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Abstract 

PHONETIC CONVERGENCE AND AUDITORY IMAGERY IN READING 

Josue E. Rodriguez-Zamora 

 

This study aimed to address whether phonetic convergence (speech imitation) and 

auditory imagery in reading are fundamentally governed by the same process — episodic 

encoding (c.f., Goldinger, 1998). A set of participants (talkers; N = 12) were recorded 

speaking sentences at a baseline level. Talkers were then exposed model speaker with 

either a fast or slow speech rate and then engaged in a reading phase where they read 

sentences thought to be written by that speaker. If episodic encoding predicts effects of 

phonetic convergence and auditory imagery in reading style, then talkers should be 

influenced by a speaker on three dimensions: pronunciation of words, duration of words, 

and duration of sentences. A different set of participants (raters; N = 68) engaged in an 

AXB perceptual similarity ratings task. Raters were presented with three sets of 

recordings of individual target words in a row — A (baseline), X (model), and B 

(reading) — and made perceptual similarity ratings, indicating whether A or B is more 

similar in pronunciation to X. If episodic encoding predicts effects of phonetic 

convergence then talkers should be rated as being perceptually similar to the speaker. The 

results of the study suggest that episodic may not play a role in either phonetic 

convergence or auditory imagery and speech.   
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Phonetic Convergence and Auditory Imagery in Reading 

Imagine that you are conversing with someone familiar, such as your mother or 

your best friend. You may find that your speech might start to be affected. Specifically, 

you may find that during the conversation, and potentially shortly thereafter, that you 

start to say certain words more similarly to how your mother or best friend would say 

them. This spontaneous change in speech production indicates that we are influenced by 

the unique way a particular talker speaks. This phenomenon is referred to as phonetic 

convergence — when the sounds (phonemes) of your speech start to move toward 

(converge) the pronunciation style of another. 

Now, imagine you receive a written message (e.g. text) from the same familiar 

individual that reads “I found parking. I will see you soon!” Whose voice do you “hear” 

as you read it? Chances are that you “hear” the voice of the author of the message as you 

read it. This phenomenon is called auditory imagery, which is the ability to mentally 

simulate sound. With the ability to experience auditory imagery of voices and our 

tendency to imitate the way others speak, one has to wonder whether these two 

phenomena overlap. More specifically, do we phonetically converge to voices when we 

evoke auditory imagery, such as when simply reading aloud text written by familiar 

people? The aim of this thesis is to identify the relationship between phonetic 

convergence and auditory imagery and whether they are governed by the same processes.  
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Phonetic Convergence 

Our ability to perceive and imitate spoken language may stem from the fact that 

humans are extraordinarily good at identifying and understanding spoken language. 

Listeners of speech can distinguish various aspects of speakers such as dialect, status, and 

health (Labov, 1972), emotional state (Frick, 1985; Murray & Arnott, 1993), and talker 

identity (Van Lancker, Kreiman & Emmory, 1985; Van Lancker, Kreiman, & Wickens, 

1985). These aspects of speech are unique to each person and are referred to as talker-

specific characteristics (TSCs). For example, you may notice a person speaks with a 

certain accent, speaks at a certain rate, or has a certain pitch. These aspects of the 

person’s speech constitute components of that person’s talker-specific characteristics. 

Our tendency to unconsciously identify and imitate a person’s TSCs is referred to as 

phonetic convergence.  

Phonetic convergence is explained by two main theories: the direct realist theory 

(see Fowler, 1986; Sancier & Fowler, 1997; Fowler, Brown, Sabadini, & Weihing, 2003; 

Galantucci, Fowler, & Turvey, 2006) and the episodic theory (see Goldinger, 1998; 

Goldinger & Azuma, 2004; Namy, Nygaard, & Sauerteig, 2002). Whereas the direct 

realist approach relies on the perception-production link, the episodic approach relies on  

stored memories of talker-specific characteristics.  
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Direct realist theory. The direct realist approach is a gestural theory. It contends 

that speech perception does not occur through the auditory signals of speech, but rather 

through perception of articulatory gestures (or the kinematics involved in creating the 

sound) which “causally and distinctively structure the acoustic speech signal” (Fowler et 

al., 2003). In turn, the gestures of the speaker provide information about the acoustic 

speech signals, such as how the word was physically produced (e.g. kinematics of the 

gestures) and similarly, how to produce it oneself. Consider a listener who hears a 

particular phoneme, which is the smallest unit of sound in speech. Phonemes can be used 

to distinguishes one word from another (e.g. the /i/ in “beet” and the /a/ in “bat”). Now if 

a person hears the vowel /i/ in the word “beet”, the listener would automatically have 

access to the gestures that are involved in producing the /i/, such as the high-forward 

positioning of the tongue (e.g. the vowel /i/ in “beet”), the specific speech rate, and the 

tone in which it was produced. The gestures responsible for producing the speech sound 

would carry information about how the word was produced (i.e. the position of the 

articulators, such as the lips and tongue, etc.). Under direct realist theory, phonetic 

convergence occurs as a result of perceiving an interlocutor’s articulatory gestures which 

then inform how the listener produces her articulatory gestures.  

There is evidence to suggest that gestural information is present not only in 

auditory speech, but that the same gestural information is also present in visual speech. 

As such, research has found that people will converge to the unique style of a speaker 

when presented with only the speaker’s articulating face (Miller, Sanchez, & Rosenblum, 

2010; Sanchez, Miller, & Rosenblum, 2010). In these studies, participants are asked to 
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lip-read the speech from a talker and to say the words uttered by the silent talker. When 

participants say the silent talker’s words out-loud, the participants’ own utterances shift 

in line with the silent talker’s talker-specific characteristics. This means that the 

articulating face contains the same gestural information on how to produce speech. As a 

consequence, a perceiver is influenced in their own speech productions by the style of the 

silent talker, resulting in phonetic convergence. 

It has additionally been shown that listeners quickly access and extract 

information from an interlocutor's articulatory gestures (Fowler et al., 2003). Gestural 

information extracted from speech can be used to identify a talker, which means that 

individuals can match a voice to a speaking face when auditory and gestural stimuli are 

presented separately, but cannot match a voice to a static face (Lachs & Pisoni, 2004a, 

2004b). In effect, an individual can extract information from a speaker’s articulatory 

gestures and use that information to articulate sounds in a similar fashion (e.g. converge), 

when the individual has visual access to that speaker. An individual cannot extract 

gestural information from a person to which they do not have access to kinematic 

information, be it in an auditory or visual form. In this way, perception of the gestures of 

speech lead to phonetic convergence within the direct realist theory.  
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The perception-production link. A mechanism that is thought to be responsible 

for speech convergence in the direct realist approach is the perception-production link. It 

has been suggested that perception and production share the same mechanisms, at least 

partially (e.g. Chartrand & Bargh, 1999; Chen, Chartrand, Lee Chai, & Bargh, 1998; 

Prinz, 1990). This idea suggests that incoming signals to the brain as a result of perceived 

stimuli do not need to be “translated” into outgoing signals to produce a behavior in 

response to the stimuli. Rather, perception and behavior share a “common code” in which 

perception automatically influences action. The perception-production link sets up a 

framework for imitation in which the perception of stimuli directly and automatically 

influences how behavior is produced. Thus, if one is exposed to the gestures of speech, 

one is likely to be influenced in their own gestural realizations, in essence, phonetic 

convergence. 
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The perception-production link: Neurological basis. There is neurophysiological 

evidence for the perception-production link, which was first discovered in primates (Di 

Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992). Di Pellegrino et al. found that 

neurons located in the F5 region of the premotor cortex — which are responsible for 

goal-directed hand movements — were similarly activated when: (a) conducting goal 

directed movements, (b) observing another monkey conduct the same movements, and 

(c) observing a human experimenter conduct the same movements. Specifically, the same 

regions of the monkeys’ brains activated when they grasped food or observed another 

monkey or human grasp food. The activation of neurons in response to observed action 

suggest that perception of a behavior automatically activates neurons needed to produce 

that behavior. These neurons are known as mirror neurons because they activate in 

response to the observation of behavior (Rizzolatti, Fogassi, & Gallese, 2001) and their 

discovery provide neural confirmation for the existence of the perception-production link 

(Lotto, Hickok, & Holt, 2009). Importantly, mirror neurons and the perception- 

production link exist in humans (Fadiga, Fogassi, & Rizzolati, 1995).  

The existence of a perception-production link in humans holds implications for 

speech imitation. Specifically through a class of mirror neurons known as echo neurons, 

which respond both to the execution of an action and its resulting sound (e.g. the action 

and sound of opening a can; Kohler et al., 2002). For example, Fadiga, Craighero, 

Buccino, & Rizzolatti (2002) examined how the perception-production link affects the 

excitability of tongue muscles. They monitored activity of tongue muscles while 

participants passively listened to human speech. The results suggested that passive 
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listening of speech was enough to excite muscles in the tongue of a human listener. That 

is, the perception of auditory signals activated the muscles in the tongue needed to 

produce the heard sound productions.  

Gentilucci and Bernardis (2005) examined whether speech imitation was 

observable at a phonemic level when speaking with an interlocutor. In this experiment, 

participants were measured on their lip movements and their pitch. Participants were 

asked to repeat strings of phonemes (i.e. /aba/) spoken by model speakers, that were 

presented visually and auditorily. The results indicated that both the participants’ lip 

movements and their pitch shifted toward the model speaker’s realizations. This suggests 

that a person shifts the way they produce sound, both in frequency and physical 

articulation of the lips, when repeating sounds. These studies lend neurophysiological 

support for phonetic convergence within a direct realist perspective.  

Most studies that use a direct realist perspective are agnostic to the role of 

memory involved in speech convergence. Direct realist studies often employ a shadowing 

task, where participants quickly repeat utterances spoken by a model talker. In this task 

the perception-production link is viable, as participants are directly exposed to a model 

talker’s gestures and are required to immediately repeat the models’ speech. However, 

the current study shall not employ a shadowing task, but instead rely on stored memory 

traces to inform the speech productions of participants. As such, a theory that utilizes a 

memory component is warranted for explanation: the episodic theory. 
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Episodic theory. Under the episodic theory of speech perception and production, 

our ability to store memories of others’ TSCs is what allows us to engage in phonetic 

convergence. The episodic theory of speech convergence posits that each word we 

perceive leaves a trace in memory which contains information regarding the episode 

(including TSCs of the speaker) and therefore influences the mental representation of that 

word (Goldinger, 1998). Each time we produce that word, we activate its associated 

traces, and access the information stored in those traces. Consequently, the activation of 

these traces influence the way a word is produced.  

When we activate stored memory traces, the number of traces we have affect what 

we will subsequently speak. To illustrate this phenomenon, consider two examples at the 

phrase level from the Star Wars movies: “May the Force be with you” and “Help me Obi-

Wan Kenobi. You’re my only hope”. Chances are you do not attribute the former phrase 

to any single character, as many Star Wars characters have uttered that phrase. However, 

you are likely to attribute the latter phrase only to Princess Leia, as she is the only 

character to have uttered that phrase. Under the episodic theory of speech, each time you 

hear Princess Leia say her classic phrase you store an episodic trace which is associated 

with both her TSCs and that particular phrase. This means that if you were to say “Help 

me Obi-Wan Kenobi. You’re my only hope.” yourself, the largest portion of episodic 

traces that activate contain Princess Leia’s TSCs. You are then more likely to be 

influenced in the way you produce this phrase by the way Princess Leia produced it (e.g. 

you are more likely to converge to Princess Leia’s voice). On the other hand, many 

characters have said “May the Force be with you”. Episodic traces are stored every time 
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you hear this phrase and each trace is associated with the TSCs of the character who said 

it. Therefore, no single character has a dominant amount of episodic traces associated 

with their TSCs when saying this phrase. Consequently, when you say “May the Force be 

with you”, you are not likely to be influenced by the TSCs of any given character and are 

less likely to converge to any one character. This phenomenon may extend even further 

such that we may converge to the overall speaking style of any one person (e.g. Princess 

Leia) in an everyday setting given enough exposure (see Sancier & Fowler, 2003; 

Sanchez, Hay, & Nilson, 2015).  

Neither the episodic theory nor the direct realist theory provides a holistic 

explanation of phonetic convergence. However, the episodic theory better accounts for 

known effects such as word frequency effects, repetition effects, and persistent 

convergence (Fowler, 1986; Gambi & Pickering, 2013; Goldinger, 1998). For the 

purposes of this paper, an episodic approach will be emphasized at the word level.  

Word frequency effects refer to how the ubiquity of a word in everyday language 

affects phonetic convergence. For example, words which are not commonly used in 

English (e.g. “portal”) are considered low-frequency words and words that are common 

in English (e.g. “hello”) are considered high-frequency words. Low-frequency words 

have less traces associated with them due to not being encountered frequently. This 

makes low-frequency words more susceptible to be influenced by traces associated with a 

specific talker and their TSCs. Alternatively, high-frequency words have many traces 

associated with them and are less likely to be influenced by the traces of any single 

speaker. The episodic theory predicts higher rates of convergence when a person is 
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exposed to a speaker using low-frequency words than when the speaker uses high-

frequency words.  

Repetition effects refer to the fact that repeatedly hearing a word affects 

convergence within a speech experiment. If you repeatedly hear a specific person say 

“portal” many times, and a trace is stored for each repetition, then the amount of traces 

associated with this person’s TSCs increases. Thus, when you produce the word “portal” 

you are more likely to be influenced by that specific talker in the way you say it. 

Conversely, if “portal” is not repeatedly spoken by a particular person, then stored traces 

of that word are not associated with any particular individual’s TSCs and you are less 

likely to be influenced in your production of that word. The episodic theory predicts 

higher rates of convergence as a person hears a word repeated more often from a speaker. 

Repetition effects differ from frequency effects in that they refer to how the amount of 

times a word is heard affects phonetic convergence, while frequency effects have to do 

with how the prevalence of a word in everyday language affects convergence. Repetition 

effects can interact with frequency effects so that convergence has the highest chance of 

occurring when the word being uttered is both a low-frequency word and has been heard 

many times by a speaker, and less so when a word is high-frequency and has been heard 

few times.  

The episodic theory also provides an explanation for why persistent convergence 

occurs. Persistent convergence is when an individual continues to converge to a speaker 

despite the passage of time (Pardo, 2006), and has been observed up to six days after 

exposure to a model speaker (Goldinger & Azuma, 2004). Under the episodic theory, this 
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occurs because stored traces associated with a talker’s TSCs might persist in their 

influence on phonetic convergence over time. Episodic theory cannot wholly account for 

persistent convergence, but can account for it better than the direct realist theory (see 

Fowler, 1986; Gambi & Pickering, 2013). This is because the direct realist theory 

requires direct interaction with a speaker in order for phonetic convergence to occur.  

Word frequency and repetition are variables that are often considered in speech 

convergence studies, but not many investigate the persistence of convergence. However, 

Goldinger and Azuma’s (2004) study combined frequency and repetition effects as they 

persist over time. In the study, Goldinger and Azuma investigated different types of word 

frequency categories: high (HF), medium high (MHF), medium low (MLF), and low 

(LF). Words from these different frequency categories were presented with different 

amounts of repetitions (e.g. 0, 2, 6, 12). Under the episodic theory, both word frequency 

and repetitions are important, as the episodic theory predicts that words with lower 

frequencies that have many repetitions will lead to higher rates of convergence. In the test 

of persistence over time, it is these factors that are also predicted to demonstrate the most 

convergence. 

The Goldinger and Azuma (2004) experiment unfolded over three phases. 

Participants first engaged in a baseline phase, where they were recorded reading all 

stimulus words. The baseline recordings serve to provide a natural example of the 

speaking style of each participant. Most studies, including the current study, use baselines 

because they provide a reference point to compare participant’s different utterances and 

test whether phonetic convergence has occurred. 
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In the second phase of the Goldinger and Azuma (2004) study, participants 

engaged in a listening task. In the listening task, participants were exposed to the auditory 

speech of a model speaker. These words were the same ones the participant read aloud 

during the baseline phase and were presented at different repetition rates, where the 

words were presented 0, 2, 6, or 12 times within the experiment. Again, repetition is 

important because the episodic theory predicts that rates of convergence increase as a 

word is increasingly repeated. At no time were participants told to try to remember the 

words or how they were said by the model speaker. In the listening phase, participants 

were asked to identify each word they heard by clicking on the text version of the word 

on their computer, which was displayed on the computer screen in a grid that contained 

all words they would hear.  

The third phase of the study occurred one week after engaging in the listening 

task of phase two. This one-week delay aimed to test if stored traces continue to influence 

phonetic convergence despite the passage of time (i.e. persistence). The third phase was 

identical to the baseline phase: participants were recorded reading all words again. 

However, given the exposure to the speech of the model in phase two, these participants 

were expected to utter the words in this last phase in a manner similar to the model, or in 

other words to converge. According to the episodic theory, participants should have 

stored traces associated with the words and TSCs of the model speakers heard in the 

second phase. The words that were LF and repeated the most were expected to show the 

most evidence of convergence.  
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To identify whether the participants converged to the model speakers they 

listened to one week prior (in phase two), a perceptual rating task was employed (see next 

section “Measuring phonetic converge” for specifics). In the rating task, a separate group 

of participants listened to and rated the perceptual similarity of sets of recordings. 

Specifically, participants were asked to rate the similarity of the recorded subjects’ 

baseline utterances and utterances post-exposure to the model’s utterances. The results of 

the perceptual rating task suggest that word frequency and repetition affect speech 

convergence even after a delay of one week, suggesting the persistence of speech 

convergence. Convergence was measured to be highest for LF words, followed by MLF, 

MHF, and HF words (in decreasing order of convergence). This result is predicted by 

episodic theory because LF words are more likely to be influenced by stored traces of a 

word and therefore have higher rates of convergence. Repetition affected speech 

convergence. Convergence was highest for words repeated 12 times, followed by 6, 2, 

and 0 times (in order of decreasing convergence). This result is predicted by episodic 

theory because convergence occurs at a higher rate when a word is repeatedly heard. 

These results lend support to the notion that LF words are more likely to be influenced by 

traces of a speaker’s TSCs. They also support the notion of repetition effects on phonetic 

convergence. Individuals are more likely to converge to a speaker as word frequency 

lowers and as word repetitions increase (see also Goldinger, 1998). The current study will 

make use of LF words as target words to measure phonetic convergence and will expose 

each word three times to each participant as two repetitions have been shown to be 

sufficient to induce phonetic convergence.  
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Measuring phonetic convergence. The AXB perceptual rating task is a valid 

measure for phonetic convergence (see Goldinger, 1998; Goldinger & Azuma, 2004). It 

measures convergence in studies operating under the direct realist theory as well as 

studies operating under the episodic theory.  

Generally, convergence studies have multiple phases: baseline and exposure 

phases. At baseline, participants who will be referred to henceforth as talkers, are 

presented with words in text format and are asked to say the words out-loud. These 

baseline recordings aim to capture the talker’s normal, uninfluenced manner of speaking 

the target words. During the exposure phase, talkers are exposed to utterances from a 

model speaker and are either asked to shadow the utterances (e.g. say the word out loud 

immediately after the utterance is heard) from the model speaker or say the words at 

some time point after having been exposed to the model's speech while being recorded. 

The talker’s baseline and post-exposure recordings are then compared to the 

model’s recordings via a perceptual rating AXB task. The perceptual rating task is 

performed by a different set of participants who will henceforth be referred to as raters. 

Raters are presented with three auditory utterances successively — A, X, and B. Raters 

are asked to decide, which utterance, A or B, is most like X in pronunciation. The X 

stimulus is typically an utterance (e.g. a word like “portal”) produced by the model talker. 

The A and B stimuli are the same word (e.g. “portal”) produced by the talker at different 

phases of the experiment: the baseline utterance and the post-exposure utterance. For 

example, a rater may hear the word “portal” uttered by a talker at baseline (e.g. A), 

followed by the same word uttered by the model speaker (e.g. X), and lastly hear “portal” 
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uttered by the talker after the exposure phase (e.g. B). Raters would then judge whether 

the stimulus in position A or the stimulus in position B sounded most like the stimulus in 

position X. Using the AXB task, evidence for phonetic convergence is found when raters 

judge utterances from the post-exposure phase to be more similar to the model’s 

utterances than the baseline utterances. The current study will employ an AXB task 

similar in structure to what was described above. 

Phonetic convergence has also been measured using acoustic features such as 

duration — which is an acoustic dimension that varies reliably in convergence studies 

(Pardo, Gibbons, Suppes & Krauss, 2011; Pardo et al., 2013; Pardo et al., 2017). Duration 

is measured using differences-in-distance (DID) estimates. DID estimates are calculated 

by comparing differences in the durations of speech between talkers’ baseline speech and 

models’ speech (baseline - model), and then comparing differences in durations of speech 

between talkers’ shadowed speech and model’s speech (shadowed - model). The 

shadowed differences are then subtracted from the baseline differences. If these 

differences yield a positive value, they can be interpreted as convergence occurring. The 

current study will use differences in DID estimates to measure duration of speech.  
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Degree of Convergence. The episodic theory predicts differences in phonetic 

convergence due to frequency and repetition effects. However, other factors which have 

been found to influence differences in phonetic convergence include the sex of model 

talkers (Pardo, 2017), conversational role (Pardo, 2006), and context (Sanchez, Hay, & 

Nilson, 2015).  

Research has suggested that the sex of the model speaker plays a role in the 

degree of convergence, but the results are mixed. Some research suggests that 

convergence has a higher chance of occurring when the speaker is a female (Namy, 

Nygaard, & Sauerteig, 2002; Dias & Rosenblum, 2011). There is also evidence to suggest 

that females converge more readily to talkers of their own sex (Namy et al., 2002; Pardo, 

2006; Miller, Sanchez, & Rosenblum, 2010). Others have found that convergence is 

higher when the speaker is a male (Miller et al., 2010). More recently, some studies 

suggest that sex has no effect on the degree to which an individual converges (Pardo, 

Jordan, Mallari, Scalon, & Lewandowski, 2013; Pardo, Urmanche, Wilman, & Wiener, 

2016; Pardo, 2017). The current study will use only female participants as well as a 

female model speaker based on evidence that females have higher rates of convergence 

and converge more readily to same-sex talkers.  

An individual’s role in a conversation may affect the degree to which an 

individual converges. Pardo (2006, also Pardo, Jay, & Krauss, 2010) enrolled pairs of 

participants in a task where participants were required to converse. Each participant was 

assigned the role of either a giver of directions or receiver of directions. The giver 

described a route on a map labeled with landmarks to the receiver. The receiver had to 
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converse with the giver in order to draw the described route on a separate unlabeled map. 

Participants were recorded uttering the names of the landmarks before, during, and after 

the task. These recordings were then used to assess convergence in an AXB task. Both 

studies found that givers converged more towards receivers than vice-versa. This 

suggests that an individual’s role within a conversation may influence the degree to 

which they converge. The current study will control for this by not having the 

participants engage in conversation, but instead they will read sentences aloud, without 

engaging in conversation.  

The context in which speech takes place may also affect phonetic convergence. 

Sanchez, Hay, and Nilson (2015) conducted an analysis on a corpus of New Zealand 

English. Specifically, they identified sections of the corpus where speakers had speech 

referencing Australia (i.e. Australian context for speech) as well as speech without 

Australian context. They analyzed vowels (/ɪ/, /æ/, and /ɛ/) that distinguish New Zealand 

English and Australian English and compared how individuals produced each vowel in 

the Australian context versus a neutral context. They found that in a setting where an 

Australian context naturally occurred in a conversation, that New Zealand speakers 

would spontaneously adopt more Australian-like speech realizations, suggesting that 

context matters when shifting one’s speech.  

Sanchez, Hay, and Nilson (2015) also investigated the role of context in speech 

convergence in an experiment that did not use conversational speech, but instead had 

participants read words from a computer screen. In an experiment, the researchers 

recruited New Zealand English speakers and recorded them uttering a sequence of words 
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in two phases — baseline and experimental. Each sequence had three words. The first 

word was a word meant to prime the context of speech and the next two words were 

words which contained the vowels of interest. In the baseline phase, participants were 

recorded uttering words with a neutral context (e.g. “marmalade”) followed by words 

containing the vowels of interest (e.g. “skit”, “peck”). In the experimental phase, 

participants first uttered words with an Australian context (e.g. “koala”) before uttering 

the words with the vowels of interest. An analysis comparing the recordings from the 

baseline and experimental phases revealed that participants shifted the way they produced 

the vowels of interest. Participants in the experimental phase that activated an Australian 

context resulted in more Australian-like speech realizations. These results suggest that the 

context in which we are speaking may influence the way speech is produced, even if one 

is simply reading words from a computer screen. The current study will expose 

participants to the auditory speech of a model and then place them in a context where 

participants will read sentences attributed to the model which they previously heard, thus 

creating a model context.  

Auditory Imagery 

 Auditory imagery is a phenomenon which refers to what we “hear” when we 

imagine sounds (e.g. what you “hear” when you imagine your favorite song being 

played). There is evidence to suggest that it has similar characteristics to physically 

perceiving acoustic signals. Specifically, the auditory cortex is activated both when 

experiencing auditory imagery for an event and during the direct perception of those 
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events (Halpern & Zatorre, 1999; Halpern, Zatorre, Bouffard, & Johnson, 2004). 

Auditory imagery for features of a talker’s voice, such as speech rate has been shown to 

be experienced while reading text attributed to that talker and may influence how that text 

is read (Alexander & Nygaard, 2008; Kosslyn & Matt, 1977; Zhou & Christianson, 

2016a, 2016b).  

In the auditory imagery literature, speech rate is often used as a measure of the 

influence of one’s auditory imagery affecting silent reading and reading aloud. For 

example, Alexander and Nygaard (2008) exposed participants to the speech of two model 

speakers — one fast speaker and one slow speaker — by presenting a recording of the 

speakers conversing with each other. After this exposure phase, participants were then 

asked to read two passages, one attributed to the fast speaker and one attributed to the 

slow speaker (counterbalanced). The results from the experiment showed no differences 

in reading speed when reading silently, but found significant differences when 

participants read aloud. In the reading aloud condition, reading rates were in line with the 

respective attributed author, fast or slow. This suggests that readers experience auditory 

imagery of a speaker’s voice that can lead to changes in the spoken speech rate of 

participants who read aloud a text attributed to a given speaker. This study suggests that 

readers experience auditory imagery of a model’s TSCs while reading a text aloud and 

that the model’s TSCs influences how one reads, insofar as speech rate is concerned. 

However, no studies to date have investigated whether the words in the sentences 

attributed to a model will also influence one’s speech at a more fine-grained level, such 

as the level of how words are pronounced (i.e. phoneme level).  
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The episodic theory offers an explanation for auditory imagery speech rate effects 

(Alexander & Nygaard, 2008; Kurby et al., 2009). This explanation is identical to the 

explanation offered by research in the speech convergence literature (Goldinger, 1998). 

TSCs experienced in auditory imagery reflect the speaking styles of specific talkers, 

which include speech rate. A key difference is that auditory imagery research tends to 

focus on a more macroscopic level of TSCs (e.g. speech rate) while phonetic 

convergence literature focuses on a microscopic level (e.g. phonemes). However, it is 

unknown whether these two bodies of literature are fundamentally addressing the same 

phenomena under different levels. 

Whereas the episodic theory has been offered as an explanation for why reading 

rates may be affected after exposure to a speaker, there may be alternative explanations. 

For example, it could be that readers adopt a general response strategy where they simply 

mimic the speaker (e.g. “the talker was speaking fast, therefore I should read fast”; 

Alexander & Nygaard, 2008). Another explanation is offered by the theory of embodied 

cognition. Under this theory, after exposure to a speaker (fast or slow), a reader would 

gain a physical sensation of quickness or slowness. In turn, this physical sensation of 

quickness or slowness affects the reading rates of the participants, in line with their 

physical sensation. However, the episodic theory would better account for this effect if 

auditory imagery influenced the production speech on other levels (e.g. phonemes). 

 Current studies on auditory imagery in reading have focused on reading speeds as 

a measure of auditory imagery. However, the current literature does not address whether 

this occurs because readers are simply influenced by the temporal characteristics of a 
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speaker’s speech, or whether they are experiencing auditory imagery of a specific talker’s 

characteristics. For example, suppose an individual is instructed to read the following 

sentence “Students apply using an online portal” and that this sentence is attributed to a 

known fast talker. Will the individual read this sentence quickly as a result of simply 

copying the talker on only the dimension of speech rate (e.g. “the talker was speaking 

fast, therefore I should read fast”), experiencing embodied cognition, or will they read the 

sentence quickly as a result of experiencing auditory imagery of TSCs along several 

dimensions (i.e. speech rate and the unique way phonemes are uttered in a word), which 

would suggest that the participant may experience “hearing” the talker’s voice while they 

read, by activating stored memory traces of the talker along with specific words uttered 

by the talker. An investigation that examines changes at the sentence level and word level 

would provide some insight into this issue.  

The Current Study 

 The current literature on phonetic convergence and auditory imagery fails to 

address the relationship between the two phenomena. Within the episodic theory, if an 

individual gains sufficient experience with a speaker’s voice, they should accumulate 

episodic traces which are associated with the speaker’s TSCs, such as the speech rate of 

the speaker or how the speaker pronounces certain phonemes. If this individual reads 

aloud text thought to be written by a fast talker (e.g., “Students apply using an online 

portal”), then they should have a faster speech rate and pronounce certain words (i.e. low-

frequency words) similar to the speaker. However, it is possible that when reading 
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content attributed to a model speaker, as is done in auditory imagery studies, that speech 

rate takes precedence in the TSCs, where participants will shift in line to the macro level 

of speech rate, but not the micro level of phoneme. This issue has yet to be investigated 

in the literature.  

The current study examines the link between phonetic convergence and auditory 

imagery by testing whether auditory imagery of a speaker extends beyond speech rate to 

other characteristics of that speaker (e.g., TSCs), such as how they pronounce individual 

words. In the current study, two groups of participants will be used — talkers and raters. 

Talkers will engage in three phases: baseline, exposure, and reading. During the baseline 

phase, talkers will be recorded reading sentences aloud from a computer screen to assess 

their natural speech rate and to obtain an example of how they naturally say (target) 

words in general. Each sentence will contain a low-frequency target word which will later 

be used to test for phonetic convergence and auditory imagery. In the exposure phase, 

talkers will be exposed to a model speaker’s auditory speech. The model they hear will 

either have a fast or slow speech rate. Talkers will listen to the model utter sentences 

(different sentences from the baseline) containing half of the target words from the 

baseline task in her sentences. In the reading phase, talkers will engage in a task similar 

to the baseline phase where they will be recorded reading the same sentences, but in this 

case, each sentence will be attributed to the model speaker from the exposure phase. The 

recordings will be used to identify changes in the talker’s speech as compared to the 

model’s, as measures of phonetic convergence and auditory imagery. 
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Hypotheses 

The variables in this study are used to establish an understanding of the 

relationship between phonetic convergence and auditory imagery. The two independent 

variables used in this study are word exposure and model speech rate. Because it is the 

premise of this thesis that phonetic convergence and auditory imagery are fundamentally 

governed by the same processes, but are simply indicating differences in the level of 

observation (e.g. micro vs. macro), it is not expected for the variables word exposure and 

speech rate to interact for either phonetic convergence or auditory imagery. However, the 

main effects stemming from these independent variables will illuminate the differences 

between the levels of interest when conducting phonetic convergence research (e.g. micro 

level; at level of phoneme) compared to auditory imagery research (macro level; at level 

of duration of a sentence or passage), and where the two areas, phonetic convergence and 

auditory imagery, overlap (e.g. mid-level; at level of duration of a word). The hypotheses 

of interest are the following:  
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Hypothesis 1. A main effect of word exposure is expected to demonstrate 

evidence of phonetic convergence for exposed words over unexposed words when 

measuring perceptual ratings via an AXB task.  

Rationale. If low-frequency words which are repeatedly heard influence talkers in 

their speech production, then talkers will converge in their pronunciation of those words 

toward the model speaker when reading a sentence attributed to that speaker. 

Specifically, they will converge to exposed words (words previously spoken by the 

model talker) as compared to unexposed words not previously uttered by the model 

talker. This prediction is in line with findings that suggest that exposure to a talker will 

leave episodic traces of that talker’s TSCs and lead to phonetic convergence (Goldinger, 

1998; Goldinger & Azuma, 2004; Pardo, 2006).  

Hypothesis 2. A main effect of word exposure is expected to demonstrate 

evidence for both phonetic convergence and auditory imagery when measuring duration 

at the level of the word.  
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Rationale. Exposed words uttered by the subjects should be most similar in 

duration to the model’s duration of the words compared to unexposed words. If talkers 

are influenced in the way they say individual words by experiencing auditory imagery of 

a speaker, and the auditory imagery preserves details of a speakers’ TSCs, then talkers 

will have a shorter duration for words to which they were previously exposed at a rate 

that is more in line with the model speaker they experienced. Exposed words will have 

longer or shorter durations (in line with the speaker’s duration of the target words) than 

words to which they were not exposed, relative to baseline. This prediction is in line with 

the notion that auditory imagery may be explained by the episodic theory. (Alexander & 

Nygaard, 2008; Goldinger, 1998; Kurby et al., 2009). This hypothesis would provide a 

link between phonetic convergence (exposed vs. unexposed words) and auditory imagery 

(word duration). However, it could just be that the participants read words quickly as a 

result of simply copying the model talker’s overall speed or experiencing embodied 

cognition instead of actually being influenced by that talker’s TSCs.  

Hypothesis 3. When measuring duration at the level of the word, a main effect of 

speech rate is expected to demonstrate evidence for auditory imagery.  
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Rationale. Those exposed to the model with a fast speech rate will say target 

words quicker than those exposed to the model with a slow speech rate. When talkers are 

exposed to different rates of speech (e.g. fast or slow) by specific model speakers, if 

people are then presented with a target word which is attributed to that model speaker, 

then auditory imagery whilst reading that word aloud will lead to reading it either fast or 

slow, in line with the rate of the specific model. This prediction is in line with evidence 

that suggests listeners shift in reading speed to align with the speech rate of a model 

speaker to whom the text is attributed (Alexander & Nygaard, 2008; Zhou & 

Christianson, 2016a, b). However, individual words have not been tested individually as 

the literature tends to use passages of text.  

Hypothesis 4. When measuring duration at the sentence level, a main effect of 

speech rate is expected to demonstrate evidence for auditory imagery.  
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Rationale. Those exposed to the model with a fast speech rate will say the 

sentences quicker than those exposed to the model with a slow speech rate. When people 

are exposed to different rates of speech (e.g. fast or slow) by specific model speakers, if 

people are then presented with a sentence that is attributed to that model speaker, then 

auditory imagery whilst reading the sentence will lead to reading rates that are either fast 

or slow, in line with the rate of the specific model. Thus, it is predicted that those exposed 

to the fast talker condition will have faster reading times than those exposed to the slow 

talker condition. This prediction is in line with evidence that suggests listeners shift in 

reading aloud speed to align with the speaking rate of a model speaker when a text is 

attributed to that model speaker (Alexander & Nygaard, 2008; Zhou & Christianson, 

2016a, b). 

Method 

Participants 

 There were two participant groups for this experiment, talkers (N = 12) and raters 

(N = 68). The sample size for talkers was determined based upon previous studies in 

relevant literature. The sample size for raters was determined through a power analysis 

which yielded power of .807 (Judd, Westfall, & Kenny, 2016; Westfall, 2018). 

Participants who were talkers were disqualified from being raters. Only female 

participants were used as talkers, but people of all sexes and genders will were allowed to 

participate as raters. All participants were students from Humboldt State University and 
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participated via the SONA systems recruitment pool for class credit or extra credit. All 

participants will were at least eighteen years of age, native English speakers, had normal 

to corrected-to-normal vision, and had no reported hearing impairments. This project was 

approved by the Institutional Review Board (IRB) at Humboldt State University (IRB 

number: 17-209). 

Materials 

The materials in this experiment consist of a word list, 60 sentences containing 

words from the word list, and recordings of model talkers saying all sentences out loud. 



29 

 

  

Word list. The word list for this experiment consisted of 40 low frequency words 

that are bisyllabic (from Goldinger (1998)). Low-frequency bisyllabic words were used in 

this experiment because this class of stimuli have shown stronger rates of phonetic 

convergence compared to other sets of stimuli (Goldinger, 1998; Goldinger & Azuma, 

2004).  

Sentences. Sixty sentences — model sentences and talker sentences — were 

constructed by the author. All sentences will contained one target word. The target words 

were placed in a clause- or sentence-final position (Pardo, 2006). This was done to match 

the recorded utterances of the talkers and model in the same context (e.g. sentence-final 

positions). Twenty unique target words from the word list were reserved for the 20 

unique model sentences. All of the 40 target words were used to create 40 talker 

sentences. All talker sentences were distinct from the model sentences.  

Model recordings. One female model speaker was recorded reading all words 

from the word list, twenty model sentences, and all talker sentences. The model speaker 

recorded each sentence twice – once at a fast pace and another time at a slow pace (see 

Alexander & Nygaard, 2008). Additionally, the model speaker was recorded saying all 

talker sentences in order to compare them to the talkers’ recordings. However, only the 

20 model sentences were presented to the talkers. The recordings were done in a sound 

attenuated booth with a Beyerdynamic TG H55c microphone and saved onto a computer. 

All recordings were amplitude adjusted using the software Audacity.  
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Talker recordings. All talkers were recorded reading all talker sentences twice - 

once during the baseline phase and once during the reading phase. The recordings were 

done in a sound attenuated booth with a Beyerdynamic TG H55c microphone and saved 

onto a computer. All recordings were amplitude adjusted using the software Audacity.  

Design 

This study was an experimental 2 (word exposure) x 2 (model speech rate) 

experimental design. Word exposure was a within-subjects factor with two levels: 

exposed words and unexposed words. Exposed words were target words embedded in the 

model sentences produced by the model speaker during the exposure (listening) phase. 

Unexposed words were target words not embedded in the model sentences during the 

exposure phase. Model speech rate was a between subjects factor with two levels: fast 

and slow. Half of the talkers were exposed to a model speaker with a fast speech rate. 

The remaining talkers were exposed to a model speaker with a slow speech rate.  

The dependent variables in this experiment were perceptual ratings of phonetic 

convergence, word duration, and duration of sentences. Perceptual ratings of phonetic 

convergence is the percent of naïve listeners who judge a talker’s post-exposure utterance 

as more similar to the utterance of a model speaker relative to the talker’s baseline. 

Talker speech rate is measured in two ways: target word duration and sentence duration. 

Duration measurements for word and sentence length were made by using the computer 

program Praat (Boersma et al., 2018). Duration of target words were measured as the 

duration of individual words from the onset to offset of vocalizations. Duration of 
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sentence length were measured as the duration starting with the initial onset vocalization 

of the first word in a sentence to the offset of vocalization of the last word in the 

sentence. DID estimates between the baseline utterance, post-exposure utterance, and 

model utterance will provide a duration measure of convergence 

Procedure 

 There were two parts to this experiment with different sets of participants – 

talkers and raters. All stimuli was presented with the experimental program E Prime 

(Psychology Software Tools, Pittsburgh, PA). 

Talkers. In the first part of this experiment, participants, referred to as talkers, 

engaged in the experiment in a sound attenuated booth in the psychology department. The 

utterances of talkers in the various tasks were recorded with a Beyerdynamic TG H55c 

microphone and saved onto a computer. Talkers engaged in three phases. The first phase 

was the baseline phase, where participants were asked to read the talker sentences aloud 

whilst being recorded. The sentences were presented one at a time on a computer screen 

at two second intervals. Talkers were asked to read the sentences clearly. The sentences 

of the baseline phase were intended to reflect the normal way the talkers speak and will 

be used as baselines.  

In the second phase (exposure) of the experiment, talkers were asked to listen and 

pay attention to the model speaker uttering the 20 model sentences through 

Beyerdynamic DT 770 Pro headphones. The model speaker was given a name in order to 
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refer to her in the third phase. Each model sentence was repeated two times during the 

course of the phase. All 20 sentences were presented in blocks, where the specific 

sentence within each block were presented in a random order. 

In the reading phase of the experiment, talkers were asked to read sentences out-

loud, off of a computer screen. The sentences were identical to those in the baseline 

phase and were attributed to the model speaker from the exposure phase. Each sentence 

was prefaced with a notice attributing the sentence to the model speaker. The target 

words from the talker sentences, and each sentence were saved into individual files. All 

recordings were amplitude adjusted using the software Audacity(R) (Audacity Team, 

2017).  

Raters. Raters engaged in the experiment in a room in a lab suite at Humboldt 

State University. Raters were asked to make perceptual similarity ratings in an AXB task. 

They were presented with three sets of recordings of individual target words in a row — 

A, X, and B. Participants were tasked with making perceptual similarity ratings, 

indicating whether A or B was more similar in pronunciation to X. 

The X stimulus was a target word from the model sentences uttered by the model 

speaker. The A and B stimuli were the same utterance as the model speaker, but uttered 

by the talker during the baseline and reading phase. For example, a rater may have hear 

the word “portal” uttered by a talker at baseline, followed by the same word uttered by 

the model talker, and lastly heard “portal” uttered by the talker in the reading phase. 

Raters then judged whether the first or third versions of “portal” sounded most like the 



33 

 

  

middle version. The A and B stimuli were counterbalanced such that half the recordings 

at baseline were placed in the A stimulus position and half were placed in the B stimulus 

position.  

Results 

Data Cleaning 

 The data were collected via E-Prime (Psychology Software Tools, Inc., 2016) and 

analyzed with R (R Core Team, 2016). Audio samples from talkers which had 

excessively poor quality (i.e., contained incomplete or indecipherable speech) were 

excluded from subsequent analyses (n = 41 words).  Talking durations were averaged 

across sentences and also averaged across words. Talking durations which fell three 

standard deviations above or below the mean were excluded from subsequent analyses (n 

= 11 words). Table 1 shows summary statistics for word durations as measured by 

differences-in-distance (DID) estimates. Table 2 and Table 3 show average word and 

sentence durations as measured by the raw difference in average duration from the 

reading to baseline phases for both word and sentences. 

Model Speaker 

There was a difference in the length of words (in seconds) spoken by the model 

speaker. Such that words spoken at a fast pace (M = 0.47,  SD = 0.12) did indeed have 

shorter durations than those spoken at a slower pace (M = 0.61, SD = 0.18), t(65.98) = -
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4.0, p < .001, d = 0.9. There was also a difference in the length of sentences (in seconds) 

spoken by the model speaker. Such that sentences spoken at a fast pace (M = 3.44 , SD = 

0.64) did indeed have shorter durations than those spoken at a slower pace (M = 4.26, SD 

= 0.74), t(38) = -3.75, p < .001, d = 1.19.  

Analyses 

 All data were analyzed within the R statistical computing environment using the 

R packages lme4 (Bates et al., 2015), lmerTest (Kuznetsova, Brockhoff, & Christensen, 

2017), and the tidyverse (Wickham, 2017). Each hypothesis was tested at an alpha level 

of .05 using a mixed effect model with random effects specified for individual subjects. 

Each analysis employed a χ2 test comparing the specified model to a null model specified 

with random effects to measure whether the specified model provides an improvement 

over a null model. 
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Hypothesis 1: Effect of word exposure on talker convergence via AXB. It was 

expected that exposed words uttered by the talkers would be rated by raters as having 

converged more often than words which were unexposed would be rated as having 

converged. The dependent variable was a binary value (zero or one) indicating whether a 

rater judged a talker’s utterance as having converged to the model speaker. A value of 

zero indicates that the rater judged the talker as not having converged and a value of one 

indicates that the rater judged the talker as having converged. 

 The results from this analysis suggest that there was no effect of word exposure 

on convergence ratings, B = -0.002, z = -0.674, p = .5, marginal R2 = .0001. This suggests 

that talkers did not converge to the model speaker at a higher rate when uttering an 

exposed target word (M = 0.49,  SD  = 0.50) compared to an unexposed target word (M = 

0.50, SD  = 0.50). Overall, the model was not found to add much information over and 

above a null model, χ2(1) = 0.45, p = .5 (see Table 4).  



36 

 

  

Hypothesis 2: Main effect of word exposure on talker speech via differences-

in-distance Estimates. It was expected that exposed words uttered by the subjects should 

be most similar in duration to the model’s duration of the words compared to unexposed 

words. If a subject was exposed to target words being spoken slowly, then the subject 

would slow down in their speech. If a subject was exposed to a target word being spoken 

quickly, then they would speed up in their speech.  The dependent variable was talker 

word duration as measured by differences-in-distance (DID) estimates. A positive value 

indicates the participants shifting their speech in line with model speaker. The fixed 

effects for this model was word exposure (exposed or unexposed).  

The results from this analysis suggest that there was no effect of word exposure 

on DID estimates, B = -0.004, t(432.32) = -0.78, p = .44, marginal R2 = 0.001. This 

suggests that talkers did not shift their speech at the word level when uttering an exposed 

target word (M = -0.001,  SD  = 0.057) compared to an unexposed target word (M = -

0.006, SD  = 0.068). Overall, the model was not found to add much information over and 

above a null model, χ2(1) = 0.61, p = .43 (see Table 5). 
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Hypothesis 3: Effect of model speaker speech rate on talker speech via raw 

differences in word duration. It was expected that model speech rate would have an 

effect on talkers word duration utterances. Participants that listened to the model 

speaking quickly were expected to say target words quicker than those who listened to 

the model with a slow speech rate. The dependent variable for this model was the raw 

difference in duration of target words (regardless of whether they were exposed or 

unexposed words) between the reading and baseline phase. For the raw difference in 

duration, a negative value indicates that the participant sped up in their speech rate and a 

positive value indicates that the participant slowed down in their speech rate. The fixed 

effect for this model was model speech rate (fast or slow). This analysis was performed 

on a subset of the data which included only included target words to which the participant 

was exposed. 

 The analysis indicated that model speech rate had no effect on the duration 

of  target words, B = 0.01, t(9.63) = 0.96, p = .36, marginal R2 = .01 (see Table 6). This 

result suggests that talkers who listened the model speaker with fast speech rate (M = -

0.013, SD = 0.074) and talkers who listened to the model speaker with a slow speech rate 

(M =- 0.001, SD = 0.075) did not shifted their overall speaking style in line with the 

model. This model did not provide additional information over and above a null model, 

χ2(1) = 1.04, p = .31 (See Table 6). 
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Hypothesis 4. Main effect of model speaker speech rate on talker speech rate 

via raw differences in sentence duration. It was expected that model speech rate would 

have an effect on talker utterances of sentences in overall duration. Those exposed to the 

model speaking quickly were expected to read sentences quicker than those exposed to 

the model who spoke slowly. The dependent variable for this model was the raw 

difference in duration of sentences between the reading and baseline phase. For the raw 

difference in duration, a negative value indicates that the participant sped up in their 

speech rate and a positive value indicates that the participant slowed down in their speech 

rate. The fixed effect for this model was model speech rate (fast or slow). The analysis 

suggests that model speech rate had no effect on the duration of sentences of talkers, B = 

0.02, t(10.01 ) = 0.171, p = .87, marginal R2 = 0.0001 (see Table 7). This result suggests 

that talkers who listened to the model speaker with fast speech rate (M = -0.14, SD = 

0.81) and talkers who listened to the model speaker with a slow speech rate (M = -0.16, 

SD = 0.67) did not shift their utterances in line with the model. This model did not 

provide additional information over and above a null model, χ2(1) = 0.03, p = .86.  

Discussion 

 The current study aimed at investigating whether phonetic convergence and 

auditory imagery are governed by the same processes. This question was addressed by 

combining the designs and hypotheses from extant literature on phonetic convergence 

(Goldinger, 1998; Goldinger & Azuma, 2004) and auditory imagery (Alexander & 

Nygaard, 2008). The results of this study suggest that there may be different mechanisms 
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that underlie each process, however further investigation is needed in order to verify this 

conclusion. 

Hypothesis 1: Main Effect of Word Exposure via AXB 

 Goldinger and Azuma (2004) found that if a person is repeatedly exposed to 

words which are low-frequency (i.e., do not often appear in everyday language) then a 

person will converge to that speaker (i.e., imitate their TSCs when uttering that word). 

The current study expected that participants repeatedly exposed to low-frequency words 

uttered by a model speaker would converge to those words. This hypothesis was not 

supported by data. This result suggests that episodic encoding may not play a role in 

phonetic convergence. Contrary to previous findings on episodic encoding’s influence on 

speech (Goldinger, 1998; Goldinger & Azuma, 2004; Pardo, 2006), these results do not 

provide evidence for talkers storing traces in memory associated with the TSCs of the 

model speaker influencing their speech.   

Hypothesis 2: Main Effect of Word Exposure on Talker Speech via Differences-in-

Distance Estimates 

 Alexander and Nygaard (2008) found that participants exposed to a model 

speaker reading sentences quickly or slowly would shift their speech rate to match the 

model speaker when asked to read a passage purported to be written by that model 

speaker. Specifically, this occured when the passages were read aloud, but not when read 

silently. Based on this finding, in combination with Goldinger and Azuma’s (2004) 
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finding, it was expected that talkers would converge to repeatedly exposed low-frequency 

words with respect to duration. It was expected that talkers would utter these words 

quickly or slowly, in line with the model speaker experienced, relative to their baseline 

speech rate. However, this hypothesis was not supported by the data. This result suggests 

that episodic encoding is not a shared mechanism between auditory imagery in reading 

and phonetic convergence.  Readers experiencing auditory imagery may indeed 

experience “hearing” the voice of a familiar author while reading due to stored memories 

of that author’s talker-specific characteristics (TSCs) (Alexander & Nygaard, 2008; 

Kurby, Magliano, & Rapp, 2009; Zhou & Christianson, 2015, 2016), but these memories 

may not actually influence the reader’s speaking style. An explanation for why episodic 

encoding alone does not explain how auditory imagery affects reading is that familiarity 

with a voice extends beyond simple word/voice pairings or brief interactions with a 

voice, as is commonly seen in research. It is suggested that one must also take into 

account the goals, relationship, and context with respect to a voice in order to understand 

how the relationship between auditory imagery and reading arises naturalistically (Kurby, 

Magliano, & Rapp, 2009; Sanchez, Hay, & Nilson, 2015). While the current study 

created a context related to the speaker, it may not have been a strong enough context for 

auditory imagery to occur. Alexander and Nygaard (2008) exposed participants to 

passages of speech where a model context was created where each passage had a specific 

theme (one concerned a family vacation and the other concerned plans for a new 

business). It could be that Alexander and Nygaard’s manipulation provided a more salient 



41 

 

  

context for which participants could experience auditory imagery compared to the current 

study.  

Hypotheses 3 and 4: Main Effect of Speech Rate via Word and Sentence Duration 

 The current study expected to find that talkers would shift their speech in line 

with a model speaker (speaking quickly or slowly) at both the word and sentence level. 

At the word level, this was hypothesized to occur regardless of whether the target word 

was exposed to the participant.  However, talkers did not demonstrate any shift in their 

speech at the word level after being exposed to a model speaker. Similarly, talkers also 

did not shift their speech rate in line with the model’s speech rate at the sentence level. 

These findings are contrary to the findings in Alexander and Nygaard (2008) who, at 

least for the sentence level, did find shifts in the speech rate of talkers after presented 

with a model’s speech rate. The current study suggests that exposure to a fast or slow 

speaker’s speech does not influence reading style when reading text thought to be written 

by that speaker. Currently, the data provides support for the abstractionist view of speech 

perception, where perceived speech is thought to be stripped away from its nonlinguistic 

properties (Pisoni, 1997; Tenpenny, 1995). This view contends that we perceive speech 

as context-free, independent of the identification, recognition, and storage of 

nonlinguistic properties of speech (i.e., a talker’s voice). However, there were some 

limitations to this study that may need to be reconciled before a stance is made. 
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Limitations  

 This study faced limitations in several facets of the experiment. For example, at 

the word level,  talkers only received two repetitions for each sentence (and each exposed 

target word) spoken by the model speaker. This may not have been enough exposure to 

the model speaker for convergence to occur. At the word level, the effects of phonetic 

convergence has been observed at a minimum of two repetitions per word, but the effect 

is more pronounced as repetitions increase (Goldinger, 1998; Goldinger & Azuma, 2004). 

However, the work on phonetic convergence has found its evidence primarily via the 

AXB method, though there are some studies that have looked at some speech dimensions, 

like duration , which may serve as a proxy for speech rate, (Pardo, Jay, & Krauss, 2010; 

Pardo et al., 2009). In these cases, duration is measured using differences-in-distance 

estimates (see Measuring phonetic convergence) as well as articulation rate (e.g., words 

per second).   At the sentence level, the effects of auditory imagery on talker speech has 

been observed with about four minutes of exposure to a model speaker (Alexander & 

Nygaard, 2008). However, in the current study, each talker was exposed to about 2.5 

minutes of speech from a model speaker, which may not have been enough exposure to a 

voice for auditory imagery to occur.  

 Another limitation of this study is that the sentences spoken by the model speaker 

were presented to participants one at a time. This stands in contrast to previous research 

on auditory imagery where participants were exposed to complete passages of speech in 

the form of a conversation between two speakers (Alexander & Nygaard, 2008; Kurby, 



43 

 

  

Magliano, & Rapp, 2009). Speech is typically not spoken one sentence at a time with 

large pauses in between. It is possible that auditory imagery may be more likely to occur 

for speech spoken naturalistically (i.e., conversational speech) as opposed to speech 

presented as unrelated isolated sentences.  

 Furthermore, the current study only used one model speaker with one sex. This 

limits the generalizability of the study with respect to the effects of sex. This is because it 

has been found that speech convergence is modulated by sex of the speaker such that 

people may more readily converge to female speakers (Namy, Nygaard, & Sauerteig, 

2002). However, there is also evidence that people more readily converge to male 

speakers (Miller et al., 2010). Because of this opposing literature, it is important to use 

model speakers of all sexes.  

 Lastly, the current study instantiated a context related to the model speaker by 

having talkers listen to the model speaker’s speech and by having them read sentences 

aloud purported to be written by that speaker. However, it may be that the context in the 

current study was not rich enough to induce auditory imagery. For example, speech 

presented to participants in previous studies have had specific themes throughout 

passages, made multiple references to the model speaker’s name, and emphasized the 

model’s speech rate by contrasting them to another speaker (e.g., having the “fast” model 

speaker speak to someone speaking slowly; Alexander & Nygaard, 2008; Kurby, 

Magliano, & Rapp, 2009; Zhou & Christianson, 2015, 2016). Because the current study 

did not include these aspects, it may be that the context was not rich enough for auditory 

imagery to occur. 
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Future Directions 

 The results of the current study oppose several studies regarding phonetic 

convergence and auditory imagery. Thus, further research should be conducted in order 

to provide evidence that auditory imagery with respect to reading and phonetic 

convergence are indeed not governed by episodic encoding. Further work should aim to 

understand these two phenomena by integrating various aspects of studies done to date. 

These include presenting the model’s speech in a more naturalistic manner (i.e., 

conversational speech), testing target words at different levels of repetitions and 

frequencies, and having a more salient context for the model speech, and using different 

model speakers. If it is found that participants’ speech does not shift after interacting with 

the voice of a model speaker and reading text thought to be written by the model speaker 

with respect to repetition of target words, different levels of word frequency, and context, 

then it would provide strong evidence that auditory imagery and phonetic convergence do 

not have a shared mechanism through episodic encoding. However, if participants’ 

speech does shift, it would provide evidence that there episodic encoding plays a key role 

in both auditory imagery and phonetic convergence.     

 Studies on auditory imagery typically present the model speakers’ speech in the 

form of passages or scripts (Alexander & Nygaard, 2008; Kurby, Magliano, & Rapp, 

2009; Zhou & Christianson, 2015, 2016). Additionally, it has been found that phonetic 

convergence occurs during the course of conversational speech (Pardo, 2006; Pardo, 

Gibbons, Suppes, & Krauss, 2012; Pardo et al., 2013). Thus future work should integrate 
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these aspects of both literatures by having participants engage with a model speaker in 

conversational speech. Ideally, this conversational speech integrates aspects of both 

auditory imagery and phonetic convergence. For example, by having model speakers 

vary in their speech rate (fast vs. slow), including target words of varying frequency 

(low-, medium-, and high-frequency), and having these target words have varying 

repetitions (between zero and twelve). If there is some interaction whereby participants 

show differing degrees of convergence to a model speaker according to word repetition 

and word frequency when reading a passage thought to be written by a model speaker, 

then it would provide strong evidence for episodic encoding as a shared mechanism 

between auditory imagery and phonetic convergence. 

Moreover, speech presented to participants in future studies should have enriched 

contexts. This can be done several ways. For instance, by having consistent themes 

throughout the passages or scripts which are used or by making repeated references to the 

model speaker’s name. It is important to have a salient context at it has been suggested 

that context influences convergence (Sanchez, Hay, & Nilson, 2015) and because speech 

is contextualized when it is encountered naturally (Goldinger, 1998; Pisoni, 1993, 1997). 

Thus, having a salient context would increase reliability by simulating an aspect of 

natural speech.  

Lastly, future work should make use of multiple male and female model speakers. 

Exposing participants to different voices means exposing them to varying pitches, tones, 

and rates of speech. This would increase the generalizability of the findings beyond a 

single model speaker’s voice.  
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Conclusions 

 The current study sought to find a link between auditory imagery and phonetic 

convergence by combining methods from both bodies of literature. Exposure to a model 

speaker’s speech did not result in any talkers shifting their speech to more closely align 

with the model speaker with respect to speech rate at the word or sentence level. While 

the current study provides no support for any link between these two phenomena, there is 

a host of literature suggesting that they may be linked. Thus, further work should be 

conducted before concluding that there is no relationship between phonetic convergence 

and auditory imagery.  

 To the author’s knowledge, the present results are the first to examine the link 

between auditory imagery and phonetic convergence and their effect on speech. Studying 

the link between these two phenomena may allow insight into how memory, specifically 

episodic memory, play into the perception and production of speech. Whether there is (or 

is not) a relationship between auditory imagery and phonetic convergence must be further 

investigated for a stronger understanding of the interplay of memory and language. 
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Tables 

Table 1  

Summary statistics for talkers’ word durations via DID estimates 

 M SD 

Condition   

  Fast 0.011 0.061 

  Slow -0.003 0.064 

Word Exposure   

  Exposed 0.006 0.068 

  Unexposed 0.001 0.057 
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Table 2 

Summary statistics for talkers' word durations via raw estimates 

 M SD 

Condition   

  Fast -0.013 0.074 

  Slow 0.001 0.075 

Word Exposure   

  Exposed -0.001 0.065 

  Unexposed -0.013 0.082 

 

 

Table 3 

Summary statistics for talkers’ sentence durations via raw estimates 

 M SD 

Condition   

  Fast -0.14 0.81 

  Slow -0.16 0.67 

Word Exposure   

  Exposed -0.11 0.67 

  Unexposed -0.19 0.81 

 



49 

 

  

 

Table 4 

Hypothesis 1: Effect of word exposure on talker convergence via AXB 

Fixed Effects Estimate SE B z p(z) χ2(df) p(χ2) 

(Intercept) -0.002 0.05 -0.05 .96   

Exposed: Yes -0.036 0.05 -0.67 .5   

      0.45(1) .5 

Note. Converged ~ Word_Exposure + (1|Word) + (1|Talker) 

 

Table 5 

Hypothesis 2: Effect of word exposure on talker speech via word duration: Differences-

in-distance model 

Fixed Effects Estimate SE B t p(t) χ2(df) p(χ2) 

(Intercept) 0.01 0.01 1.08 .30   

Exposed: 

Yes 

-0.004 0.006 -0.78 .44   

     0.61(1) .43 

Note. DID ~ Exposed + (1|Word) + (1|Talker) 
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Table 6 

Hypothesis 3: Effect of model speaker speech rate on talker speech via word duration: 

raw differences model 

Fixed 

Effects 

Estimate SE B t p(t) χ2(df) p(χ2) 

(Intercept) -0.01 0.01 -1.39 .18   

Speech 

Rate: 

Slow 

0.01 0.01 0.96 .36   

          1.04(1) .31 

Note. Raw_diff ~ Speech_Rate + (1|Word) + (1|Talker) 

 

Table 7 

Hypothesis 4:  Effect of  model speaker speech rate on talker speech via raw differences 

in sentence duration 

Fixed Effects Estimate SE B t p(t) χ2(df) p(χ2) 

(Intercept) -0.14 0.1 -2.05 .07   

Speech Rate: 

Slow 

-0.02 0.1 0.17 .87   

          0.03(1) .86 

Note.   Raw_diff ~ Speech_Rate + (1|Talker)
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