 

fixes on either side of the error. In the cases where more than 30 consecutive points were 

inaccurate, an error occurring rarely, the entire segment was replaced by the tracks of the 

opposite DIDSON and offset to account for the width of the survey vessel. I then used the 

corrected GPS coordinates to geolocate each identified fish. I used the observed range of 

the fish and angle of the DIDSON camera measured from the bearing of the survey vessel 

to project the estimated true location of the observed fish from the DIDSON’s corrected 

position. 
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Species Composition Validation 

In order to collect samples of fish representative of the local predator community, 

the California Department of Fish and Wildlife (CDFW) conducted electrofishing 

surveys at the three repeat sites on two occasions, one at the beginning of the study (11-

13 April) and a second near the end of the study (9-11 May). I conducted DIDSON 

surveys at each site the evening prior to electrofishing and the following morning 

immediately before electrofishing in order to obtain data that could be compared to the 

electrofishing surveys. This allowed us to validate the fish community assemblage, 

compare the catch per unit efforts (CPUE) between electrofishing and DIDSON surveys, 

and collect predators of known size and species to use in building a DIDSON footage 

reference library. 

Electrofishing surveys consisted of three single pass transects moving from 

downstream to upstream; one pass on each respective shore (or reach boundary) and one 

pass up the middle of the reach. Electrofishing was conducted by the CDFW on a boat 

electrofisher with one boat driver and two netters. Any stunned fish visually estimated to 

be over 20 cm were netted, retained and processed before release at the end of the survey 

period.  

A subset of captured fishes was retained, and ensonified with the DIDSON, to 

determine if acoustic data could be used for species differentiation. Research partners 

from UCSC and NOAA collected several fish of each species representing the range of 

sizes observed. Collected fishes were identified to species and measurements including 
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fork length, body width, and body depth were recorded. Research partners then attached 

these fish via a jaw clip to a 1 m tether fixed to a horizontal pulley system deployed near 

the surface of the water. I then recorded DIDSON footage of these tethered fish for 

several minutes while increasing the range of the fish in 1 m increments via pulley 

movements with pauses for natural fish movements between pulley movements. This 

created reference footage of known fish at several different ranges and orientations with 

movements like that of a free-swimming fish. 

Footage Processing 

I reviewed DIDSON survey footage using Sound Metrics DIDSON software 

(Sound Metrics Corporation 2017). I reviewed footage manually at a rate of 1.5 - 5 times 

the rate of recording depending on the complexity of the imagery. When I observed a 

potential fish, I used playback and freeze frame functions to confirm it was a fish based 

on movement, profile, and image quality. If I determined the object was a fish, I then 

located the best frame from which to measure the fish. Ideal placement was perpendicular 

to the camera and within the center of the field of view to limit measurement error and 

bias (Hightower et al. 2013, Tuser et al. 2014). Length and thickness (the width of a fish 

from side to side) were both manually measured and recorded for all fish over 20 cm. 

Based on published diet analysis of Delta predators, I considered fish to be potential 

predators of salmonid smolts if they were 20 cm long or greater (Nobriga and Feyrer 

2007) and I applied additional species differentiation methods after I completed footage 
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processing. Sound Metrics software automatically records data on the position and 

orientation of the fish after a fish is manually located and measured. 

I processed footage of tethered fish captured by electrofishing using Echoview 

Software because of its ability to extract target strength, the acoustic signature of a fish, 

from DIDSON footage (Echoview2017). Ensonified fish were first identified and 

delineated by an automated process. The software identifies objects (fish) based on the 

acoustic differences between pixels and their backgrounds and creates a layer of polygons 

delineating those objects. I then reviewed the processed footage for quality assurance; I 

visually inspected the footage and flagged individual frames in which the delineation 

accurately represented the true size and shape of the tethered fish. I then exported the 

tabular data via individual target selection to ensure background objects were excluded 

and only the ensonified fish’s data was exported. I only used the manually flagged data 

for analysis. 

Species Differentiation 

I explored identification of individual species from DIDSON footage using 

discriminant function analysis (DFA) with the primary objective of eliminating non-

predator species over 20 cm from the data. A DFA is a multivariate statistical analysis 

used to determine which variables differentiate naturally occurring groups, such as 

species. There are two typical methods for conducting a DFA, one differentiates groups 

based on linear relationships (linear discriminant analysis, LDA) while the other allows 

for quadratic relationships to differentiate groups (quadratic discriminant analysis, QDA).  
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Two species of fish common to the Delta, common carp (Cyrinus carpio) and 

Sacramento sucker (Catostomus occidentalis occidentalis), are non-piscivorous and can 

exceed 20 cm. Electrofishing studies conducted in repeat sample reaches were unable to 

catch Sacramento sucker, thus I assumed their abundances were negligible within the 

study region. Recent results from another study have suggested that distinguishing 

common carp from other species of Delta fish is possible with DIDSON footage using 

length to height ratios (pers comm. Mark Bowen). Additionally, common carp have a 

distinct swimbladder, which can yield a distinctive acoustic signature (Grom 2015, Hayes 

et al. 2017).  

In systems with high species richness, no single characteristic is likely to 

distinguish a species, thus I tested multiple characteristics to differentiate species (Horne 

2000, Abel et al. 2014).  Previous acoustic studies have used body length, height, length 

to height ratio, orientation and target strength to identify species with varying success 

(Ona 1999, Horne 2000, Mueller et al. 2010, Kane-Sutton and Gelwick 2013, Martignac 

et al. 2014, Abel et al. 2014, Mark Bowen, ESA Biological Resources, pers. comm. 01 

June 2017). I tested the effectiveness of body length, width, length to width ratio, 

orientation and target strength for species differentiation using DFA to distinguish the 

seven most prevalent predators from the electrofishing samples (largemouth bass, striped 

bass, redear sunfish (Lepomis microlophus), white catfish (Ameiurus catus), black 

crappie (Pomoxis nigromaculatus),  brown bullhead (Ameiurus nebulosus),  and 

Sacramento pikeminnow (Ptychocheilus grandis)) from the only abundant non-predator 

over 20 cm (common carp (Cyprinus carpio)) (Appendix C). I tested both LDA and QDA 
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using functions in the MASS R package to predict individual species and predators (all 

predator species combined into one group) from non-predators (C. carpio) (Venables and 

Ripley 2002). A DFA allows a prior probability to be set for each group. For instance, the 

probability of discriminating a specific group can be based on the frequency that group 

appears in the population. With little prior knowledge of the community composition in 

my study region, I set all prior probabilities equal for all species tested. I created a set of 

candidate models by conducted backwards elimination of predictor variables beginning 

with both target strength and orientation as those variables require Echoview software to 

be extracted, a time-consuming process. Model testing and evaluation was conducted 

using cross validation methods; the available data was divided into a training set (75% of 

the data) used to create a DFA, and a testing set (the remaining 25% of the data) used to 

evaluate the performance of the model. I tested each model with 100 replications of 

randomly selected training and testing data sets and I used the mean of the resulting 

classification rates (i.e. the percent of fish correctly identified) to compare models.  

Predator Density Estimation 

To estimate reach predator density from the sample data, I first made several key 

assumptions. First, I considered each sample reach as a closed population during the 

three-hour sample period. Second, I assumed that each observed fish is only counted once 

within a given transect but may be counted again in subsequent transects. Third, I 

assumed that fish observations are spatially dependent and that transect spacing is 

sufficient to maintain the independence of non-overlapping transects. Fourth, I assumed 
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that detection probability was constant and varied as a function of distance from the 

DIDSON cameras. Fifth, I assumed that the survey volume was constant for any given 

frame. Since the cameras were focused on a fixed volume of the upper water column, I 

simplified calculations to a two-dimensional surface. 

To account for the fifth assumption, each predator observation was weighted as a 

function of their range from the DIDSON camera. Because the viewing area and arc 

length of the survey window increase proportionally with range (arc length = 2 π * radius 

* angle (radians)), there is more area to view fish as range from the DIDSON increases 

(Figure 4). Conversely, at nearer ranges there is proportionally less area to observe 

associated predators. Thus, observed predators will be weighted with a scalar calculated 

from the ratio of maximum survey window range (Rmax) to the observed predator range (i) 

to account for the change in viewing area. Since the angle of the viewing window is 

constant it is not necessary to include in the function. The weighting scalar applied to a 

predator fish at the observed range (wi) is calculated as follows: 

 

 
𝑤𝑖 = 𝑒

(
𝑅𝑚𝑎𝑥− 𝑅𝑖

𝑅𝑚𝑎𝑥
)
 

(1) 

 

Where Rmax is the maximum viewing range for the transect and Ri is the range of 

the observed range of a predator fish. As the observed range approaches the maximum 

range, the weight approaches 1. A predator fish observed in the near field, e.g. Ri  = 2 

meters when Rmax = 12 meters, would receive a weighting of approximately 2.3. This 
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weighting function was tested with simulations using the WiSP R package (Zucchini et al 

2007); it was shown to provide accurate estimates of the true abundance and was robust 

to a variety of fish distributions and densities (see Survey Simulations).  

 

Figure 4. An example of range-based target weighting using the parameters of a DIDSON 

survey. The fish identified from the DIDSON footage in the red circle at 6.5 m 

would be given a weight proportional to the maximum range of 12 meters. In this 

case, the weighting value would be 𝑒(5.5m/12 m) , or ~1.6. The fish identified in the 

green circle at 12 m would be given a weight of 𝑒(0m/12 m) , or 1. 

  



21 

 

  

The density of predator fish in each reach (Dj) was calculated using independent 

subsets of transects (i.e. non overlapping survey efforts) with the following equation: 

 

 𝐷𝑗 = 𝑝̅𝑗/𝑎̅𝑗 (2) 

 

where 𝑝̅𝑗 is the mean of the weighted predators observed per transect and 𝑎̅𝑗 is the mean 

area surveyed per transect. Area surveyed per transect was calculated as the sum of the 

product of window length and transect length for each DIDSON operated.  

Because I wanted to utilize all of the available survey data to develop density 

estimates, I first needed to ensure that estimates were consistent throughout a survey 

period (i.e. densities were not significantly different if collected at the beginning of the 

survey period or the end). I first tested for the effect of transect order, the sequence in 

time in which transects were conducted, with an ANCOVA predicting the number of 

observed predators per square meter surveyed from the transect order while controlling 

for the sampling day to account for effects of both site and date. To test if any 

combinations of transects had significantly different density estimates, I used ANOVAs 

to predict the density estimates calculated using equation 2 from all possible independent 

combinations of two or more transects for each site. In this case, I assumed transects were 

independent if the surveyed areas were not overlapping along the majority of the transect. 

For example, for site 10 in Figure 3, transects in the following pairs would be considered 

independent of one another and each used to calculate a density estimate:  T1 and T2, T1 

and T4, T3 and T2, and T3 and T4. In this example, the transects that overlap spatially 
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(T1 and T3, T2 and T4) are not independent and were not included as pairs to calculate 

estimates of predator density. For each ANOVA, a unique identifier of each transect 

combination was used as the independent variable. 

To calculate a final density estimate and quantify the uncertainty surrounding that 

estimate, I used the predator densities calculated for the ANOVA test described in the 

previous paragraph. For each site, the mean and variance of the distribution of density 

estimates was used to describe a final reach density and the uncertainty surrounding that 

estimate. For the example described above for site 10, the mean of the four independent 

pairs of transects would be reported as the final density estimate and the standard error of 

those four estimates would be used to report a 95% confidence interval around the mean. 

Only fish identified as predators using the length cutoff of 20 cm and the final species 

differentiation function were used in the tests and calculations described above. 

Survey Simulations 

I used simulated transect data to test if different fish densities, grouping patterns, 

exposure to the survey equipment (i.e., how visible a fish is), and physical distribution 

throughout the survey area resulted in any biases in the predator density estimates. The 

Wildlife Simulation Package in R (WiSP; Zucchini et al. 2007) allows users to generate 

environments and closed animal populations with a wealth of parameters to approximate 

the behavior of an animal population. WiSP also includes functions to simulate some of 

the more common wildlife survey techniques which can be customized to meet the 

criteria of a protocol. A key element to WiSP is the random variation it introduces into 



23 

 

  

populations (positioning, grouping, and exposure) and detectability (Table 1). For 

instance, a population of fish can randomly be assigned range of exposure values which 

dictate how hidden they are to the observer. These values interact with the distance 

function to produce different detectability values depending on how far the animal is 

from the observer. WiSP allows users to test different exposures or any other sources of 

variation, allowing for a sensitivity analysis of density and abundance estimates under 

violations of assumptions. 

I first created a “null” model that performed well under simple conditions and 

assumptions. To recreate the environment of the data collection, I generated a 60 by 1000 

unit rectangular surface representing a typical 1-km sample reach from the study area. 

This simulated rectangular grid was used to build density gradients and construct a 

population. Density gradients can be set from the corners of the region; these were each 

set to one for a uniform distribution under the null model. Shoals of fish were created 

with group size controlled by a Poisson distribution with variable mean. The exposure 

value, or detectability of a fish, is a continuous value from 0-1 whose distribution is 

defined by a beta distribution. For these simulations, only the value of the mean of the 

distribution was altered and all other parameters controlling the shape of the distribution 

were held constant at 1. The mean exposure was set at the default 0.5 for the null model. 

For the survey design, I chose the built-in features of the line transect function 

which models detections based on the principles of distance sampling; detection 

probability decreases as the distance from the surveyor increases. For the DIDSON 

acoustic surveys I assume the opposite relationship exists; the observation window area 
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increases in size as it gets farther from the observer and thus there is a greater probability 

of observing fish in the far field. Since these two relationships are reciprocal and I 

designed the simulations to avoid any assumptions about the orientation of the observer, I 

assumed this would not affect the results of the simulations and I proceeded with the 

built-in line transect methods of WiSP. Based on the field protocol, I set up the survey as 

two parallel, evenly spaced longitudinal transects, each surveying an area 20 units wide. 

For simplicity, these transect occurred in the same location and direction for every 

survey. A single survey consisted of two transects. A replicate is a repeated survey over 

the same “reach” (i.e. same population, but the sample is redrawn between sampling 

events). Null model parameters are summarized in Appendix A, Appendix B, and 

Appendix C. 

Using the above models, I ran 100 simulations of four replicate surveys over the 

reach while varying each parameter that controls either the population characteristics or 

the detection function separately. Specifically, the parameters tested included the number 

of groups, group size, the distance sampling detection function, mean exposure, and the 

distribution of fish. High and low values were chosen to reflect observations made in the 

field and values from literature (Hayes et al. 2017). A density was calculated using 

equations 1 and 2 above for each replicate and an abundance is calculated by multiplying 

the density estimate and the survey area. An average abundance was then calculated for 

consecutive replicates such that the abundance after three surveys was an average of the 

three replicate estimates. The parameters tested included the number of groups, group 

size, the distance sampling detection function, mean exposure, and the distribution of 
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fish. High and low values were chosen to reflect observations made in the field and 

values from literature (Hayes et al. 2017). Estimates generated under the null model were 

then compared to estimates generated under an altered model to determine the methods 

sensitivity to each parameter. 

Table 1. Parameters affecting the population and detection of animals in WiSP simulated 

surveys. 

Parameter Description 

Group Number The number of groups of animals (e.g. schools of fish) 

Group Size The distribution of the number of animals in each group 

Distance Function The relationship between the detectability of an animal (or group 

of animals) and its distance from a trackline. This function is 

also mediated by the exposure, aka visibility, of each animal or 

group. 

Exposure The distribution of exposure values for each group of animals. 

This value describes how cryptic or visible an animal is. 

Distribution The distribution of animals across the study area. This can define 

uniform distribution, gradients, hotspots, and areas with no 

occurrences. 

 

Landscape-Scale Distribution Modeling 

To identify the environmental factors influencing the real-world distribution of 

predator fish across the study region, I modeled predator density on the reach (1-km) 

scale to address landscape-level habitat selection using linear mixed effects regression. 

Because many of the environmental variables are only available as a single measure for 

each site, the objective of this exercise was to determine which of these site-level 

variables may influence predator habitat selection on a relatively large scale (~1 km). I 

chose a set of candidate predictor variables from the compiled data for the study region 
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based on their hypothesized influence on predator distribution. For a detailed description 

of how these data were collected, see Michel et al. (2019). I included average depth, 

coefficient of variation of depth, flow, turbidity, conductivity (mS/cm), dissolved oxygen 

(𝑚𝑔/𝑙), temperature (ºC) as these factors either directly affect habitat suitability, 

metabolism, phenology, or they affect a predator’s ability to effectively forage in 

estuarine and riverine environments (reviewed by Čada et al. 1997, Gregory and Levings 

1998, US EPA 2009, Sweka and Hartman 2003, Callihan et al. 2014). I also tested 

measurements of tule patches and submerged aquatic vegetation (SAV patches including 

total patch area (𝑚2) and patch density (patches/𝑚2)). Predators are often associated with 

emergent and submerged vegetation and it has been hypothesized that the spread of 

invasive plants, which dominate the SAV community, has contributed to the success of 

invasive predator species (Herbold and Moyle 1989, Freyer and Healey 2003, Nobriga 

and Feyrer 2007). Furthermore, there is growing concern over the effects of 

anthropogenic alterations such as flow diversions on the interactions of salmonids and 

predators (Feyrer and Healey 2003, Sabal et al. 2016). The variables representing 

anthropogenic alterations included in modeling were area (m2) and count of man-made 

structures and length of levees along the channel (m). All area-dependent variables were 

first scaled by the area of their respective study site as proportions. All continuous 

variables were then scaled and centered by subtracting the means and dividing by the 

standard deviation. Predator densities were log-transformed to fit a log-normal 

distribution. Prior to model fitting I conducted pairwise correlations to assess collinearity 

and removed a single covariate from any pair with a correlation greater than 0.7. 
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I fit mixed effects linear models to the data and compared models with Akaike’s 

Information Criterion corrected for small sample size (AICc). To account for the repeated 

measures of sites 01, 25, and 28 throughout the 6 week study period, I included a random 

intercept for week in all candidate models. I fit the models to the data and performed 

model selection on all possible subsets of four or less predictor variables, ranking models 

based on their respective AICc scores. I considered all models with a delta AICc score of 

two or less for final model selection.  

The best model based on both delta AICc and cross-validation was then used to 

extrapolate measured predator densities within 1 km reaches across the study region. For 

each 1 km reach, I calculated sinuosity and coefficient of variation of depth using the 

same methods and data sources as for model construction (Michel et al. 2019). Because I 

did not have measured extents of SAV outside of the study areas I used remotely sensed 

SAV data collected by UC Davis (Hestir et al. 2008). Of the available SAV data, the 

2015 dataset had the most extensive coverage and was thus used for extrapolation. Due to 

the low resolution of the survey equipment used in the 2017 environmental data 

collection, features less than 5 meters across their longest axis were excluded from SAV 

delineation (Michel et al. 2019). To maintain consistency with this methodology, the 

2015 dataset was filtered to exclude SAV polygons whose longest axis was shorter than 5 

m. The 2015 data also included SAV polygons occurring in water deeper than SAV is 

typically found. Based on recommendation from from UC Davis researchers, I clipped 

the 2015 polygons to exclude SAV in water deeper than 5 m (pers. comm. Shruti Khanna, 

UC Davis, 2019). Sinuosity and coefficient of variation of depth were then scaled by the 
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mean and standard deviation of the data used in model construction. Because the 

remotely sensed SAV dataset consistently differed in the number and size of polygons 

delineating SAV patches within reaches, I scaled those data first by the area of each 1 km 

reach and then by their own mean and standard deviation. These data were then used to 

predict predator densities across the study region with the fixed effects of the best model. 

Fine-Scale Ecological Niche Modeling 

To determine habitat characteristics that predators were selecting on a 1 m scale, I 

predicted predator occurrence using the observed predator locations compared to the 

background habitat using Maxent and logistic regression (Phillips 2006, Phillips et al. 

2019). Both modeling methods take presence data, in this case spatially explicit 

observations of predator fish, and compare those observations to background 

environmental conditions. The output for both models can be interpreted as the relative 

probability of occurrence for a predator fish at a given point. The main difference 

between the two methods is that Maxent is based on a machine learning algorithm based 

on maximum entropy while logistic regression is based on the principals of maximum 

likelihood. Maxent has much greater freedom and flexibility in its ability to form 

relationships among and within the variables while logistic regression is confined to the 

user-specified interactions and uses only linear terms. Because they produce similar 

products from very different pathways, I chose to compare and contrast both methods to 

see if the observed distribution was the result of more complex interactions and non-

linear relationships or if it could be described in relatively simple terms. For this analysis, 
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I used all data from the single-visit study sites and one week of data from each of the 

repeat sites. I objectively selected the repeat site visit based on the GRTS selection order. 

For example, for repeat site 25, I used the sixth visit to this site on May 8th because it was 

the first visit that occurred after visiting site 24 on May 5th. All predator occurrences from 

the 20 sites were grouped and 10,000 random points were selected from the surveyed 

area to represent the background habitat. Background points were selected from a target 

background area consisting of only the areas surveyed by each 10 m viewing window. 

All 10,000 background points were used in Maxent modeling and a subset of background 

points equal to the number of occurrence records (3,588) were used in logistic regression. 

Spatially explicit habitat variables believed a priori to have an influence of 

piscivore distribution were used as predictor variables. I created raster layers of distance 

(1 m resolution) from habitat features including tule patches, SAV patches, and man-

made structures over the extent of the study reaches. Additionally, I included distance 

from shore, pools (depths greater than 2 standard deviations of the mean depth), and 

channel bathymetry as a proxy for flow velocity as there were no available data on 

within-reach flow velocity distribution. I calculated distances to each habitat features 

using the Euclidean distance tool in ArcMap (ESRI 2017). The goal of this analysis is to 

address fine-scale habitat selection, therefore it is beyond the scope of this analysis to 

consider habitat features well beyond the boundaries of the study sites.  If habitat 

characteristics were not present at a site or within 1 km of a site boundary, then I assigned 

each cell of those sites a distance equivalent to the maximum distance to that feature type 

observed for all occurrence records. For example, there were no patches of tules present 
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at site 16 and the nearest tule patches were much greater than 1 km from the site 

boundaries. Furthermore, the river distance, i.e. the distance a fish would experience to 

reach that feature, would be much greater than the Euclidean distance due to the sinuosity 

of the channels. Thus, I assigned all 1 m cells within site 16 the maximum distance 

observed distance to tules for all other sites (1,867 m). Substitution of values occurred at 

only two sites for the pools variable (sites 16 &10) and four sites for the distance to tules 

variables (sites 16, 14, 23, 25). I tested all variables for collinearity prior to model fitting 

and excluded one variable from a pair of variables from analysis if the correlation 

coefficients exceeded 0.7. 

I built and evaluated Maxent models using the R package ENMeval (Muscarella 

et al. 2014). I tested regularization multipliers ranging from 1 to 4 on models utilizing 

linear, product, and hinge (i.e. stepwise linear) feature classes. Regularization multipliers 

regulate how closely the data is fit with more constrained models resulting from larger 

values. Feature classes control the type and shape of response curves. The feature classes 

selected were believed a priori to form biologically relevant responses from the predictor 

variables. I used random k-folds cross validation using 10 evaluation bins to train and test 

each model. Models were then ranked by their respective AICc scores and all models 

with a delta AICc score of two or less were considered for final model selection. 

I built mixed-effects logistic regression models using the R package lme4 (Bates 

et al. 2015). A random intercept based on sample site was selected to control for random 

site-to-site variation. Fixed effect terms included the main effects of each aforementioned 

habitat variable, three pairwise interaction terms to test for the interactive effects among 
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three habitat variables (man-made structure, SAV, and tules) that provide cover, and an 

interaction between depth and distance to shore as a proxy for flow. I chose the habitat 

interactions since the selection of one cover type may depend on the availability of other 

types of cover. For example, a predator fish may associate with SAV unless Tules are 

nearby in which case it may choose to associate with Tules based on some unknown 

preference. I then performed AIC model selection and all models with a delta AIC score 

of two or less were considered equivalent to select the most parsimonious model. 
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RESULTS 

Field Surveys 

Field sampling occurred on 35 days between April 3rd and May 13th 2017 and 

throughout those six weeks I visited 20 unique sample sites within the south Delta 

(Figure 1). After I assessed the selected sites for proximity to other selected sites (using 

the 3 river km cutoff), 15 sites were dropped and replaced with 15 auxiliary sites. 

Furthermore, I dropped one site in the middle of Frank’s Tract on the day of sampling 

due to the large wind waves that made surveying unsafe and logistically difficult. This 

site was replaced on the same day with a nearby oversampled site (Figure 1). One 

sampling day was also dropped from the schedule after a river otter broke into the live 

well and ate all the Chinook salmon smolts that were destined to be used for baiting PERs 

that evening. Due to technical difficulties with a DIDSON camera, I sampled site 22 

(April 29) and site 1 (May 1) with a single DIDSON camera mounted to the port side of 

the survey vessel. Analysis for these sites did not differ as all calculations were based on 

the area surveyed and were not dependent on the number of DIDSON’s in use. Over the 

six weeks, I recorded over 193 hours of footage from 227 unique transects which yielded 

a total count of 6638 fish over 20 cm after video processing. 
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Species Composition Validation 

The two electrofishing surveys at the three repeat sites captured a large number of 

non-native piscivorous fish, and generally contained a large proportion of largemouth 

bass. CDFW conducted electrofishing at site 1 (April 11 and May 11, 2017), site 25 

(April 12 and May 9, 2017), and site 28 (April 13 and May 10, 2017). A total of 624 fish 

over 20 cm were captured, measured and released (Appendix C). Electrofishing catch 

compositions were typically dominated by largemouth bass followed by striped bass and 

sunfishes (Figure 5). Striped bass were notably abundant at site 1 on 11 May 2017 and 

absent from catches on both sampling occasions at site 28. All other combined species 

typically composed less than 15% of the total catch. Aside from the large spike in striped 

bass abundance, catches appear to remain relatively stable between sampling occasions; 

however, with only two sampling events per site I cannot comment on the statistical 

significance of catch composition through time.  
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Figure 5. Species composition of electrofishing catches by site and date.  

 

When comparing electrofishing catch data to DIDSON abundance estimates 

collected on the same mornings from the same transects, I found no evidence of 

correlation. Linear regression indicated poor correlation between electrofishing catch and 

DIDSON observations of fish greater than 20 cm in length (r-squared = 0.005, p = 0.888, 

coefficient = -0.094, se = 0.63, df = 4) (Figure 6). Electrofishing minutes were only 

recorded during the May sampling events, thus a comparison of catch per unit effort 

(CPUE) was only possible for those three events, a sample size too small to be useful for 

analysis. Comparison of catch data alone does not account for the inherent difference in 
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the two methodologies and a more rigorous study would be required to accurately 

compare these two methods, but these finding suggest that we might reach very different 

conclusions about fish abundances depending on our method of choice. Because I do not 

rely on this correlation for any further analysis or conversions of other available data, it 

has no bearing on the rest of this study; however, it will be a valuable comparison to 

build upon if my methods are used in future studies.  

 

 

Figure 6. Electrofishing (efishing) catches and fish observed in DIDSON surveys 

compared in boxplots (left) and a scatterplot with linear regression (right). 

 

Species Differentiation 

I tested the accuracy of species discrimination using DFA with 2,248 acoustic 

measurements from 42 unique fish sampled during electrofishing efforts (Table 3). 
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Discriminant function analysis was effective in discerning common carp from predator 

species but provided poor confidence in determining individual predator species (Figure 

7). Despite promising preliminary findings (Figure 8), target strength and orientation 

contributed negligibly to species discrimination. DFA models determining individual 

species using target strength, orientation, length, width, and length to width ratio had 

classification accuracy between 51.48% and 62.09%. Determining predator from non-

predator with LDA using fish length, width, and length to width ratio resulted in the 

highest classification accuracy of 98.17% (Table 2). The addition of target strength and 

orientation improved classification by less than 0.01%. QDA performed similarly as did 

LDA models using only length and/or width. I chose the LDA function discerning 

predator from non-predator using fish length, width, and length to width ratio as the final 

model to distinguish the observed fish due to its accuracy, apparent differences between 

groups in all the morphometrics used, and previous success with similar models (pers. 

comm. Mark Bowen 2018). It should be noted that much of the separation achieved by 

these functions is likely attributed to the differences in the size distribution of the samples 

used with all of the carp measuring more than 50 cm and most of the predators measuring 

less than 50 cm in length (Table 3); however, the size distribution is representative of all 

the fish captured with electrofishing over the six days of sampling. The results of model 

testing and selection are summarized in Table 2 below. Applying the final function to the 

observed data resulted in 6,434 observations classified as predators and 186 classified as 

non-predators. 
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Figure 7. The grouping of fish species resulting from the first two linear discriminants 

(LD1 and LD2) of linear discriminant analysis using length, width, and 

length:width ratio to predict species. Plot (a) indicates a clear distinction between 

common carp (pink) and predator species (light blue). Plot (b) shows the poor 

separation between individual predator species including brown bullhead (BBH), 

black crappie (BC), largemouth bass (LMB), Sacramento pikeminnow (PM), 

redear sunfish (RES), striped bass (SB), and white catfish (WC). LD1 accounts 

for 92.97 percent of the separation achieved by the function; the separation of 

common carp from all predator species along the horizontal axis. 
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Figure 8. Target strength versus orientation for three species of fish observed in the 

Delta: common carp, CARP; largemouth bass, LMB; and striped bass, SB. Target 

Strength is the magnitude of sound reflected by the fish measured in decibels 

(dB). Orientation is the direction a fish is facing relative to the DIDSON camera. 

95% confidence intervals are presented as shaded ribbons around each line. 
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Table 2. Summary of discriminant functions tested for species differentiation. Groups 

refers to the number of species groups being predicted; eight groups means the 

function is predicting the eight individual species and two groups means the 

function is predicted predator from non-predator. Models are ordered by their 

classification accuracy. Accuracy is a measure of the rate of correct classification 

based on k-folds cross validation. 

Variables Groups Function Accuracy 

(%) 

Length + Width + L:W 2 LDA 98.17 

TS + Orientation +  Length + Width + L:W 2 LDA 98.17 

TS + Orientation +  Length + Width + L:W 2 QDA 98.09 

Length + Width 2 LDA 98.06 

Length + Width + L:W 2 QDA 97.89 

Length 2 LDA 97.31 

Width 2 LDA 90.20 

TS + Orientation +  Length + Width + L:W 8 QDA 62.09 

Length + Width + L:W 8 QDA 56.33 

TS + Orientation +  Length + Width + L:W 8 LDA 54.33 

Length + Width + L:W 8 LDA 51.48 

TS, target strength; L:W, length to width ratio; LDA, linear discriminant analysis; QDA, 

quadratic discriminant analysis. 



40 

 

  

Table 3. Summary of fish recorded in DIDSON footage and used in Discriminant Function Analysis. 

Species Common Name Unique Fish Fish length Range 

(cm) 

DIDSON Length 

Range (cm) 

# of DIDSON 

Frames Used 

Ameiurus nebulosus Brown Bullhead 1 30.5 35.9-23.0 23 

Pomoxis nigromaculatus Black Crappie 1 27.0 29.6-22.6 9 

Cyprinus carpio Common Carp 8 56.0-86.0 94.5-44.2 699 

Micropterus salmoides Largemouth Bass 11 20.9-50.0 60.1-12.7 385 

Ptychocheilus grandis Sacramento Pikeminnow 3 24.5-27.7 36.8-17.9 136 

Lepomis microlophus Redear Sunfish 4 24.0-26.0 36.4-16.3 205 

Morone saxatilis Striped Bass 8 25.4-45.0 53.1-19.8 562 

Ameiurus catus White Catfish 6 21.5-35.0 44.9-15.3 229 
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Survey Simulations 

The density estimation methods performed relatively well under most conditions 

but demonstrated sensitivity to changes to the distance sampling functions and 

exposure.  In 8 out of the 11 trials, there was a 10% or less difference between the 

estimated abundance and the true abundance and the true mean was within the 95% 

confidence interval of the estimated mean (Table 4). However, in 3 of the 4 trials 

affecting either exposure or the distance function, estimated abundance differed from the 

true abundance by between 13.9% - 16.25% and the confidence intervals did not contain 

the true abundance after 4 replicate surveys (Table 4). These results suggest that the 

methods are robust to changes in abundance, grouping size, and distribution while being 

relatively sensitive to violations of assumed fish detectability. Because I changed 

parameters by varying amounts among trials (40-75% difference from null conditions), a 

value called “Parameter Effect” is presented in Table 4 to show the proportional effect of 

each parameter (note that value is not available for changes in distribution). Parameter 

effect values mirror the above conclusions, again confirming that the abundance 

estimator is typically robust to changes in the surveyed population unless assumptions of 

fish detectability are violated. In all trials, it is apparent that the number of survey 

replicates increases the accuracy of the estimates with standard error declining as each 

additional replicate was added. Even with only 4 replicates conducted there is evidence of 

an asymptotic relationship; after 3 replicates there is minimal change in the difference 

between the estimate and the true abundance (Figure 9). 
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Table 4. Summary of the simulations used to test the sensitivity of the density estimation methods. For simplicity, only the 

results of the fourth replicates are presented here. “Variable” refers to the parameters which controls the value listed 

in this column. “Percent Change” described the changes made to each respective variable relative to the null model. 

“Parameter Effect” is the ratio of the “Percent Difference” to the “Percent Change” in the parameter. 

Variable  Percent 

Change 

True 

Abundance 

Change in 

Abundance 

Mean 

Estimated 

Abundance 

Standard 

Error 

Difference 

(True – Est.) 

Percent 

Difference 

Parameter 

Effect 

Null model NA 390 0 395.93 17.8 5.93 1.52 NA 

group number -50 203 -187 223.30 15.03 20.30 10.00 -0.20 

group number 50 591 201 623.20 25.14 32.20 5.44 0.10 

group size -75 146 -244 144.89 6.6 -1.10 -0.75 0.01 

group size 75 629 239 635.98 27.64 6.98 1.11 0.01 

distance function -40 390 0 325.05 15.33 -64.94 -16.65 0.41 

distance function 40 390 0 450.17 20.09 60.17 15.43 0.38 

mean exposure -50 381 -9 327.85 16.93 -53.14 -13.94 0.27 

mean exposure 50 381 -9 416.08 20.89 35.08 9.20 0.18 

distribution 

(west) 

NA 390 0 378.54 18.79 -11.45 -2.93 NA 

distribution 

(south) 

NA 390 0 395.40 20.53 5.4 1.38 NA 

distribution 

(thalweg)              

NA 390 0 384.72 17.36 -5.27  -1.35  NA 
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Figure 9. Box plots of abundance estimates generated by simulated repeat sampling under 

conditions of the null model. 
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Predator Density  

Finding no significant effects of transect order in estimating density, I calculated 

reach density by bootstrapping density estimates from multiple independent transects. 

Analysis of covariance showed that transect order had no significant effects on the 

predator density estimate after controlling for site and date effects (𝐹(19,1) = 0.0122, p = 

0.912). Furthermore, I found no significant difference in the predator density estimates 

for all possible combinations of two or more independent transects using a one-way 

analysis of variance for each site (minimum p-value = 0.388). Predator densities were 

thus calculated for all surveyed sites using between 3 and 36 unique combinations of two 

or more independent transects depending on the number of transects which were 

completed. I then used the mean and variance of the resulting distributions to describe 

site density. Mean density estimates from the 35 sampling days ranged from 7.34 to 

56.99 predators per 100 𝑚2 (𝑚𝑒𝑎𝑛 = 18.9 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟𝑠/100 𝑚2, standard deviation =

10.85 predators/100 𝑚2) (Figure 10). There were two sites with outlying density 

estimates greater than two standard deviation above the pooled mean and only a single 

estimate occurring below one standard deviation of the pooled mean. The highest 

estimated predator density occurred at site 25 on May 8th, likely the result of an 

immigration of striped bass to the area (Figure 5). This immigration may also be 

responsible for the third highest density occurring on May 2nd at site 25. The second 

highest density outlier occurred on the 21st of April at site 14, a constructed channel 

designed to allow boat travel through the region. Most of the observed predators occurred 
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along the heavily vegetated southern shoreline of site 14. The lowest predator density 

estimate occurred at site 19 on April 29th, a site along Old River near the entrance to 

Discovery Bay, a popular marina and waterfront housing development. The only support 

I found for a temporal trend in density estimates was a quadratic relationship at site 25 

(𝑅2 = 0.90, 𝐹(2,3) = 13.55, 𝑝 = 0.032) and a weak quadratic trend in overall predator 

density estimates throughout the sampling period (𝑅2 = 0.149, 𝑝 =  0.076) (Figure 10).  

 

Figure 10. Predator density estimates and 95% confidence intervals for every site 

sampled during the 2017 field season. Repeat sites 1, 24, and 28 are each 

represented by a unique shade of grey while single visit sites are all labeled with 

their respective site number. 
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Landscape-Scale Distribution Modeling 

I used density estimates from all of the repeat sites and 16 of the 17 single visit 

sites (n = 34) to construct mixed effects linear models to predict predator density from 

environmental variables summarized per site. I excluded one single visit site (site 12) in 

the initial model selection due to missing water quality data. The global model included 

sinuosity, total SAV area, SAV patch count, man-made structure area, total levee length, 

coefficient of variation of depth, total tule patch area, tule patch count, conductivity, 

dissolved oxygen, mean temperature, mean flow velocity, and coefficient of variation of 

depth as fixed effects and week as a random intercept. Model selection resulted in 1470 

candidate models, five of which were within a Delta AICc of 2 (Table 5). Because none 

of the five top models included water quality variables, I excluded these variables from 

the global model and reran the model selection including data from site 12 (n=35). The 

model with the most support included Sinuosity (negative effect), SAV patch count 

(positive effect), and the coefficient of variation of depth (positive; Table 6). This model 

also had the most predictive power when tested using “leave one out cross validation” 

(Multiple R-Squared = 0.36) and was thus chosen as the final model for predicting 

predator density at a landscape scale. This model suggests that I could expect sites that 

are relatively linear, bathymetrically variable, and with many patches of SAV to have the 

highest densities of potential salmonid predators (Figure 11). An important distinction is 

that while both SAV patch count and total SAV area were included in the global model, 

only SAV patch count appeared in the top models indicating predators may be more 
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likely to select habitats with a patchy distribution of SAV as opposed to large, dense 

mats. Extrapolation of the landscape-scale model resulted in predicted predator densities 

ranging from 6.81 – 329.62 predators per 100 𝑚2 with a mean of 20.79 predators per 

100 𝑚2 100 𝑚2  (Figure 12, Figure 13, and Figure 14). Noteworthy predictions include 

many high density reaches along the upper mainstem San Joaquin River, including the 

highest predicted predator density at the head of Old River, an area of management 

interest (Monsen et al. 2007, Cavallo et al. 2011, Buchanan et al. 2013)  
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Table 5. Differences in Akaike's information criterion scores (Delta AICc), AICc weights 

(Weights), and the degrees of freedom (df) for the top 5 candidate landscape-scale 

species distribution models. Models were built using all available data from 35 

sampling days. 

Model 

df 

Delta 

AICc Weight 

~ CV Depth + SAV Patches + Sinuosity 6 0 0.04 

~ CV Depth + SAV Patches + Sinuosity + Turbidity 7 0.89 0.03 

~ CV Depth + SAV Patches + Sinuosity + Mean Depth 7 1.22 0.02 

~ CV Depth + Sinuosity + Velocity 6 1.45 0.02 

~ CV Depth + SAV Patches + Sinuosity + STR area 7 1.98 0.01 

CV Depth, coefficient of variation of depth; SAV Patches, number of patches of 

submerged aquatic vegetation; STR area, area of human-made structures. 

 

Table 6. Coefficients, standard error (SE), 95 percent confidence intervals of the most 

supported landscape-scale species distribution model of habitat selection by 

piscivorous fish in the Sacramento - San Joaquin Delta. Coefficients and standard 

errors are based on the single model fit using all site data (n = 35). 

Fixed Effects Coefficient SE 95% Confidence interval 

Intercept -6.391 0.065 -6.518, -6.264  

Sinuosity -0.248 0.086 -0.417, -0.079 

SAV Patches  0.216 0.080  0.059, 0.373 

CV Depth  0.209 0.079  0.054, 0.364 

 

Table 7. Random effects of the most supported landscape-scale species distribution 

model of habitat selection by piscivorous fish in the Sacramento - San Joaquin 

Delta. Coefficients and standard errors are based on the single model fit using all 

site data (n = 35). 

Random Effects Variance SD 

Week (Intercept) 0.00 0.00 

Residual 0.150 0.387 
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Figure 11. Response curves for the predictor variables of the most supported landscape-

scale species distribution model of habitat selection by piscivorous fish in the 

Sacramento - San Joaquin Delta. 95% confidence intervals are represented in grey 

around each line. 
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Figure 12. Predicted predator densities across the southern Sacramento - San Joaquin 

Delta. 
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Figure 13. Predicted predator densities in the northern extent of the Delta study region. 
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Figure 14. Predicted predator densities in the southern extent of the Delta study region. 
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Fine-Scale Ecological Niche Modeling 

I built models predicting relative probability of occurrence using observed 

predator locations and background habitat conditions from 20 unique sites. I used a total 

of 3,448 observed predator locations and 10,000 background points drawn only from 

surveyed areas and locations which contained data for all variables. Model selection of 

Maxent models predicting relative probability of predator occurrence on a 1 m scale 

resulted in 12 candidate models, only one of which had a Delta AICc score less than 10. 

This model utilized a regularization multiplier of 1 and linear, product and hinge feature 

classes for all 6 predictor variables resulting in 129 parameters. This model had a mean 

area under the operator curve (AUC) score of 0.714 (sd = 0.053).  Based on the variable 

metrics “Percent Contribution” and “Permutation Importance”, distance to tules was the 

most important variable in predicting habitat use followed closely by distance to SAV 

and distance to shore (Figure 15). Based on the response curves of these variables, 

predators are generally more likely to be found closer to these habitat features with an 

approximately exponential decrease in relative suitability with increasing distance 

(Figure 16). This same response was also evident in depth while distance to structure and 

pools exhibited somewhat quadratic responses. This is likely a spurious result of 

correlation with other variables or the bimodal distribution of values resulting from the 

substitution of maximum observed distance for sites that did not have the variable 

present. Furthermore, the distance to pools variable contributed negligibly to the model 

and the linear term for this variable was eliminated by the Maxent algorithm. The sharp 
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hinge near the maximum or minimum observed distances in the response curve of 

distance to tules is likely due to the same bimodal distribution resulting from occurrence 

records for four sites having equal distance to tules values (1867 m). While this is a 

somewhat spurious result (e.g. there is no biological reason to suspect that 1867 m is the 

ideal distance from tules for Delta predators), it does highlight the observation that while 

many predators select habitats closely associated with tules, many are also selecting 

habitats that have no mapped tules within at least one km of the location they were 

observed in. The mean relatively probability of occurrence predicted for each site had 

strong correlation with the estimated predator densities (r-squared = 0.63, p < 0.0001).  
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Figure 15. Variable metrics for the most supported Maxent model predicting predator 

occurrence from habitat characteristics. Percent contribution is a measure of the 

additive regularized gain from each iteration of the training algorithm. 

Permutation importance results from the drop in training AUC scores due to 

randomizing a predictor variable. Values shown are averages over replicate runs. 
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Figure 16. Response curves for the predictor variables contributing to the Maxent ecological niche model predicting relative 

probability of occurrence of piscivorous fishes in the Sacramento - San Joaquin Delta. The curves depict the mean 

response from 100 replicate model runs (red) +/- one standard deviation (blue) on a probability scale from zero to one.  

Distance and depth units across all x-axes are in meters.



57 

 

  

Model selection of mixed-effects logistic regression models predicting probability 

of predator occurrence on a one m scale resulted in 180 candidate models, six of which 

had a Delta AIC score less than 2 (Table 8). Of the top six models, the most parsimonious 

model, which included terms for depth, distance to SAV, distance to shore, distance to 

structure, distance to tules, an interaction term for distance to SAV by distance to tules, 

and an interaction term for distance to structures by distance to tules, was selected as the 

best model (Table 9). The best model had an AUC score of 0.72. Based on the response 

curves of Distance to Shore and Depth predatory fishes are more likely to select habitats 

closer to shore in shallower water (Figure 17). The main effects of the variables Distance 

to SAV and Distance to Structures depend on the variable Distance to Tule (Figure 18, 

Figure 19). At locations that are near tules, the distance to structures has little effect on 

the probability of occurrence. As the distance from tules increases, the distance to 

structures has a much more pronounced effect on the probability of occurrence; predators 

are much more likely to be found nearer to structures in the absence of tules.  Conversely, 

the interaction term between distance to tules and distance to SAV has a fairly weak 

effect. Predators are most likely to occur at locations near SAV and far from tules. At 

locations where SAV patches are distant there is little effect of the distance to tules with 

roughly 50 percent probability of occurrence across the range of observed distances to 

tules.  
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Table 8. Differences in Aikaike's information criterion scores (Delta AIC), AIC weights 

(AIC wght), and the degrees of freedom (df) for the top 5 candidate landscape-

scale species distribution models based on logistic regression. The model which 

was selected as the best model by the principle of parsimony is bolded. 

Model df Delta 

AIC 

AIC 

wght 

~(Depth * Shore) + (SAV * Tule) + (STR*Tule) 10 0 0.17 

~ Depth + Shore + (SAV * Tule) + (STR*Tule) 9 0.11 0.16 

~Pool + (Depth * Shore) + (SAV * Tule) + (STR*Tule) 11 0.51 0.13 

~Pool + Depth + Shore + (SAV * Tule) + (STR*Tule) 10 0.56 0.13 

~(Depth * Shore) + (SAV * Tule) + (STR*Tule) + (SAV * STR) 11 1.53 0.08 

~Depth + Shore + (SAV * Tule) + (STR*Tule) + (SAV * STR) 10 1.61 0.08 

Shore, distance to shore; SAV, distance to SAV; Tule, distance to tules; STR, distance to 

structures; Pool, distance to pools. 

 

Table 9. Coefficients, standard error (SE), 95 percent confidence intervals, and 

random effects of the most supported and most parsimonious fine-scale 

species logistic regression ecological niche model of habitat selection by 

piscivorous fish in the Sacramento - San Joaquin Delta. 

Fixed Effects Coefficient  SE 

95% 

Confidence 

Interval 

(Intercept) -0.351  0.096 -0.539, -0.163 

Distance to Structure -0.344  0.052 -0.446, -0.242 

Distance to Tules -0.088  0.088 -0.261, 0.084 

Distance to SAV -0.222  0.058 -0.336, -0.109 

Distance to Shore -0.258  0.052 -0.360, -0.156 

Depth -0.171  0.045 -0.083, -0.260  

STR:Tule -0.372  0.068 -0.504, -0.239 

Tule:SAV -0.106  0.043 -0.191, -0.022 

 

Table 10. Random effects of the most supported and most parsimonious fine-scale 

species logistic regression ecological niche model of habitat selection by 

piscivorous fish in the Sacramento - San Joaquin Delta. 

Random Effects Variance  SD 

Site (intercept) 0.153  0.391 
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Figure 17. Response curves for the main effects of predictor variables Distance to 

Shore and Depth of the most supported fine-scale logistic regression 

model of habitat selection by piscivorous fish in the Sacramento - San 

Joaquin Delta. Each panel depicts the response curve of each respective 

variable (black) with 95 percent confidence intervals (grey) while all other 

variables are held at their mean value. 
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Figure 18. Response curves for the interaction between predictor variables 

Distance to Structure and Distance to Tules from the most supported fine-

scale logistic regression model of habitat selection by piscivorous fish in 

the Sacramento - San Joaquin Delta. Each panel depicts the response curve 

of Distance to Structure at different quantiles of the variable Distance to 

Tules (black) with 95 percent confidence intervals (grey) while all other 

variables are held at their mean value.  
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Figure 19. Response curves for the interaction between predictor variables 

Distance to Submerged Aquatic Vegetation and Distance to Tules from the 

most supported fine-scale logistic regression model of habitat selection by 

piscivorous fish in the Sacramento - San Joaquin Delta. 

 

 Logistic regression and Maxent modeling had similar predictions for the 

probability of predator occurrence in areas throughout the different surveyed 

reaches. Predictive power of both models is only moderate on a 1 m scale; 

however, both models are able to capture large-scale trends. The mean relative 

probability of occurrence predicted by both logistic regression and Maxent had 

strong correlation with the estimated predator density for each site surveyed 

(logistic regression prediction~ density estimate: 𝑅2 = 0.69, 𝑝 = 5.83 ∗ 10−6; 

Maxent prediction ~ density estimate: 𝑅2 = 0.63, 𝑝 = 2.78 ∗ 10−5) (Figure 20). 

Furthermore, qualitative comparison of predator occurrence predicted across each 
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study area indicated that both models tended to agree on the relative suitability of 

habitat patches within sites (Figure 21). 

 

 

Figure 20. Comparison of mean relative probability of occurrence predicted from 

logistic regression and Maxent ecological niche models to estimates of 

predator densities derived from field surveys. Regression lines relate each 

model’s predicted mean site suitability to estimated predator densities.
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Figure 21. Predicted relative probability of occurrence of piscivorous fishes at sites 1, 25 and 28 using Maxent (upper panels) and 

logistic regression (lower panels).
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DISCUSSION 

Landscape-Scale Predator Distribution 

I found that landscape-scale predator distributions were predominantly 

driven by spatial and structural habitat characteristics and not temporal variables. 

While there is apparent variation in abundance through time and space, there does 

not seem to be any consistent temporal trends across sites and the variance is not 

well explained by any of the time-dependent covariates tested. The variance is 

best explained in space; habitat characteristics that do not change throughout the 

sample season were the most significant predictors of reach density. The best 

model suggests that on both a landscape scale and a fine scale, predators were 

selecting habitats near SAV or habitats with many patches of SAV. Largemouth 

bass, the most abundant predator captured during electrofishing efforts, are known 

to reside and forage within areas of dense vegetation (Savino and Stein 1989). 

Largemouth bass are also known to seek submerged cover, including SAV, to 

search out prey that may be taking refuge, but also use the structure as cover for 

ambush predation (Wanjala et al. 1985, Savino and Stein 1989). Furthermore, the 

proliferation of invasive SAV in the Delta has been linked to the expansion of 

largemouth bass habitat (Brown and Michniuk 2007, Conrad et al. 2016).  

The establishment of invasive species of SAV, such as Brazilian 

waterweed (Egaria densa), has created novel habitats suitable to invasive 
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piscivores, which may affect native fishes by altering the habitats they evolved 

with, and in the case of salmonids, by promoting their predators. Naïve salmonids, 

which have not evolved in a landscape where ambush predators lurk amongst the 

vegetation, are likely moving through these habitats unaware that predators likely 

reside within. These results also suggest that the patch count of SAV was a much 

stronger predictor of predator density than total SAV area. It is likely that habitats 

with many patches of SAV are less dense and therefore less complex than habitats 

with large total areas of SAV by traditional measures of structural complexity 

(e.g. vegetation stems/𝑚2). In habitats with patchy SAV, ambush predators may 

be able to more effectively utilize the patchy cover for predation than prey can 

utilize it for evasion. Studies of predator-prey interactions have suggested that 

largemouth bass foraging success may decrease as habitat complexity increases 

beyond a threshold, especially when prey seek refuge in dense cover (Savino and 

Stein 1982, 1989, Takamura 2007). A study of another ambush predator, the 

spotted gar (Lepisosteus oculatus), has also shown that predation can be mediated 

by the complexity of vegetative structure (Ostrand et al. 2004). Crowder and 

Cooper (1982) found that in an experimental setting Bluegill sunfish had better 

growth and consumed more prey at intermediate densities of aquatic vegetation. If 

Delta habitats with numerous SAV patches are truly of moderate complexity 

relative to their surroundings, this could suggest that predator fishes in the Delta 

may be selecting habitats with a patchy distribution of SAV because it provides 

the most optimal foraging conditions.  
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Landscape-scale distributions of predators were also mediated by sinuosity 

and coefficient of variation of depth. I observed a positive relationship between 

predator density and the coefficient of variation of depth, suggesting that 

predators are selecting habitats with more abiotically complex structure, likely for 

the same reasons they are selecting areas with complex SAV structure. 

Contradictory to this notion, the negative relationship observed with sinuosity 

suggests that predators are selecting more linear sites which one would expect to 

have low structural complexity or habitat heterogeneity. It is possible that 

sinuosity is collinear with unmeasured habitat variables such as substrate type. 

Many linear channels of the Delta are the result of levee construction which are 

often built from or armored with riprap. Sport fisherman often target these 

riprapped embankments due to frequent encounters with largemouth bass and 

other centrarchid fishes (Dance 2014). Brown and Michniuk (2007) also 

speculated that the replacement of natural banks with riprap material could 

explain the dominance of non-native fish in littoral habitats of the Delta. 

Unfortunately, little data is available on the extent and location of riprap in the 

Delta so this relationship remains speculation.  

I found that predator fishes were widely distributed across the entire study 

area, with potential predators occurring at every site sampled. This was similar to 

results of previous studies in the Delta (Feyrer and Healey 2003, Nobriga and 

Feyrer 2007, reviewed in Grossman et al 2013). While most sites were within one 

standard deviation of the mean estimated predator density, I observed several 
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distinct high-density outliers. At site 25, I observed the immigration of an 

apparently large school of striped bass during the last two weeks of sampling 

which was likely responsible for producing the highest density estimate on May 

8th and the third highest density on May 2nd. Although this immigration coincided 

with a rise in temperatures, it is difficult to separate this coincidence from their 

normal phenology; striped bass typically migrate up the San Joaquin River in 

spring (Calhoun 1952). This phenomenon demonstrates that highly migratory, 

schooling predators such as striped bass can cause drastic, though temporary, 

fluctuations in local predator density, which may help explain the variance in 

density estimates across time. The second highest density estimate, occurring at 

site 14 on April 21st is not as easily attributed to an influx of striped bass as I have 

no supplemental data to suggest what the species composition might have been at 

this site and thus I can only speculate on the reasons why this site might have such 

a high density of predators. It is noteworthy that the majority of predators 

observed at site 14 occurred along the southern bank, an extensively vegetated 

shoreline in an otherwise uniform constructed navigational waterway (Grant Line 

Canal). The landscape-scale model predicts multiple reaches through this same 

canal as well as the parallel Fabian and Bell Canal with relatively high predator 

densities driven by low sinuosity and high SAV patch counts. It is possible that 

the structure of this canal encourages growth of high quality SAV habitat. 

Additionally, large abundances of American shad (Alosa sapidissima), a forage 

fish which can attract concentrations of predators, have been documented in this 
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region from May to April (Stevens 1966). The lowest density estimate occurred 

within 2 km of Discovery Bay, a very popular destination for fisher people due to 

its large population of largemouth bass. If local predators are drawn to Discovery 

Bay for the high density of structures, riprap, and low velocity habitat occurring 

there, it could be acting as a predator “sink” and drawing predators away from 

comparatively less desirable locations such as site 19. This broad distribution of 

predators means that emigrating salmonids will face predators throughout their 

journey regardless of route choice. Furthermore, they will likely encounter high 

densities of predators at some point in space and/or time due to the migratory 

predators. 

Fine-Scale Predator Distribution 

On a fine scale, habitat depth and proximity to shorelines, aquatic 

vegetation (SAV and tules), and human-made structures all played a role in 

determining a predator’s habitat selection. Distance to shore and depth 

consistently had a negative relationship with relative probability of occurrence 

suggesting that predators are more likely to be found in shallow, littoral habitats 

(Figure 16, Figure 17). This is consistent with habitat selection typical of 

largemouth bass and other centrarchid fishes which dominated electrofishing 

samples on five of the six sampling days (Feyrer and Healey 2003, Brown and 

Michniuk 2007, Conrad et al. 2016, Michel et al. 2018). Similarly, the negative 

relationships I observed between predator occurrence and distance to SAV and 
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distance to tules reinforces the previously observed associations centrarchid fishes 

have with complex vegetative structure (Crowder and Cooper 1982, Savino and 

Stein 1989, Feyrer and Healey 2003, Brown and Michniuk 2007, Conrad et al. 

2016). These results also suggest that these relationships may be interdependent; 

the selection of one vegetation type may depend on the proximity of the other and 

the proximity to human-made structures. While there is abundant literature to 

support selection of moderately complex habitats for foraging, little is known 

about the preferences of predator species for different vegetation types. In an 

experimental removal of SAV, researchers observed largemouth bass migrating 

to, and forming associations with, artificial structures, mirroring the interactions I 

observed between the distance to tules and the distance to structures (Colle et al. 

1989). However, I cannot conclude habitat preference or requirements from this 

data and to distill a predator’s preference or requirement for a vegetation or cover 

type would require controlled experiments (Rosenfeld 2003). Furthermore, the 

relationships observed on both a fine scale and landscape scale result from the 

cumulative responses of at least 12 different predators. While many of the 

centrarchids exhibit similar habitat selection of littoral habitats, striped bass and 

white catfish typically select mid-channel, open water habitats (Feyrer and Healey 

2003, Michel et al. 2018). Because centrarchids numerically dominated the catch 

composition during electrofishing efforts, the observed relationships are likely 

more representative of the choices these species make and the uncertainty of these 

models is due in part to the observations of the typically less abundant mid-
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channel dwelling species. Species differentiation to a finer resolution than what I 

have achieved would likely drastically improve the predictive power of these 

models.   

Emigrating salmonids may form some of the same habitat associations as 

predators in the Delta which may increase their encounters with predators, though 

that is not a common pattern observed. Zajanc et al. (2013) found that the 

presence of structural habitat features which provide both velocity refuge and 

shade increase the probability of holding and holding duration of Chinook salmon 

smolt during emigration through the Sacramento River. Structures such as docks 

and pilings may provide these types of refugia and my models indicate that 

predators may also utilize those habitats. Simple structures such as docks and 

pilings typically don’t provide the habitat complexity which can moderate 

predation success as described earlier. Thus, if a smolt seeks refuge near 

anthropogenic structure that predators are associating with, this may increase the 

likelihood that it will be consumed. Structures that pass juvenile salmonids, such a 

diversion dams, have also been known to aggregate predators which then 

consume disproportionately large numbers of salmonids (Sabal et al. 2016). 

Smolts are typically not found in nearshore habitats of the Delta and may not 

encounter the numerous littoral-dwelling predators I observed unless seeking 

refuge. Michel et al. conducted a salmonid predation study concurrent with my 

study, sharing both the same study sites and habitat data used in my study (2019). 

Their preliminary results indicated that none of the fine-scale habitat variables 
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discussed here have a significant effect on salmonid predation but the mean 

distance to a predator (derived from my data) is a significant predictor. This 

would suggest that habitat characteristic do not significantly affect predation rate; 

however, because my models suggest predator density and position are strongly 

associated with spatial habitat characteristics, including a metric for predator 

density in a predation model may account for some of the variability due to spatial 

characteristics. Furthermore, predators are likely selecting habitats that are 

productive in terms of foraging success so I would expect higher predator 

densities and higher predation rates to occur in similar habitats. Thus, in an 

ecological setting it may be too difficult to distinguish the effects of habitat and 

predators on predation without experimental controls. 

Survey Methods and Species Differentiation 

With this study I have shown that DIDSON acoustic cameras can be used 

to quantify predator fish abundance in a broad scale, mobile application but these 

methods would benefit from additional research. With a relatively simple survey 

design, footage processing protocol, and density estimator, I calculated predator 

densities on a reach scale that have significant correlation with concurrent 

predation studies (Michel et al. 2019). DIDSON’s high resolution, ease of use, 

and low disturbance made it ideal for use in ecological study; however, there are 

some key considerations for expanding on this methodology.  
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First, my species differentiation function is likely biased and would 

benefit greatly from a larger sample size. The best LDA model separating 

common carp from predators had an accuracy of up to 98.18 % when applied to 

the training footage; however, this rate is likely biased by the size distribution of 

fish sampled. All of the C. carpio recorded in reference footage were over 56 cm 

while all predator species used were less than 50 cm (Table 3). LDA models 

trained using only fish length from “predator” and “carp” groups resulted in 

classification rates greater than 97 % suggesting that the other measured 

morphometric values are contributing insubstantially to the discrimination 

function (Table 2). Predator fish in the Delta do reach sizes over 50 cm and C. 

carpio also occurs in smaller sizes, but in all six days of electrofishing, no fish in 

these size classes were captured. Without access to an additional data base of 

morphometrics and acoustic measurements for these species, I am unable to refine 

the functions further and I must assume that the sampled fish are representative of 

the fish population present in the study area during the survey period. 

Though my species differentiation methods resulted in coarse 

discrimination of common carp from predators, I observed the potential for higher 

resolution species differentiation. Given a larger sample size of reference footage, 

or if studies were conducted in systems with limited numbers of species, 

differentiation beyond functional groups may be possible. Because width and the 

length:width ratio seemed to have inherent morphological differences and 

previous studies have used these metrics succesfully, I believe these methods 
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would still be effective at distinguishing common carp from predator 

species(Appendix D, Mark Bowen 2018). In addition, I believe there is strong 

potential for target strength to play a role in differentiating species, but in this 

study the effects of target strength were likely overshadowed by the 

comparatively strong effects of length. I observed strong patterns of distinct target 

strengths for several of the well represented species in the study (Figure 8) and 

target strength has a successful history of implementation in traditional fisheries 

acoustics (Martignac et al. 2014, Ona 1999, Horne 2000, McQuinn and Winger 

2003).  

Secondly, a key finding of the simulations I conducted is that these 

methods were most susceptible to violations of a constant detection probability. I 

grouped variables which may affect detection of predators into two categories: 1) 

variables which affect fish behavior and 2) variables that affect DIDSON footage. 

Variables in group 1 include, but are not limited to, temperature, light, cover, 

depth, species interactions, and human disturbances. For example, as water 

temperatures increase and predatory fish become more active, we may be more 

likely to observe actively foraging species and count them towards our estimate. 

If the goal is to estimate the active predator population during the time of the 

study, then this variability in detection is likely proportional to the estimate of 

interest. Conversely, if the goal is to estimate the absolute population of predatory 

fish, then understanding the influence of group 1 variables is essential to correct 

population estimates. Variables in group 2 include underwater structure, drifting 
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particulate, weather, turbulence, boat wakes and other waves. Typically these 

variables would either cause excessive platform motion that makes it very 

difficult to review footage or they may directly obstruct the view of potential 

predators and will effect population estimates regardless of the unit of interest.  

Understanding the influence of both of these sets of variables would require 

controlled experiments on a closed population; an effort that was beyond the 

scope of this study. I recommend that future use of this methodology take these 

variables into consideration and perhaps plan controlled experiment to evaluate 

their influence. 

Management Implications 

The information conveyed in this study can be useful to managers of the 

Delta ecosystem, but appropriate caution is needed when utilizing these results. 

The data collected and analyzed in this study is representative of only a single, 

unusually wet spring (CDWR 2017). Therefore, the relationships I observed may 

be unique to the unusually high flows and cool temperatures observed in spring of 

2017. Furthermore, the models I present are relatively simple with only moderate 

predictive power and thus I recommend that the predictions presented in this 

study be used to inspire further scientific explorations. For instance, these model 

predictions indicate that predator densities in the upper San Joaquin River 

between the Stockton ship yard and the Head of Old River are consistently high 

(mean, 32.04 predators/𝑚2) which could help explain why survival estimates are 
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typically very low through this region (Buchanan et al. 2018). If management 

actions to reduce the predator population are considered, I recommend focusing 

on habitat manipulations, such as reducing the extent of invasive SAV, along 

salmonid emigration routes with high predator densities. Because broad scale 

predator removals have been largely ineffective in the Delta, efforts to manipulate 

habitat to discourage non-native predator recruitment and favor native species 

recruitment may be more effective (reviewed in Bowen 2018, Wikert 2018). 

Efforts to reduce invasive SAV could also reduce habitat suitability for predator 

species; model predictions using the landscape model developed in this study 

indicate that a reduction of SAV patches along the upper San Joaquin River 

between the Head of Old River and Stockton by only 50% could reduce predator 

densities by approximately 18% while a complete eradication of SAV in this 

region could reduce predator densities by approximately 32%. Invasive SAV, 

including Egeria densa, have been identified as problematic throughout large 

portions of the San Joaquin River and Delta, due to interference with water 

conveyance, recreational and commercial boat passage, and threats natural 

ecological processes (Ruhstaller and Peipho 2014). Annual weed control efforts 

are undertaken to mitigate these effects, but are limited by high costs, lack of 

funding, a complex regulatory structure, and a lack of consistent monitoring (Ta 

et al. 2017). Consistent implementation of invasive SAV control measure will 

require that managers find consistent routes to navigate these barriers. 

Furthermore, the effectiveness of using weed control to reduce local predator 



76 

 

  

populations will require testing and evaluation. Given the extent of fish invasions 

in the Delta, the species community will likely remain altered regardless of 

management actions taken, but restoring conditions to favor native species will 

increase the probability that they will persists alongside their alien neighbors. 
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Appendix A 

Appendix A. Summary of simulated line transect parameter specifications under 

null conditions. 

Line Transect Survey Parameters 

Truncation distance                10 

Number of lines                    2 

Total line length in survey 

region 2000 

Survey area                        60000 

Covered area                       40000 

Percentage of survey area 

covered  66.67% 
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Appendix B 

Appendix B. Summary of the detection function parameter specification for survey 

simulations under null conditions. 

Detection function for the half-normal model 

Model 

𝑝(𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)

= 𝑒
(

−0.5∗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

𝑒(𝜃0+ 𝜃1∗𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)
)2

 

Parameters  𝜃0=  1.45 ; 𝜃1=  0.69 

Effective strip width at 

minimum exposure 5.22 

Effective strip width at 

maximum exposure 8.10 

Mean effective strip width                6.76 
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Appendix C 

Appendix C. Summary of the population and survey area parameters specified for survey 

simulations under null conditions. 

Simulated Population and Survey Area 

Region (length x width)  60 x 1000  

Number of groups      100 

Number of individuals 390 

Group sizes            1 : 9  

Mean group size       3.9 

Exposure boundaries    [0,1] 

Mean exposure         0.51 
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Appendix D 

 

Appendix D. Summary of sites visited during the 2017 field season. 

Site Region Sampling 

Date(s) 

Channel 

Type 

Site Area 

(𝑘𝑚2) 

Mean Depth 

(m) 

Sinuosity Channel width (m) 

1 Lower San Joaquin 4/4/2017 

4/10/2017 

4/19/2017 

5/1/2017 

4/26/2017 

5/10/2017 

Mainstem 0.33 9.11 1.24 730 

3 Lower Old River 4/6/2017 Mainstem 0.12 3.15 1.12 98 

6 Mildred Island and 

Cuts 

4/7/2017 Distributary 0.12 4.22 1.00 105 

8 Lower Old River 4/8/2017 Distributary 0.18 3.93 1.33 160 

10 Middle River and Cuts 4/13/2017 Distributary 0.83 3.29 1.00 76 
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Site Region Sampling 

Date(s) 

Channel 

Type 

Site Area 

(𝑘𝑚2) 

Mean Depth 

(m) 

Sinuosity Channel width (m) 

11 Mildred Island and 

Cuts 

4/14/2017 Mainstem 0.19 5.02 1.52 126 

12 Lower San Joaquin 4/15/2017 Mainstem 0.13 3.97 1.07 260 

13 Upper San Joaquin 4/20/2017 Mainstem 0.83 2.90 1.65 75 

14 Upper Old River and 

Cuts 

4/21/2017 Distributary 0.70 2.26 1.00 71 

16 Mid San Joaquin 4/22/2017 Mainstem 0.70 6.16 1.01 168 

19 Lower Old River 4/28/2017 Mainstem 0.19 3.13 1.29 146 

22 Lower Old River 4/29/2017 Mainstem 0.14 3.81 1.35 106 

23 Upper San Joaquin 5/4/2017 Mainstem 0.15 2.13 2.08 130 

24 Lower San Joaquin 5/5/2017 Mainstem 0.22 2.36 1.02 238 

 

25 Upper San Joaquin 4/5/2017 

4/11/2017 

4/17/2017 

4/27/2017 

5/2/2017 

Mainstem 0.71 2.01 1.49 82 
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Site Region Sampling 

Date(s) 

Channel 

Type 

Site Area 

(𝑘𝑚2) 

Mean Depth 

(m) 

Sinuosity Channel width (m) 

5/8/2017 

27 Mildred Island and 

Cuts 

5/6/2017 Mainstem 0.17 5.68 1.43 185 

 

28 Mildred Island and 

Cuts 

4/3/2017 

4/12/2017 

4/18/2017 

4/25/2017 

5/3/2017 

5/9/2017 

Distributary 0.15 3.78 1.06 98 

33 Lower San Joaquin 5/11/2017 Distributary 0.21 4.74 1.00 189 

34 Upper Old River and 

Cuts 

5/12/2017 Mainstem 0.87 1.24 1.38 72 

37 Franks Tract 5/13/2017 Distributary 0.11 4.30 1.23 91 
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Appendix E 

 

Appendix E. Species captured during electrofishing sampling events. 

Site Date Species Common Name Count 

1 11 April 

2017 

Micropterus salmoides Largemouth Bass 52 

  Morone saxatilis Striped Bass 13 

  Ameiurus catus White Catfish 1 

  Lepomis microlophus Redear Sunfish 4 

  Lepomis gulosus Warmouth 1 

1 11 May 

2017 

Lepomis macrochirus Bluegill Sunfish 1 

  Cyprinus carpio Common Carp 1 

  Micropterus salmoides Largemouth Bass 13 

  Ptychocheilus grandis Sacramento Pikeminnow 1 

  Lepomis microlophus Redear Sunfish 4 

  Notemigonus crysoleucas Golden Shiner 3 

  Morone saxatilis Striped Bass 30 

  Hysterocarpus traskii Tule Perch 1 

  Ameiurus catus White Catfish 1 

25 12 April 

2017 

Lepomis macrochirus Bluegill Sunfish 9 

  Micropterus salmoides Largemouth Bass 36 



91 

 

  

Site Date Species Common Name Count 

  Lepomis microlophus Redear Sunfish 23 

  Morone saxatilis Striped Bass 23 

  Ameiurus catus White Catfish 1 

25 9 May 

2017 

Micropterus salmoides Largemouth Bass 29 

  Ptychocheilus grandis Sacramento Pikeminnow 1 

  Lepomis microlophus Redear Sunfish 3 

  Morone saxatilis Striped Bass 26 

  Lepomis macrochirus Bluegill Sunfish 1 

  Carassius auratus Goldfish 1 

  Ptychocheilus grandis Sacramento Pikeminnow 2 

  Lepomis microlophus Redear Sunfish 4 

  Ameiurus catus White Catfish 5 

28 13 April 

2017 

Ameiurus nebulosus Brown Bullhead 3 

  Lepomis macrochirus Bluegill Sunfish 6 

  Carassius auratus Goldfish 1 

  Micropterus salmoides Largemouth Bass 111 

  Lepomis microlophus Redear Sunfish 27 

  Ameiurus catus White Catfish 10 

  Lepomis gulosus Warmouth 1 

  Cyprinus carpio Common Carp 6 
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Site Date Species Common Name Count 

28 10 May 

2017 

Lepomis macrochirus Bluegill Sunfish 11 

  Pomoxis nigromaculatus Black Crappie 1 

  Cyprinus carpio Common Carp 3 

  Lepomis cyanellus Green Sunfish 1 

  Micropterus salmoides Largemouth Bass 115 

  Lepomis microlophus Redear Sunfish 29 

  Ameiurus catus White Catfish 4 

  Lepomis gulosus Warmouth 5 
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Appendix F 

 

Appendix F. Coefficient of linear discriminants and group means for the best linear discriminant 

function discerning common carp from predator fishes. 

 

Variable 

Coefficient of 

Linear 

Discriminant 

Carp 

Group 

Mean 

Predator 

Group 

Means 

Length -0.134 67.61 31.07 

Width -0.023 33.14 10.48 

Length:Width 0.197 2.46 3.32 
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Appendix G 

Appendix G. Predicted relative probability of occurrence of predator species using the best 

logistic regression model (left column) and the best Maxent model (right column) for all sites 

surveyed. Observed predators are indicated by dots and the surveyed regions are marked with 

hash lines.  
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