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ABSTRACT 

ANALYSIS OF ABORAL SPINE VARIATION IN THE FORCIPULATE SEA STAR, 

PISASTER OCHRACEUS (BRANDT 1835) 

 

Angela Jordane Jones 

 

Rocky intertidal zones are highly dynamic environments that exhibit substantial 

spatial and temporal variation in abiotic conditions, which can drive body form variation 

and energy allocation within calcifying species. Wave exposure, specifically, has been 

shown to be a significant driver of skeletal and structural morphology in organisms 

including gastropods, bivalves, and sponges. Many of such organisms, from sponges to 

echinoderms, rely on calcium carbonate for structural support and protection.  

In the phylum Echinodermata (named for possessing a ‘spiny skin’), research on 

the form and function of calcium carbonate spines is largely relegated to Class Echinodea 

(e.g., urchins and sand dollars) and superorders Spinulosacea and Valvatacea within 

Class Asteroidea (sea stars). Few studies have provided morphological descriptions and 

functional hypotheses for spines in the Superorder Forcipulatida within Asteroidea. Here, 

I examine aboral spine morphology and variation in the forcipulate seastar, Pisaster 

ochraceus, a habitat generalist in rocky intertidal zones of the eastern North Pacific. I 

found that aboral spine density was significantly higher in sea stars in more physically-

harsh bench and boulder field habitats compared to more physically-benign habitats like 

protected embayments. I also found specific aboral spine morphotypes that were 
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associated with specific habitats; sea stars in protected embayments had spines that were 

upright and columnar, whereas bench and boulder field sea stars had shorter, convex 

spines. I hypothesize that dense, convex aboral spines have the potential to function as 

protection for the aboral surface of sea stars in habitats exposed to the combined stresses 

of high wave action and sediment load, but future studies are necessary to fully elucidate 

function.  
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INTRODUCTION 

The rocky intertidal zone has been described as one of the most stressful 

environments on earth because of its multitude of biotic and abiotic stressors (Helmuth 

and Denny, 2003; Menge, 1976). ‘Intertidal’ is an umbrella term, however, used to 

describe the space between terrestrial lands and subtidal waters that encompasses many 

habitat types (Ricketts et al., 1968). These habitats include cobble fields, boulder fields, 

expansive rock benches, island ridges, sandy beaches, and mudflats. Each of these 

habitats vary with respect to the frequency and intensity of physical stressors, including 

thermal fluctuations, sediment accretion, and hydrodynamic forces (e.g., waves and 

currents) (Ricketts et al., 1968; Denny, 1991; Sanford, 2002).  

One of the most prominent stressors that intertidal organisms are exposed to and 

varies across these habitats are wave forces (Denny and Helmuth, 2003). Different 

intertidal habitats can vary in exposure to both wave intensity and frequency (Gaylord, 

2000; 2007), and this has consequences for organismal fitness. In higher wave-exposed 

habitats, dislodgment risk for organisms in the intertidal increases exponentially due to 

the increase of drag and lift forces acting on the organism (Denny, 2014). However, 

dislodgment is not the only potential risk. Structural damage to organisms and even death 

can occur in the intertidal zone due to forces associated with wave shock (Denny and 

Helmuth, 2003), and in some habitats the combination of high sediment load and 

hydrodynamic forces can cause abrasion to, and particle settlement on, soft tissue 

surfaces, causing damage and limiting respiration (Mooi, 1986).  
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Wave intensity in the intertidal zone can be a substantial selective force on 

echinoderms, and as such, many species exhibit habitat-specific variability in traits that 

protect them against hydrodynamic stressors. For example, purple sea urchins 

(Strongylocentrotus purpuratus) in wave-exposed habitats often exhibit reduced size to 

reduce risk of destruction by waves (Denny et al., 1985) and can streamline their 

autonomous aboral spines downward to reduce drag and lift forces in response to high 

water flow (George and Carrington, 2014). Other urchin species reduce tube foot 

adhesive compounds when moved from field conditions to laboratory settings, suggesting 

high energetic costs and adaptive value for increased tube foot adhesion in wave-exposed 

conditions (Toubarro et al., 2016). Whereas all of these examples come from sea urchins, 

it is reasonable to predict that other intertidal groups of echinoderms should exhibit 

habitat-specific variability in traits that defend them against hydrodynamic stress.  

The ochre sea star (Pisaster ochraceus) inhabits a wide variety of habitats, 

including wave-protected bays and subtidal habitats, and more wave-exposed intertidal 

habitats such as boulder fields, benches, and human-made jetties. Previous studies have 

shown that P. ochraceus exhibits adaptive variation in traits that protect it from wave-

related stress. For example, individuals in high wave action environments have stronger 

tube feet than those in wave protected habitats, and after transplant from a benign wave 

environment to a higher wave action location, adhesive strength of the tube feet increases 

(Hayne, 2011). P. ochraceus can also plastically alter its body shape to reduce drag and 

lift forces; with individuals in wave-exposed habitats becoming flatter and thinner than 

those individuals in wave-protected habitats, and once moved to a protected environment 
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increased arm width and body height (Hayne and Palmer, 2013). Further, previous 

authors have noted that P. ochraceus in calm or benign hydrodynamic environments 

appear as an ‘inflated’ morph with a high proportion of soft tissue and wide rays, while 

those in environments with higher wave forces appear ‘spinier’ with a ‘starved’ 

appearance with a heavily ossified aboral surface and low proportion of soft tissue 

(Feder, 1970). Hayne and Palmer (2013) also observed, but did not quantify, the presence 

of P. ochraceus with spinier body forms residing in more wave-exposed habitats. Thus, 

previous work suggests that aboral spines may be more prevalent in P. ochraceus 

residing in more wave-exposed habitats, but this association has not been examined 

quantitatively. 

Endo-skeletal elements are not often the primary focus of descriptive studies of 

anatomical variation in asteroids, with aboral spines often mentioned as an afterthought 

and sometimes referred to as “associated appendages” (Blowes et al., 2017; Elyers, 

1976). Thus, we currently know very little about the variation in form and function of 

aboral spines in asteroids, with some notable exceptions. For example, asteroids in the 

superorders Spinulosacea and Valvatacea, referred to as “the heavily armored sea stars”, 

display notable interspecific similarities and differences with the possession of large 

ossicles and wide polygonal spines that protect vulnerable areas on the both the oral and 

aboral surfaces (Blake, 1983). In the superorder Forcipulatida, inter- and intraspecific 

variation in aboral spines have not been well studied. Fisher (1930) illustrated numerous 

spines in northeastern Pacific species in this group, including Pisaster and Leptasterias 

spp., both of which showed obvious spine size and shape variation, but this variation was 
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not formally described. Later, Leclair (1993) described different spine shapes in Pisaster 

spp., documenting differences in both spine width and height, and describing ochre sea 

star (P. ochraceus), spines as mushroom or knob-shaped, with thickened ridges on the top 

of the spine that appear to be in line with Fisher’s illustrations. As such, P. ochraceus is 

potentially a good model for studying intraspecific variation in form and function of 

asteroid aboral spine morphology. P. ochraceus is abundant in the rocky intertidal zone 

from Alaska to Baja, California (Paine, 1969), exhibits marked morphological variability 

in several traits (e.g., color; Ramundi et al., 2007), and has been previously hypothesized 

to be a complex of subspecies due to variation in spine coverage on its aboral surface 

(Feder, 1970; see Figure 1). Fisher (1930) suggested four morphologically distinct 

subspecies of P. ochraceus based in part on variation in aboral spine patterning and size. 

The subspecies designations were later rejected due to genetic homogeneity across its 

distribution with the consensus that P. ochraceus is, instead, recognized as a single 

species (Frontana-Uribe et al., 2008). However, the original characterization of 

subspecies suggests high levels of intraspecific variation in aboral spines.  

In my thesis, I characterize and quantify intraspecific variation in P. ochraceus 

aboral spines, including ontogenetic and spatial variation in shape, size, and density 

(number of spines per unit area on the aboral surface). I also classify a unique set of spine 

categories and provide descriptions of spine microstructural anatomy. Specifically, I will 

examine (1) relationships between aboral spine variation across a range of rocky 

intertidal habitats, and (2) associations between aboral spine variation and other traits 
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associated with resistance to wave exposure, to assess the potential functional and 

adaptive significance of intraspecific aboral spine variation in P. ochraceus.  
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Figure 1. Planar view of Pisaster ochraceus showing representative intraspecific 

variation in aboral spines of adult (top) and juvenile (bottom) sea stars (scale bar is 10 

mm). Individuals from bays (A) contain few spines and more visible soft tissue; 

individuals from boulder fields (B) have high aboral spine coverage and little visible soft 

tissue.   
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METHODS 

Site Locations and Collection Protocols 

I examined three intertidal habitat types – boulder fields, rock benches, and 

protected embayments (Figure 2 and Table 1) – where Pisaster ochraceus is found. The 

boulder field habitats were Point St George (PSG), False Klamath Cove (FKC), and 

Baker Beach (BB). These boulder fields are made up variably sized rock, including 

cobble and sand, but are dominated by large boulders. Bench survey sites were 

Strawberry Hill (SH), Kibesillah Hill (KH), and Noyo Headlands (NH), which are large 

expanses of continuous bedrock, dominated by Mytilus californianus beds and 

surrounded by surge channels (Strawberry Hill: Menge 1992). I used two locations in 

Humboldt Bay as protected embayment sites: King Salmon (KS) and Del Norte Dock 

(DND). KS is a human-made jetty comprised of an assemblage of large rocks that 

function as a protective bank between the entrance channel to the bay, and surrounding 

waterfront neighborhoods, while DND consists of large cement pillars embedded in a 

mud bottom. I also collected adult sea stars from the Point Defiance Zoo and Aquarium 

(PDZA), which served as a benign habitat ‘control.’ The sea stars that reside at PDZA 

live in a deep, calm-water two-story tank with numerous subtidal species cohabitating a 

low stress environment.  
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Figure 2. Map of all source locations. 

PDZA = Point Defiance Zoo and 

Aquarium, SH = Strawberry Hill, 

PSG = Point St George, FKC = False 

Klamath Cove, PP = Palmer’s Point, 

BB = Baker Beach, DND = Del Norte 

Dock, KS = King Salmon, KH = 

Kibesillah Hill, and NH = Noyo 

Headlands. Color points represent 

habitat types: Purple is the benign 

control PDZA, yellow is rock bench 

habitat (SH, KH, and NH), red is 

boulder field habitat (PSG, FKC, PP, 

and BB), and blue is bay habitat (KS 

and DND). 
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Table 1. Sampling locations, habitat types, and times. 

Collection 

Site Code Coordinates 

Habitat 

Type 

Site 

Characteristic 

Data 

Continuous 

Sampling? 

Y/N 

Years 

Sampled 

Point 

Defiance 

Zoo and 

Aquarium PDZA 

47°18’24”N 

122°30’56”W 

Benign 

(Control) N N 2016 

Strawberry 

Hill SH 

44.25°N, 

124.11°W Bench N N 2018 

Point St 

George PSG 

41.783°N, 

124.256°W 

Boulder 

Field Y Y 

2015-

2017 

False 

Klamath 

Cove FKC 

41.593°N, 

124.107°W 

Boulder 

Field N N 

2015-

2017 

Palmer's 

Point PP 

41.132°N, 

124.164°W 

Boulder 

Field N N 

2015-

2017 

Baker 

Beach  BB 

41.044°N, 

124.123°W 

Boulder 

Field Y Y 

2015-

2017 

Del Norte 

Dock DND 

40.790°N, 

124.188°W Bay N N 

2017-

2018 

King 

Salmon KS 

40.743°N, 

124.216°W Bay Y N 2017 

Kibesillah 

Hill KH 

39.588°N, 

123.782°W Bench Y Y 

2015-

2017 

Noyo 

Headlands NH 

39.437°N, 

123.819°W Bench Y Y 

2015-

2017 
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To characterize and quantify variation in aboral spine density, size, and 

morphology, I collected 25 to 40 individual P. ochraceus from the intertidal zone at eight 

locations in Northern California and Oregon in summer and winter seasons between 2015 

and 2018 (Fig 2). I also measured adult sea stars from the PDZA in Pierce County, WA 

in 2016. I recorded measurements of sea stars from PDZA using digital calipers for the 

following: sea star radius (Euclidean distance from the center of the central disc to the 

distal end of the longest ray), central disc height and width, and ray width. I also 

performed aboral spine removal on site with the approval of the PDZA Animal Welfare 

Committee. Sea stars from Strawberry Hill (Oregon) were measured in the same way as 

the sea stars at PDZA, without removing sea stars from the site. For collection sites in 

California, I brought the collected sea stars to the Telonicher Marine Lab (TML) in 

Trinidad, CA for the aforementioned measurements and aboral spine removal. I returned 

the sea stars to their collection locations within 48 h. While at TML, I captured planar-

view images of each sea star with a digital camera (Olympus TG-3 Waterproof 16 MP 

Digital Camera) fastened to a copy stand at a standardized distance of 28 cm from the 

aboral surface of the sea star. Fifteen aboral spines, referred to as primary spines (as they 

were the largest), were haphazardly removed from central and peripheral regions of the 

aboral surface of ten sea stars from each sampling site, using fine forceps under light 

microscopy.  

Prior to the start of this study, I performed the spine removal protocols on stars 

held in the TML in running sea water. Over the course of two months, I did not find any 

of the following: reduction in feeding, abnormal behavior, sudden wasting symptoms, 
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physical damage, or death. In my experience, aboral spine removal is mild and not likely 

to cause significant harm to the sea star. 

 

Aboral Spine Density 

I used digital photographs to quantify spine variation on the aboral surface of the 

central disc of each sea star. All digital photographs of sea stars were pre-processed for 

particle counting and area measurements of complex object optimization in Software 

ImageJ (Schneider et al., 2012). This allowed me to isolate the image of the central disc, 

reduce the image type from RBG to 8-bit, and render the photo to black and white (see 

Figure 3 A and B), which reduced any small particle interference from the rest of the 

image. From these images I obtained the number and area of every spine on the aboral 

surface of each sea star with added batch programs in ImageJ (AutoTheshold, Convert to 

Mask, Erode, Dilate, Watershed, and Analyze Particles) to reinforce spine outlines and to 

reduce watermarks from the soft tissue as seen in Figure 3C. I used the output from 

ImageJ and divided the total number of spines counted by the total area of the central disc 

to obtain spine density (no. spines  mm-2) for each individual sea star. I used particle area 

in the batch programs to calculate spine area for each individual spine. Spine area was 

averaged across all spines for each sea star. Fourteen individuals were used to examine 

the relationship between central disc aboral spine density and whole sea star aboral spine 

density. I did this to ensure that the central disc provides accurate representation of whole 

sea star spine load, because the isolation of the central disc is more efficient than using 
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the whole sea star. Photographs were pre-processed to obtain two images of each sea star: 

an isolated central disc and a whole sea star with all background removed. I analyzed 

each image in the software ImageJ using aboral spine density methods described below.  
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Figure 3. Planar view of digital images of Pisaster ochraceus used for aboral spine 

density estimation. (A) Central disc selection, (B) central disc isolation with reduction to 

8-bit coloration for analysis, and (C) output image of noise reduction from macro batch 

protocols.   
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Aboral Spine Morphology 

I modified previously established terminology from echinoid and asteroid spine 

anatomy to describe aboral spine morphology in P. ochraceus (Dubois and Ameye, 

2001). Gross anatomical features of P. ochraceus spines include the head, shaft, and base 

(see Figure 4). I analyzed 400 individual spine samples from 75 sea stars from source 

locations: Control: PDZA (n =6); Boulder field sites PSG (n =11), FKC (n =10), and BB 

(n =10); Bay sites: DND (n =9), KS (n =10); and Bench sites: KH (n =10), and NH (n =9) 

to create four spine types. I also used a subset of the scanning electron micrographs (ten 

micrographs for each of the four spine types for a total of 40 spines of adult sea stars 

larger than 100 mm) to record spine anatomy measurements of (overall spine length, 

overall spine width, spine head length, and spine head width) in Software ImageJ. Lastly, 

I compared aspect ratios (spine length: width and spine head length: width) of the forty 

spines to the pre-defined spine types.  
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Figure 4. Scanning electron micrographs of a Pisaster ochraceus (A) aboral spine 

showing b: base with arrow pointing towards the invagination region for spine 

connection, sh: shaft, h: head, and sl: spinelets on the head; and (B) carinal ossicle 

showing ba: base attachment with arrow pointing towards the ligament and muscle 

attachment area.  
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After I removed each spine from the sea star, I placed it in an 8% sodium 

hypochlorite solution for 24 hours to remove all soft tissue. I rinsed the spines in distilled 

water and dried them in a drying oven at 75C for 24 h. Dried spines were placed on a 12 

mm scanning electron stub using a Pelcro™ carbon adhesive, which was then sputter 

coated using a Desk II Denton Vacuum Sputter Coater with a thin layer of gold. Scanning 

electron micrographs were taken to qualitatively analyze microscopic variation of the 

aboral spines. I captured all spine morphology with backscatter imaging at 20 to 25kV in 

the Quanta FEI 250 Scanning Electron Microscope at Humboldt State University. I used 

the software ImageJ to measure the length and width (mm) of the whole spine, spine 

head, spine shaft, and base width.  
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Associations Between Aboral Spine Density and Other P. ochraceus Traits 

To examine associations between aboral spine variation and other sea star traits 

that function as protection from wave force, I measured sea star arm aspect ratio and 

attachment strength. I used arm aspect ratio, a trait previously quantified to be associated 

with wave exposure in P. ochraceus, to examine its relationship with aboral spine density 

(Hayne and Palmer, 2013). To do this, I used ImageJ (Schneider et al., 2012) to measure 

the mean arm aspect ratio (Euclidean distance from the center of the central disc to the 

distal end of each ray divided by the width of each respective ray; Fig 5) of each sea star.  
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Figure 5. Digital images of Pisaster ochraceus showing arm aspect ratio (length: width) 

measurements.  
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To quantify sea star attachment strength via tube feet adhesion, I placed sea stars 

in a flow-through sea table. After a two-hour acclimation period, two perpendicular zip-

ties were harnessed on each sea star in a crisscross pattern (Fig 6). Using a spring scale 

hooked under the harness, individual sea stars were removed at a 45-degree angle from 

the sea table surface and the force required to remove the sea star (i.e., displacement of 

the spring scale used to quantify attachment strength; Ferrer et al., 2015) was recorded. 
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Figure 6. Attachment strength assay for Pisaster ochraceus. Two zip ties are fastened 

around the sea star (3D printed sea star replica shown in photograph) in a perpendicular 

fashion. A spring scale is hooked under both zip ties and the sea star is pulled at a 45º 

angle until it is removed from the surface.  
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Data Analysis 

I used a simple Ordinary Least Squares (OLS) linear regression to examine the 

relationship between central disc aboral spines and whole sea star aboral spines to verify 

that aboral spine density on the central disc was an accurate proxy for aboral spine 

density on the whole sea star. I examined whether aboral spine density and spine size 

differed among habitats by using two separate Analysis of Covariance (ANVOCAs), with 

sea star radius as a covariate and habitat as a fixed factor. I also examined whether spine 

size differed among habitats by using ANCOVA with aboral spine density as a covariate 

and habitat as a fixed factor. I analyzed variation in the proportion of aboral spine shapes 

among habitats using MANOVA. Significant omnibus tests were followed by post-hoc 

pairwise comparisons (e.g., Tukey’s HSD). When appropriate, data were log-transformed 

to meet assumptions of normality and linearity. Aboral spine microstructural variation 

was described qualitatively. All statistical analyses were done in R (R Core Team, 2013). 

I used a Multivariate Analysis of Variance (MANOVA) to test the hypotheses that spine 

measurements (overall spine length, overall spine width, spine head length, and spine 

head width) differed among habitat types. I followed the MANOVA with separate 

univariate tests on each spine measurement. I also used two separate ANCOVAs to 

examine the effects of sea star radius and habitat type on spine aspect ratio (spine length: 

width) and spine head aspect ratio (spine head length: width). To verify the spine 

categories that I developed, I tested whether spine aspect ratio and spine head ratio varied 

significantly among spine types using a one way ANOVA  
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RESULTS 

Relationship Between Central Disc Aboral Spine Density and Whole Sea Star Aboral 

Spine Density  

Using sea stars from four sites (PSG, FKC, DND, and KH), I found that the 

aboral spines on the central disc were significantly and positively associated with the 

spines on the entire aboral surface of each sea star (Figure 7, y = 0.29x + 8.76, R2 =0.95, 

F1,12 =268.4, P < 0.001), indicating that the aboral spine density on the central disc was 

an accurate predictor of aboral spine density on the entire sea star. 
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Figure 7. Relationship between spine number on the central disc and the spine number for 

the entire aboral surface of Pisaster ochraceus. Dotted line is OLS regression fit.  
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Aboral Spine Density and Mean Spine Area 

In all habitats, aboral spine density decreased with increasing sea star radius, 

rapidly at first and then gradually decreased as sea stars got larger (Figure 8). ANCOVA 

of log-transformed data indicated that aboral spine density varied significantly with sea 

star size (star radius; (ANCOVA: F1,159 = 41.46, P < 0.001)), and across habitats (F8,159= 

6.30, P = 0.002), but the interaction between the two fell slightly out of significance, 

indicating that the relationship between spine density and sea star radius show similar 

slopes across habitats (ANCOVA: F8,159= 2.807, P = 0.063). For the mean star radius, 

aboral spine density was highest at the boulder field habitat compared to the other 

habitats (Tukey’s HSD, P < 0.05; Figure 9).  
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Figure 8. Relationship between radius (mm) and aboral spine density (no. spines  mm-2) 

in Pisaster ochraceus. Color coding by habitat: Purple squares mark the benign control 

PDZA, yellow x’s for bench habitat (SH, KH, and NH), red circles for boulder field 

habitat (PSG, FKC, PP, and BB), and blue triangels mark the bay habitat (KS and DND). 
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Figure 9. Mean ( SE) aboral spine densities of Pisaster ochraceus from each habitat at 

mean sea star radius (83.70mm). Different letters indicate significant differences between 

groups (Tukey HSD P < 0.05).  
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Among sea stars, there was a significant interactive effect of radius and habitat on 

spine size (ANCOVA: F2,158 = 6.44, P = 0.002), indicating that the relationship between 

spine size and sea star size was different among habitats. There was a significant effect of 

habitat on spine size (Figure 10; ANCOVA: F2,158 = 13.70, P < 0.001), but that effect 

depended on the radius of the sea star (ANCOVA: F1,158 = 0.058, P =0.81). With respect 

to the relationship between spine size and spine density across habitats, spine size was 

significantly different across habitats (ANCOVA: F1,158 = 16.08, P < 0.001), and varied 

significantly as a function of spine density (ANCOVA: F1,158 = 8.85, P = 0.003), but the 

interaction was not significant (ANCOVA: F2,158 = 0.66, P = 0.52). For a given spine 

density, spines from sea stars at boulder fields were smaller compared to those from other 

habitats (Figure 11).  
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Figure 10. Relationship between radius (mm) and spine size (mean spine area in mm2) in 

Pisaster ochraceus. Color coding by habitat location: yellow triangles represent the 

bench habitat (SH, KH, and NH), red circles for the boulder field habitat (PSG, FKC, PP, 

and BB), and blue squares mark the bay habitat (KS and DND).  
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Figure 11. Mean central disc spine size ([Sum of central disc spine area ∙ central disc 

area-1) ∙ 100]) ( SE) of Pisaster ochraceus from each habitat at mean aboral spine 

density (0.26). Different letters indicate significant differences between groups (Tukey 

HSD P < 0.05).  
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Aboral Spine Morphology 

I found that the head of each aboral spine contained spinelets, which are thickened 

calcium carbonate structures that protrude from the head in an upright orientation and are 

located in the center of the head and descend towards the shaft (see Figure 3A). I use the 

‘head’ classification because it was the only region not previously described or 

categorized but an integral part of P. ochraceus’ aboral spine anatomy.  The shaft was 

characterized as the middle columnar portion of the spine, which lacks spinelets (see 

Figure 3A). The base of the spine formed the bottom of the spine column with a small 

central invagination (see Figure 3A), which was an insertion point for ligament-like 

connective tissues banding musculature that connects to the carinal ossicle (see Figure 

3B). Asteroid spine bases were different from an echinoid-like spine anatomy, in that 

they lacked the milled ring for muscle attachment and connected to the carinal ossicle as 

a mirrored cylinder as opposed to a ball and socket-like connection. Spines in P. 

ochraceus were different from spines previously published in asteroids as they were 

found to be wide, possessed thick spinelet ridges, and an obvious (and aforementioned) 

head region (Dubois and Ameye 2001; Mooi 1986). 

I found four aboral spine shapes in P. ochraceus among my collection sites: 

columnar, spade, blunt, and convex. Columnar spines were erect or upright spines that 

contain a head region that is of similar width to the shaft (Fig 12A). The columnar spines 

had the highest spine ratio of any of the spines, which showed that columnar spines were 

significantly taller and narrow (Fig 13 left panel). The head region also had a high head 
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spine ratio, but was not significantly different from the ‘spade’ spine type which is also 

an upright form (Fig 13 right panel). Spinelets on the spine head of columnar spines are 

repeating wedges that form thin rows that were oriented in either a symmetrical or a 

sporadic fashion (Fig 14A and B). Columnar spines were by far the most common aboral 

spine type in sea stars at PDZA, but were only found in small numbers on sea stars at BB, 

DND, KS, and NH (Fig 15). Juvenile columnar spines, found at KS, are upright with tall, 

uniform wedges. Each wedge is separate and does not form ridges (Fig 14C). 

Spade spines (Fig 12B) are upright spines with a particular head shape: the top of 

the head is narrow to a point and widens to the connected region of the shaft. The spine 

ratio is significantly different from all the other spine types (Fig 13 left panel). The 

portion of the head closest to the shaft is the widest point of the spine, but the ratio is still 

taller than wide (Fig 13 right panel). Spinelets consisted of simple rows with some 

dentate ridges that form minor peaks (Fig 14 C, D, and F). The spade spine type was 

found in sea stars at all collection sites (Fig 12).  

Blunt spines were the least common spine type across all collection sites (Fig 12), 

and were not a dominant spine type for any individual sea star. Blunt spines (Fig 12 C), 

consist of a squat or flattened head region that is almost equal in width to the spine shaft 

(Fig 13). Blunt spinelets are highly variable from thin and dentate, to thick with smooth 

ridges (Fig 14 A-D and F). Juveniles were observed with this spine type at BB and PSG 

with thick, smooth ridges (Fig 15 A).  

Convex spines were found at significantly higher at bench and boulder field 

locations. Convex spines are named for the mushroom-shaped head which looks like a 



32 

 

 

distinct cap-like structure that extends laterally (Fig. 12). The convex spine type was not 

significantly different in spine or spine head ratio (Fig 13). Convex spines were the 

dominant type in 46 individuals, which accounted for more than half of all samples. The 

variation of the spinelets in convex spines were higher than other spine types, with ridges 

that were either simple, dentate, or completely porous (Fig 14 C-F), resulting in 

numerous, narrow columns in ridge-like organization (Fig 14 G-H).  Juveniles with 

convex spine types had large ridges that fanned out from the head more than any other 

spine type (Fig 15 B).  

The relative proportions of spine types were significantly different across habitat 

types (MANOVA, F3,71 = 8.98, P <  0.001; Fig 16). Sea stars with a larger proportion of 

the ‘convex’ spine type were more prevalent in bench and boulder field habitats than in 

bay habitats (post-hoc univariate ANOVAs, P < 0.001 for both bench and boulder field, 

Fig 16). Bay sea stars had a significantly larger proportion of ‘spade’ spines than in bench 

and boulder field habitats (Fig 17).  

In respect to spine anatomy, spine ratios (spine length to spine width) was 

significant across habitats (ANCOVA, F2,61 = 7.79, P <  0.001) and sea star radius (F1,61 = 

18.597, P <  0.001), but non-significant habitat effects for the univariate tests on each 

spine measurement. Lack of significant habitat effects in the univariate tests suggests that 

the current amount of data is insufficient to reach any confident conclusion regarding any 

of the individual spine measurements. I found that bay sea stars had a significantly higher 

spine ratio: bay sea star spines were taller than wide (Fig 17, Tukey P < 0.001). Boulder 

field and bench sea stars had spines that were closer to a 1:1 ratio and significantly 
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different from bay sea stars (post hoc Tukey P < 0.001). Bench sea star spines were not 

significantly different from bay or boulder field habitat, with respect to spine head ratios 

(Figure 17 left panel).  
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Figure 12. Scanning electron micrographs of adult aboral spine types in Pisaster 

ochraceus. (A) Columnar, (B) spade, (C) blunt, and (D) convex. 
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Figure 13. Mean ( SE) whole spine ratio (spine length: spine width) (left) and spine 

head ratio (head length: head width) (right) for each spine type in adult Pisaster 

ochraceus. Different letters indicate significant differences between groups (Tukey HSD 

P < 0.05). 
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 Figure 14. Scanning electron 

micrographs of distinct spinelet types 

in Pisaster ochraceus: (A) thin 

wedges, (B) sporadic ridges, (C) 

smooth ridges, (D) globular ridges, 

(E-F) dentate ridges, and (G-H) 

porous, complex ridges.  
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  Figure 15. Scanning electron micrographs showing 

juvenile spinelet variation in Pisaster ochraceus. (A) 

thick with smooth ridges, (B) large, with thick fan-like 

ridges, and (C) separate wedges with pointed barbs on 

each tip. 
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Figure 16. Mean ( SE) proportion of each of the spine type for Pisaster ochraceus from 

bay, bench, and boulder habitats. Panel A represents columnar spines with a columnar 

spine for representation; panel B represents spade spines, C for blunt spines, and D for 

convex spines. Asterisks represent statistical differences in spade and convex spines 

between sea stars from bay habitats and both bench and boulder field habitats. 
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Figure 17. Left: Mean ( SE) radius-adjusted whole spine ratio (spine length: width) 

(left) and spine head ratio (head length: head width) in Pisaster ochraceus across habitat 

types. Different letters indicate significant differences between groups (Tukey HSD P < 

0.05). 
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Associations Between Aboral Spine Density and Other P. ochraceus Traits  

I found no significant relationship between aboral spine density and attachment 

strength in P. ochraceus (Fig 18; OLS Linear Regression F1,20 = 1.36, P =0.257).  Aboral 

spine density was also not significantly associated with arm aspect ratio (OLS Linear 

Regression F1,37 = 2.94, P =0.095, Fig 19).  
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Figure 18. Relationship between mean aboral spine density and mean sea star attachment 

strength (in kg) per site in Pisaster ochraceus. Data points color-coded by habitat type: 

blue squares represent bay habitat, yellow triangles mark the bench habitat, and red 

circles mark the boulder field habitat. (Ordinary least squares linear regression R2 = 0.25, 

F1,20 = 1.36, P =0.257). 
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Figure 19. Relationship between mean spine density and mean arm aspect ratio (arm 

length: width) per site in Pisaster ochraceus. Data points color-coded by habitat type: 

PDZA reference sites represented as a purple star, blue squares represent bay sites, 

yellow triangles mark the bench habitat, and red circles mark the boulder field habitat 

type. (Ordinary least squares linear regression R2 =0.04, F1,6 = 1.27, P =0.302). 
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DISCUSSION 

Individual P. ochraceus varied significantly with respect to aboral spine density, 

spine size, and morphology. First, aboral spines in P. ochraceus appear to exhibit 

ontogenetic variation. Specifically, aboral spine density was higher in smaller sea stars 

than in larger sea stars at all sites. Thus, spines may play a more important protective role 

in juvenile stars compared to adults, as smaller sized stars may be more vulnerable to 

wave-carried projectiles, sediments, or predators. Alternatively, it is possible that aboral 

spine growth occurs at a faster rate in juvenile P. ochraceus, as smaller individuals in this 

species grow faster than larger individuals (Gooding, et al. 2009).  

The habitat-specific aboral spine variation that I observed has the potential to 

result from adaptive variation in response to wave-related stress. Habitat-specific 

variation in traits associated with protection from wave-exposure is consistent with the 

findings of previous studies on P. ochraceus, where individuals from wave-exposed 

habitats had thinner, flatter bodies and higher attachment strength than their wave-

protected counterparts (Hayne, 2011; Hayne and Palmer, 2013). Interestingly, these 

wave-exposed individuals were also noted to be ‘spinier’ (Hayne and Palmer, 2013); 

however, my analysis of the relationships between aboral spine density and arm aspect 

ratio and attachment strength found no significant associations among these traits. For 

example, sea stars in the protected bay habitat were unexpectedly stronger than seas stars 

from other habitats (Appendix A). The lack of association between spine density and arm 

aspect ratio and attachment strength suggest that a spinier morphology may not be 
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adaptive for wave-exposure per se. Instead, I hypothesize that a denser covering of aboral 

spines functions as protection from dermal abrasion in environments that are wave-

exposed but also have large amounts of coarse sediment.  

With respect to aboral spine shape, I quantified four spine types: columnar, spade, 

blunt, and convex. However, research is needed to understand the variability that I have 

quantified. I do not know if the spine types represents a gradient or distinct spine types. 

Given that, I found sea stars from sites where convex spines were the dominant spine 

type also had higher spine density. The convex spine type is the most extreme spine 

shape of any of the spines that I categorized; short spines with a wide head shape that 

extends laterally forming a cap-like structure. This spine type is atypical among most 

echinoderm spines, but is at least superficially similar to the flattened head shape of 

aboral spines of the shingle urchin Colobocentrotus atratus (Chen, 2011). In the shingle 

urchin, the flattened aboral spine shape aids in survival in extreme intertidal wave-

exposed environment by reducing drag forces. The convex structure of the spine could 

also aid in protection from predators (as in the flat, armored spines of valvatacean sea 

stars; Blake 1983). 

Both spine density and morphology were significantly different among habitats. 

Sea stars in protected environments had spines that were more upright and lacked 

protrusions, while in the exposed habitats (boulder and bench); the convex spine was the 

dominant spine type. As bench and boulder field locations are subject to both abrasion 

from suspended particulates and wave shock, the convex aboral spine shape, in 

conjunction with a dense covering, may provide a ‘canopy-like’ function that protects the 
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sea star from dermal abrasion. Spine canopies can be found in the Order Clypeasteroidae 

(sand dollars and allies), which have miliary spines (Mooi, 1986). In the genus Eucidaris, 

the tip of the miliary spine is filled with additional epithelial tissue, creating a club shape. 

These densely-packed spines create a ‘spine canopy’ (beneath the top layer of primary 

spines) that blocks larger suspended particles from contacting the test and generates a 

ciliary current to keep fine particles away from the dermal surface and keeps the 

epithelium clean and well ventilated, thus facilitating respiration in turbid water (Mooi, 

1986). The convex spines in P. ochraceus could function similarly to the miliary spines 

of clypaesterids that protect the aboral surface from large and small particles. Sea stars 

that reside in boulder field habitats may benefit from a dense covering of convex spines 

more so than sea stars in other habitat types, because the small boulder and cobble habitat 

in which they reside incr.00eases proximity to suspended particles and sediment. Further, 

data collected from some of my field sites suggests that boulder field habitats have more 

suspended sediment in the water column than at bench and bay sites (Appendix B).   

It is currently not known whether the aboral spine variation I observed is due to 

ecophenotypic plasticity or to heritable polymorphism. P. ochraceus has been previously 

shown to exhibit at least two phenotypically plastic traits that vary with exposure to wave 

action: thinner body form and increased tube foot strength in exposed waters (Hayne and 

Palmer, 2013; Hayne, 2011). Because of this, it is possible that aboral spine density and 

morphology are additional phenotypically plastic traits that are modified in accordance 

with the local wave environment. Documenting associations between aboral spine 

variation and wave action and a subsequent common-garden experiment transplanting sea 
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stars among wave-exposed and wave-protected habitats would be necessary to determine 

whether aboral spine variation is a result of environmental or genetic control. 

There are several alternative possibilities for the habitat-specific aboral spine 

variation I observed. One possibility is antipredator protection. High aboral spine density 

could function as mechanical protection, influence palatability, or act as camouflage. 

Predators of P. ochraceus are somewhat scarce, with observations limited mainly to gulls 

to sea otters (Grizmek, 1972). In the duration of my study from 2015 to 2018, 

observations of predation upon P. ochraceus was extremely rare across all habitat types. 

Further, neither gulls nor otters are common in the habitats I surveyed. Because of this, I 

do not believe that the aboral spine variation in local P. ochraceus function to combat 

predation. Another possibility is that variable aboral spine density in P. ochraceus is an 

energetic by-product produced by a trade off against soft-tissue growth.  For example, 

Feder (1970) noted that P. ochraceus in calm environments that were able to consume 

more food, had in thicker arms, more visible soft tissue, and fewer aboral spines. It may 

be that sea stars in protected embayments and on rocky benches where sessile prey (e.g., 

barnacles and mussels, Appendix C) are more abundant, are allocating more energy to 

soft tissue than skeletal elements like aboral spines (Gooding and Harley, 2009). Sea stars 

in boulder fields may have to spend more time searching for scarcer, mobile, and less 

profitable prey (e.g., snails, limpets, and chitons) and therefore have a ‘skin and bones’ 

look with less soft tissue and more visible skeletal elements. Because of the variable 

nature of food availability and quality across habitat types in my study, it is possible that 

sea star condition is influencing aboral spine variation. However, using volumetric 
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reconstructions of a ‘spinier’ and ‘nonspiny’ sea star shows that the ‘spinier’ appearance 

does equate to less soft tissue, but an increase of aboral spines (Appendix D). Future 

studies should address the precise mechanism underlying aboral spine growth.  

A potential benefit of understanding variation in aboral spine density in sea stars, 

is that the combination of aboral spine density and orientation appear to form a unique 

pattern on the aboral surface of individual sea stars. For example, in juveniles, spines 

form a five-pointed ‘star’ shape in the center of the central disc, in line with the 

madeporite, with a thin row of spines that radiate away from the central disc ‘star’ down 

each ray. Larger individals have banded spine patterns in their rays that are perpendicular 

to the center of the central disc ‘star’ and extend toward the ray tip. Interestingly, I 

observed that spines on adult sea stars with low spine densities tend to retain this juvenile 

spine pattern, or possess a slight modification of this pattern with a loss of the ray midline 

in favor or small clusters on the top margins of the arm similar to the banding I describe 

above (Fig 1). It appears that most of the original spine pattern, at least the central disc 

portion of the sea star, in the juvenile remains throughout adulthood, but future research 

is necessary to quantify this. Sea stars with higher spine densities also possess numerous 

centric patterns of spines that fall in the inter-radial regions on the central disc. Such 

individual differences or ‘fingerprints’ could be used as a way to non-invasively indentify 

individual sea stars in a similar fashion to how other organisms with varying densities 

and patterns of surface structures are identified (e.g., whale sharks, Arzoumanian et al., 

2005). During my study, I successfully used the unique aboral spine patterning to identify 

individual sea stars as a back up to ensure that individuals were not misidentified through 
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observer error. This technique could be useful in projects that track individuals over time, 

and has not been previously explored as a potential identification protocol for P. 

ochraceus (Hayne, 2011).  

My methods for quanitifying aboral spine variation are easily repeatable, with the 

potential to be used to investigate intra- and inter-specific aboral spine variation in other 

asteroid species. The high degree of intraspecific variation that I found across collection 

sites suggests the potential for habitat-specific spine phenotypes, and adaptive variation 

in aboral spines of P. ochraceus. However, more research is needed to examine such 

possibilities.  
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APPENDICES 

APPENDIX A 

Sea Star Strength Assay  

Mean sea star attachment strength by habitat shows significantly higher strengths in sea 

star P. ochraceus at bays sites compared to bench and boulder sites (Fig 20). Size (sea 

star radius; (ANCOVA F1,79 = 13.565, P < 0.001) and habitat (F2,79 = 19.307, P < 0.001) 

are significant factors in analyzing sea star attachment strength, but the interaction was 

not significant (F2,75 = 1.753, P = 0.18). Tukey-Kramer test shows Bay sea stars are 

significantly stronger than the other two habitats. Using the mean sea star radius, sea stars 

in the bay habitat were as much as four times stronger than the other habitats (Fig 21).  
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Figure 20. Relationship between sea star attachment strength (in kg) and sea star radius 

(in mm) as sea star removal from substrate (flat tank surface).  
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Figure 21. Sea star attachment strength in Kg for the mean sea star radius across sites. 

Bay is significantly stronger as represented by the asterisk.  
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APPENDIX B 

Environmental Variation of Abiotic and Biotic Factors among Representative Habitats 

To assess abiotic environmental variation associated with each habitat type, I 

installed an array of devices to measure water motion and abrasion stress at a 

representative boulder site (PSG), two bench sites (KH and NH), and one bay site (KS) in 

July 2018. Arrays consisted of a sediment trap and a clod card (Thompson and Glenn, 

1994). I deployed two to three arrays in the mid to low zones where P. ochraceus were 

abundant (Figure 22). Sediment traps were made of J-shaped PVC pipes of 4 cm internal 

diameter and 45cm length with a height-to-mouth diameter (H/D = 11.25), which is an 

optimal proportion for sediment sampling in rocky intertidal zones as it is between 10 to 

15 (Shiel et al., 2006). I collected sediment daily from each of the traps. Using size 4 Φ 

sieve plates, I filtered the total site sediment to separate large sand particles from clay and 

silt, to isolate the larger particles that can cause abrasion to P. ochraceus (Wentworth 

1922). I quantified grams of sand per trap per day for a daily sedimentation rate for each 

site. Clod cards, which have been used previously to measure water motion (Doty, 1971; 

Jokiel and Morrissey, 1993), were made of plaster of Paris (size 3.5cm3). I measured each 

dry clod card before and after deployment, and monitored them in the field to ensure 

collection before complete dissolution. I quantified water motion as clod card loss in g 

averaged per day for each site.  
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Figure 22. Digital images of abiotic stressor arrays installed in the rocky intertidal zone. 

Each abiotic array contained one plaster of Paris block (i.e., clod card), and one J-shaped 

sediment trap.  
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In general, the rock bench collection sites (NH and KH) had the highest clod card 

dissolution per day with 61.6g and 43.3g, respectively; indicating that water motion was 

greatest at the bench sites compared to the bay and boulder sites. However, only NH was 

significantly different from the bay site KS and boulder site PSG (Fig 23; One way 

ANOVA F3,18 = 8.174, P = 0.0027; KS; Tukey: P = 0.002; PSG, P = 0.006). KS had the 

least amount of clod card dissolution, with an average of 23.8g lost per day. The boulder 

field site (PSG) had clod card loss of 30.9g.  
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Figure 23. Mean ( SE) clod card dissolution (g  d-1) at each representative habitat site 

(One way ANOVA F3,18 = 8.174, P = 0.0027). Dissolution at NH was significantly higher 

than PSG (Tukey: P = 0.002) and KS (Tukey: P = 0.002). Site initials as follows: Point St 

George (PSG), King Salmon (KS), Kibesillah Hill (KH), and Noyo Headlands (NH).   
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The boulder field site (PSG) had the highest sediment accumulation of any site, 

with an average of 39.75g per trap per day (Fig 24; One way ANOVA F3,6 = 121.6, P = 

9.22x10-6). Using a Tukey’s multiple comparisons of means, PSG was different from KS 

(P = 4.04x10-5), KH (P = 2.57x10-5), and NH (P = 1.28x10-5). Only trace amounts of 

sediment were collected in the traps at the bay site (KS), with 0.58g per trap per day. 

During the duration of the sediment trap deployment, I did not find any sediment 

accumulated in any of the traps at either bench site (NH and KH). 
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Figure 24. Mean ( SE) course sediment accumulation (g  d-1) in sediment traps at each 

representative habitat site (One way ANOVA F3,6 = 121.6, P = 9.22x10-6). Site PSG was 

significantly higher in sediment than all other locations (Tukey’s multiple comparisons of 

means: KS (P = 4.04x10-5), KH (P = 2.57x10-5), and NH (P = 1.28x10-5) 

  



61 

 

 

APPENDIX C 

Diet Richness and Proportion of P. ochraceus Prey Consumption 

Diet Among Habitats shows sessile prey more commonly in bay and bench locations, but 

mobile prey was more commonly at boulder field habitats. Sea stars in the bay were only 

observed consuming barnacles (Balanus glandula and Cthamalus dalli; Fig 25) in the 

cardiac stomach; with consumption proportion of 0.11 (Fig 26). Boulder sites had lowest 

consumption proportion of 0.08 at PSG and moderate consumption of 0.14 at BB.  I 

recorded the highest prey richness in sea stars in the boulder field sites (PSG and BB), 

with individuals observed consuming barnacles (B. glandula and C. dalli), black turban 

snails (Tegula funebralis), mussels (Mytilus californianus), and a chiton (Lepitochitona). 

Bench sites (KH and NH) had the highest proportion of sea stars consuming prey with 

0.22 and 0.29, respectively. Prey consumption at both bench sites consisted primary of M. 

californianus, with one record of barnacles (Semibalanus cariosus) at KH.  
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Figure 25. Proportion of prey consumption per site represented as a fraction on 

each bar. Key = Boulder Field Sites (PSG: Point St George, BB: Baker Beach), Bay (KS: 

King Salmon), Bench Sites (KH: Kibesillah Hill, and NH: Noyo Headlands). 
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Figure 26. Proportion of compounding prey species found in P. ochraceus’ cardiac 

stomach for each representative habitat site. Sample sizes of feeding P. ochraceus at each 

site are denoted at the bottom of each bar. Site initials as follows: Point St George (PSG), 

Baker Beach (BB), King Salmon (KS), Kibesillah Hill (KH), Noyo Headlands (NH).  
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APPENDIX D 

Volumetric reconstruction of the skeletal portion of the aboral surface of two medium 

sized P. ochraceus using Micro CT scans from a large volume SkyScan 1173 desktop 

scanner at the Micro Photonics Imaging Laboratory in Allentown, PA.  

 

Figure 27. Volumetric reconstruction of the skeletons of two medium sized sea stars as a 

‘nonspiny’ (A) and a ‘spiny’ (B) physical representation. 

 


