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ABSTRACT 

CHANGES IN DEMOGRAPHY, DISTRIBUTION, AND DIET IN GARTER SNAKES  
FOLLOWING ERADICATION OF A NON-NATIVE PREY SUBSIDY 

 

Justin Alexander Demianew 

 

Interactions between non-native and native consumers are often complex and 

cryptic.  I shed light on relationships between non-native brook trout (Salvelinus 

fontinalis), native amphibians, their shared predator (aquatic garter snake; Thamnophis 

atratus) and a sympatric amphibian specialist (common garter snake; T. sirtalis) using a 

treatment-control removal experiment in a sub-alpine system of northern California.  

Eradication of non-native S. fontinalis resulted in an immediate decrease in T. atratus 

abundance and survival, whereas their abundance increased in concert with T. sirtalis in 

an adjacent control basin.  Additionally, T. atratus body condition decreased substantially 

during this time, despite their increased use of lentic breeding ponds and increased 

predation on native amphibians, including the first documented predation on coastal 

tailed frog (Ascaphus truei).  My findings corroborate and strengthen previous research 

suggesting T. atratus abundance, and the resulting hyperpredation experienced by native 

amphibians, is likely linked with the presence of salmonids stocked for recreational 

angling in historically fishless waters.  Additionally, there appears to be some degree of 

negative association between the two sympatric species of garter snake, but my study was 

not designed to fully investigate this relationship and the evidence provided herein is 
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merely correlative.  These results not only demonstrate how a single introduced species 

can have drastic and unintended consequences in seemingly pristine wilderness settings, 

they also illustrate how restoration-based management via removal of a single non-native 

species can aid in reshaping native food webs. 
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INTRODUCTION 

The ubiquity of non-native species across the globe has resulted in wide-scale 

changes to many natural systems (Lever 1994, Williamson 1996, Asner and Vitousek 

2005, Clavero and García-Berthou 2005, Ehrenfeld 2011, Simberloff 2011).  Given the 

extent of introductions, non-native species have long been considered the second leading 

cause of biodiversity loss on a global scale (Vitousek et al. 1997) and the number one 

threat to native species in the United States (Czech and Krausman 1997).  While we have 

made great progress in understanding the effects non-native species have on communities 

(Ricciardi et al. 2013), identifying the mechanisms contributing to these effects is a 

difficult but necessary task, especially before managers implement restoration actions.  

Ironically, restorative management actions typically involve the removal of non-native 

species to promote native biodiversity, but the outcomes of such actions can sometimes 

have unexpected and even detrimental consequences to native systems (e.g., Collins et al. 

2009).  These unintended outcomes can result when the effects of non-native species are 

masked by other species, such as in cases of apparent competition (Holt 1977, Holt and 

Lawton 1994), or when interactions between two or more non-native species are 

facilitative (sensu invasional meltdown; Simberloff and Von Holle 1999).  

Hyperpredation is an example of both apparent competition and invasional 

meltdown.  It describes the process by which non-native prey species indirectly affect 

native prey species by mediating an increase in abundance of a typically non-native 

shared predator (Smith and Quin 1996, Courchamp et al. 1999, 2000).  Arguably, one of 
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the most well-known cases of hyperpredation occurred on the Channel Islands off the 

coast of California (Roemer et al. 2001, Roemer et al. 2002).  Here, non-native feral pigs 

(Sus scrofa) mediated an increase in abundance of golden eagles (Aquila chrysaetos) by 

serving as a food subsidy, which then resulted in hyperpredation on and a decline in 

native island foxes (Urocyon littoralis).  The heightened predation experienced by U. 

littoralis was then exacerbated after a management action successfully removed the 

eagle’s prey subsidy (Collins et al. 2009).  This phenomenon of hyperpredation is not 

unique to the Channel Islands, however.  It has been described in a wide array of 

taxonomic groups in both terrestrial (Smith and Quin 1996, Russell 2011) and aquatic 

systems (Ricciardi et al. 2001, Adams et al. 2003).   

In the western United States, non-native salmonids are a force majeure in 

restructuring amphibian assemblages (Petranka 1983, Bahls 1992), and correlative 

evidence suggests non-native trout may have catalyzed hyperpredation by garter snakes 

on a native ranid frog (Pope et al. 2008).  Pope et al. (2008) hypothesized that the 

introduction of non-native trout into high mountain lakes for recreational angling 

facilitated an elevational range expansion and increase in abundance in the aquatic garter 

snake (Thamnophis atratus).  The addition of an aquatic predator to the sub-alpine food 

web resulted in increased predation on native amphibians, including the imperiled 

Cascades frog (Rana cascadae), a rare and declining species endemic to the Pacific 

Northwest (Pope et al. 2014).  In addition to preying on sensitive amphibians, T. atratus 

may be competing for prey with the native common garter snake (T. sirtalis), a smaller, 

less aggressive amphibian specialist frequently present at these high elevation sites (Pope 
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et al. 2008).  This may be the only example supporting the hypothesis that non-native 

trout can have an indirect effect on a herpetofauna assemblage by mediating invasion by 

a native species.   

My thesis aimed to experimentally assess the extent of hyperpredation described 

in Pope et al. (2008) by observing the effects of a removal experiment.  From 2014 

through 2017, the California Department of Fish and Wildlife (CDFW) removed non-

native brook trout (Salvelinus fontinalis) in Echo Lake Basin as part of a restoration 

project aimed at restoring essential perennial wetlands for native amphibian populations 

(Demianew and Garwood, in prep).  Using CDFW’s fish removal effort as a treatment, I 

examined changes in T. atratus abundance, apparent survival, recruitment, somatic 

growth rate, body condition, spatial distribution, and diet before and after non-native fish 

eradication.  Simultaneously, I monitored T. sirtalis demography and space use in an 

effort to test how perturbations in the invaded food web resulting from a management 

action (fish removal) might affect a sympatric predator.  

There are many possible community responses that could follow the eradication 

of non-native fish, each of which could result in subtle or dramatic shifts in local food 

web structure.  However, there are two scenarios that seem most likely given the 

hypothesized interspecific interactions between these predators and their prey (Pope et al. 

2008).  These scenarios might not be mutually exclusive, but they both serve to provide 

contrasting outcomes following fish removal (Figure 1).  In one scenario, removal of 

non-native fish may result in restoration of the native food web (Figure 1A).  If non-

native trout facilitated the elevational range expansion and an increase in abundance 
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Figure 1.  Examples of two possible outcomes that may result following the eradication 
of non-native trout.  A) Scenario #1: T. atratus do not switch habitats from lotic to lentic, 
and either emigrate out of the basin or succumb to mortality.  Here, fewer amphibians are 
consumed by garter snakes and the within-basin abundance of garter snakes decreases.  
B) Scenario #2: T. atratus switch from using lotic habitats to using lentic habitats; 
consequently, increasing their predation on native amphibians.  Here, their within-basin 
abundance remains un-changed.    
 

 

of T. atratus, then the removal of said trout may result in a decrease in T. atratus 

abundance via emigration out of the basin, reduced survival, reduced recruitment, or 

some combination thereof (Figure 1A).  For example, if T. atratus is dependent on fish, it 

may be encouraged to leave the basin in pursuit of this limiting resource in other areas.  

In the absence of fish, T. atratus may experience reduced survival or recruitment driven 

by a reduction in body condition, which might translate to reduced somatic growth rates 

compared to areas with stocked fish populations. The overall reduction in T. atratus 
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abundance might also lead to an overall decrease in the net predation on native 

amphibians by garter snakes (i.e., fewer snakes would eat fewer frogs), since 

approximately 40% of the diet of T. atratus consists of native amphibians in basins where 

T. atratus and trout co-occur (Garwood and Welsh 2007, Pope et al. 2008).  Additionally, 

T. atratus may be competitively excluding T. sirtalis from wetland meadows where T. 

atratus occur at artificially high densities (Pope et al. 2008).  If T. atratus abundance and 

distribution decrease following the eradication of trout, I might also expect to see an 

overall increase in the distribution of T. sirtalis within the treatment basin as they fill in 

habitats previously occupied by T. atratus.   

Alternatively, T. atratus may persist following the removal of non-native fish 

(Figure 1B).  Since R. cascadae comprises more than 40% of the total diet of T. atratus 

(Garwood and Welsh 2007, Pope et al. 2008), T. atratus may be able to persist at high 

abundances by prey switching following trout removal, increasing their overall net 

predation on native amphibians to make up for the loss of bigger, alternative fish prey.  

To maintain high abundances within the basin, however, T. atratus would likely be 

forced to expand its use of areas dominated by lotic (moving water) features where fish 

were eradicated into lentic (still water) habitats, which typically contain larval and 

metamorphic frogs (Garwood 2009), the preferred foraging habitat of T. sirtalis 

(Garwood and Welsh 2007, Pope et al. 2008).  Following the postulate proposed in Pope 

et al. (2008), if indeed T. atratus competitively exclude T. stirtalis, then a range 

expansion in T. atratus within the treatment basin into peripheral amphibian breeding 

patches might result in a truncated spatial distribution in T. sirtalis.   
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Given the available evidence, each of the aforementioned scenarios are possible 

and the resulting dynamics might be a combination of both.  In this vein, my thesis was 

exploratory in nature.  Nonetheless, it emphasizes the importance and applicability of 

utilizing a management action (native species habitat restoration via removal of non-

native trout) in an inductive experimental framework to test scientific hypotheses and 

provide additional insight into species’ life histories (Oksanen 2001).  Understanding 

how and why food web structures shift following a management action, even in 

seemingly simple systems, not only sheds light onto the complex nature of food webs, but 

it may also help inform management decisions and conservation plans aimed at restoring 

invaded ecosystems.   
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STUDY SPECIES 

Aquatic Garter Snake (Thamnophis atratus)   

The aquatic garter snake (family Colubridae) is currently split into three sub-

species: the Oregon garter snake (T. a. hydrophilus), the Santa Cruz garter snake (T. a. 

atratus), and the Diablo Range garter snake (T. a. zananthus).  Although T. a. 

hydrophilus is the sub-species present in my study area, I will refer to it as T. atratus for 

simplicity.  Thamnophis atratus range from northwestern California into southwestern 

Oregon (St. John 2002) from sea level up to 2215 m (Garwood and Welsh 2010).  

Although rare, T. atratus have been observed in waterbodies 1,100 m above populations 

of salmonids (pers. obs.), but they appear to be most common at lower elevations in 

riverine habitats occupied by salmonids (Lind et al. 2005, Welsh et al. 2010).  They are a 

medium-size garter snake generally ranging in length from 46 to 102 cm (Stebbins 2003), 

although populations in this high elevation study area are slightly smaller (21.4 cm total 

length for the smallest neonates to 87.8 cm for the largest adults, mean = 48.1 cm).   

In the Klamath Mountains, T. atratus are often associated with fast-moving 

streams (Welsh et al. 2010), foraging diurnally on salmonids, including: Chinook salmon 

(Oncorhynchus tshawytscha), Coho salmon (O. kisutch), steelhead (O. mykiss), and 

coastal cutthroat trout (O. clarkia clarkia), as well as other aquatic vertebrates, such as 

coastal giant salamander (Dicamptodon tenebrosus) and foothill yellow-legged frog 

(Rana boylii) (Welsh and Lind 2000, Lind and Welsh 1994).  At higher elevations, they 



8 
 

  

regularly prey upon rainbow trout (O. mykiss), S. fontinalis, R. cascadae, Sierran 

treefrogs (Pseudacris sierra), and less frequently on Western toad (Anaxyrus boreas) 

(Garwood and Welsh 2007, Pope et al. 2008).  In sub-alpine areas of the Trinity Alps 

Wilderness, neonate and juvenile T. atratus are especially prevalent in fish-free lentic 

habitats which support high concentrations of larval amphibians (Garwood and Welsh 

2007, Pope et al. 2008).  Despite occupying fish-free habitats, the overall distribution of 

T. atratus is closely tied to the presence of non-native salmonids, and correlative 

evidence suggests their high population densities in historically fishless areas are 

supported by non-native trout stocked for recreational angling (Pope et al. 2008).   

Their success in a wide array of aquatic habitats is largely driven by several 

specialized feeding behaviors (Drummond 1983, Welsh and Lind 2000, Lind and Welsh 

1994).  These behaviors vary with ontogeny which allows small and large snakes to 

target and exploit different aquatic (Lind and Welsh 1994).  For example, T. atratus have 

been observed utilizing a specialized tongue-flick from above the water’s surface, 

referred to as lingual luring, to lure in aquatic prey (Welsh and Lind 2000).  In the 

Klamath Mountains, T. atratus apparently mimic sticks or blades of grass (pers. obs.).  

Anchored by their tail to the substrate of the stream, they appear to undulate in the 

current as a stick or blade of grass would, typically within the bubble curtain of plunge 

pools or deep within mid-channel pools.  The contrast of their dark scales and bright 

lateral stripe appears similar to vegetation, especially in dimly lit water.  This technique 

likely allows for increased concealment for sit-and-wait predation.  Additionally, unlike 

many species of garter snake, they can forage underwater for extended periods of time (> 
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20 minutes) in cold (< 10℃) headwater streams, and are successful at both ambush and 

sit-and-wait predation (pers. obs.).    

Common Garter Snake (Thamnophis sirtalis)   

The common garter snake (family Colubridae) is a widely-distributed snake in 

northern California and is one of the most successful reptiles in North America (Rossman 

et al. 1996), ranging from sea-level to 2450 m (Nussbaum et al. 1983).  In California, T. 

sirtalis consists of 4 sub-species, and the valley garter snake (T. s. fitchi) is present in this 

study area (hereafter referred to as T. sirtalis for brevity).  This species preys upon a 

myriad of vertebrates and invertebrates across its range; however, in the Klamath 

Mountains it is heavily associated with lentic amphibian breeding ponds where it feeds 

primarily on R. cascadae and P. sierra.  Very occasionally, T. sirtalis also preys upon 

southern long-toed salamander (Ambystoma macrodactylum sigillatum), ensatina 

(Ensatina eschscholtzii oregonensis), rough-skinned newt (Taricha granulosa), and A. 

boreas (Garwood and Welsh 2007, Pope et al. 2008, Reilly et al. 2010).  Similar to T. 

atratus, T. sirtalis is a medium size snake generally ranging in length from 46 to 140 cm 

(Stebbins 2003), but populations in this high elevation study area are slightly smaller 

(20.9 cm total length for the smallest neonates to 81.0 cm for the largest adults, mean = 

45.9 cm).  Although the impacts of non-native trout on native T. sirtalis in the Trinity 

Alps are unknown, non-native trout are thought to have resulted in the decline of native 

garter snakes in other regions of California by competing for their amphibian prey 

(Jennings et al. 1992, Matthews et al. 2002).  The increase in T. atratus abundance 
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mediated by non-native trout might potentially result in competitive exclusion of smaller 

T. sirtalis in areas within the Trinity Alps Wilderness (Pope et al. 2008). 

Brook Trout (Salvelinus fontinalis)  

Brook trout (family Salmonidae) are native to Eastern and Midwestern North 

America and range from Appalachia north to Maine and around the Great Lakes, but 

were introduced into high mountain lakes in the western United States (Bahls 1992), 

including the Klamath Mountains (Welsh et al. 2006), for recreational fishing.  Today, 

they are a widely distributed species west of the Rocky Mountains (Fuller et al. 1999).  In 

high mountain lake settings, they are generally self-sustaining, likely a result of their 

tolerance of frigid environments (Moyle 2002) and their ability to spawn in shallow lakes 

(Reimers 1958).  Maturation of S. fontinalis is highly variable, ranging from 1 year 

(McFadden 1961) to 16 years (Reimers 1979).  This plasticity likely facilitates 

establishment, persistence, and expansion of populations (Dunham et al. 2002).  

Salvelinus fontinalis have also been observed moving moderate distances of over 15 km 

(Adams et al. 2001) and up high gradient streams (Adams et al. 2000).  Additionally, they 

are veracious predators with the ability to restructure native prey communities within one 

year of introduction (Reimers 1958).  Given their predatory behavior, tolerance of cold 

water, prolific reproductive capabilities, and ability to disperse moderate distances over 

steep stream gradients, S. fontinalis introductions continue to have major impacts on 

native herpetofauna assemblages (Knapp and Matthews 2000, Knapp 2004, Vredenburg 

2004, Knapp et al. 2007, Pope 2007).   
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 STUDY AREA 

This study was conducted in the upper reaches of the Deep Creek Watershed in 

Trinity County, CA (Figure 2).  Specifically, field data were collected from two sub-

basins in the southeastern portion of the Trinity Alps Wilderness, a 2,130 km2 wilderness 

system within the Klamath Mountains of northern California.  The northern-most basin, 

Siligo Basin, served as a control basin, and two meadow complexes were studied therein.  

These complexes were Lower Siligo Meadow (positive control – S. fontinalis were 

present and were not removed) and the South Siligo Meadow complex (negative control 

– currently and historically fishless).  The southern-most basin, Echo Lake Basin, served 

as the treatment basin where S. fontinalis were removed over a period of four years (2014 

- 2017).  Within this basin, I focused my sampling on one meadow complex (Deep Creek 

Meadow), one lake (Echo Lake), a large ephemeral pond (Snowmelt Pond), and 

interconnected habitats.  I also surveyed fishless habitats adjacent to my focal sites (e.g., 

Van Matre Meadow complex) to provide supplemental distribution data for garter snakes.   

Siligo and Echo Lake basins served as comparable study basins in that they are 

immediately proximate, have similar elevation (e.g., 6,435 m in Lower Siligo Meadow 

and 6462 m in Deep Creek Meadow), contain the same general suite of flora and fauna, 

they experience the same weather regimes, and have the same general aspect.  The 

biggest difference between the two basins is Echo Lake Basin contains a small lake (1.1 

hectares) whereas Siligo Basin does not (Figure 2).  Despite this difference, most of the  
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Figure 2.  Control and treatment basins used to assess the impact of non-native fish 
removal on garter snakes. Siligo Basin consists of two control sites: Lower Siligo 
Meadow (positive control - fish present), and the South Siligo Meadow Complex 
(negative control – fish absent).  Echo Lake Basin consists of two treatment sites: Echo 
Lake and Deep Creek Meadow, including adjacent and connected waters (e.g., 
Smowmelt Pond).  Inset: Trinity Alps Wilderness, CA. 
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aquatic features and species of interest in this study were concentrated within the mosaic 

of wetlands common to each basin.   

The vegetation of Echo Lake and Siligo basins is a mix of montane chaparral, 

open sub-alpine forest, and sub-alpine meadows with serpentine-tolerant plants.  Forested 

areas are dominated by western white pine (Pinus monticola), foxtail pine (P. 

balfouriana), and Jeffrey pine (P. jeffreyi), whereas meadows contain sedges 

(Cyperaceae), grasses (Poacaeae), and a variety of flowering plants (Ferlatte 1974).  

A Mediterranean climate typifies the Trinity Alps Wilderness and surrounding 

region.  Precipitation usually falls as snow during the winter and early spring months 

(DWR 2018).  Summers are typically warm and dry, but infrequent cold fronts resulting 

in precipitation (rain, hail, or snow) can occur (pers. obs.).  Sheet flow from precipitation 

and snowmelt collects in a network of aquatic features, the majority of which are patchily 

distributed in meadow complexes (Garwood and Welsh 2007).  These features are 

hydrologically connected during the late spring and early summer months when 

snowmelt is greatest.  As the summer months progress, much of this ephemeral surface 

dries, causing greater isolation of remaining spring-fed perennial wetlands.  For example, 

Echo Lake Basin alone experiences a 44% reduction in surface water area from spring to 

early winter (Garwood 2009).  The remaining water features create a mosaic of habitats 

throughout the basin which function as an archipelago analog, although the degree of 

isolation between these island networks varies depending on the time of year and on the 

species of interest (Garwood and Welsh 2007). 
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 Although the Trinity Alps Wilderness is protected under the Wilderness Act of 

1964, it has been heavily impacted over the last 150 years from livestock grazing and 

through the introduction of a non-native trout fishery (Garwood and Welsh 2007).  

CDFW stocking records indicate that the first trout introduction occurred in 1930, when 

10,000 S. fontinalis and 5,000 rainbow trout (Oncorhynchus mykiss) were planted in 

Echo Lake (Garwood and Welsh 2007).  Stocking of Echo Lake sponsored by the 

California Department of Fish and Wildlife terminated in 1999, and an attempt was made 

to eradicate S. fontinalis from Echo Lake in fall 2003 (Pope 2007).  However, trout 

removal was unsuccessful and a population of S. fontinalis persisted in Echo Lake and 

connected waters (i.e., Deep Creek) until 2016 when the CDFW eradicated the last 

observed S. fontinalis from the basin (Demianew and Garwood, in prep, Neely et al. 

2018). 
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METHODS 

CDFW implemented a restoration project in Echo Lake Basin from 2014 through 

2017, removing 747 non-native S. fontinalis from one lake and approximately 1.6 km of 

stream habitat via gill nets, seines/block nets, electrofishing, while further minimizing 

reproduction by disturbance of redds (Demianew and Garwood, in prep) (Figure 2).  All 

but a few S. fontinalis were removed prior to 2016, and those remaining were removed 

during summer 2016.  Removal efforts continued through 2017 to insure complete basin-

wide eradication.  The focus of my research was assessing the response of herpetofauna 

to CDFW restoration activities, with a particular emphasis on garter snakes.  As such, 

trout removal methods are not discussed in detail here, but are described at length 

elsewhere (Demianew and Garwood, in prep).  All methods described hereafter focus on 

visual encounter surveys (VES) and capture-mark-recapture (CMR) for herpetofauna and 

the subsequent analytical techniques that were used to address my research objectives.   

The following methods were approved by Humboldt State University’s 

Institutional Animal Use and Care Committee (15.16.W.104-A).  All activities were 

carried out under the direct supervision of a CDFW employee as part of CDFW’s 

restoration project; consequently, a CDFW-issued Scientific Collecting Permit was not 

required.  
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Field Methods 

Visual encounter surveys 

I conducted VES to locate amphibians and reptiles following Garwood and Welsh 

(2007) based on procedures adapted from Crump and Scott (1994) and Thoms et al. 

(1997).  Surveys were conducted from May through September 2016, May through 

October 2017, and April through October 2018 at each survey site between the hours of 

approximately 1000 and 1800, generally when sites were exposed to direct sunlight.  I 

used a back-to-back robust sampling design (Pollock 1982), surveying each site for two 

consecutive days during each survey period, and each back-to-back survey was usually 

conducted every two weeks.  I assumed closure (no births, deaths, immigration or 

emigration) between the successive days within each back-to-back sampling period.  

Surveys consisted of walking edges of all aquatic habitats, including ephemeral and 

permanent ponds, streams, and the interface between meadow complexes and adjacent 

upland areas in search of garter snakes.  Streams greater than 1 m wide, ponds greater 

than 3 m wide, and Echo Lake were surveyed simultaneously by two or three crew 

members to increase detection probability and minimize the chance of losing animals 

after detection.  Interstitial areas between water features within meadows were 

systematically searched using a zigzag approach similar to that described in Thoms et al. 

(1997).  When meadow/stream-side vegetation obstructed the view of shorelines or 

narrow stream corridors, I used a dip net or hiking pole to part vegetation.  Highly 

vegetated streams were always surveyed by two or more observers.  I also surveyed 
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wetland and upland habitats peripheral to my focal study sites to provide supplemental 

information on garter snake spatial distribution.  Survey technique and sampling effort 

were consistent across each study site in 2016 and 2017.  In 2018, there were no surveys 

conducted in July due to logistical constraints (fire/smoke and limited project funds).  

Lastly, pre-treatment data were available in Echo Lake Basin only, which was not 

surveyed using a back-to-back robust design during the pre-treatment years (2004-2006), 

but followed the same survey techniques.     

Capture-mark-recapture 

Marking and handling procedures are detailed in Garwood and Welsh (2007), and 

are summarized here.  Once a snake was located during a VES, it was captured by hand 

or dip net, placed in a cotton bag, and its location noted using a handheld global 

positioning system (GPS) device.  Each animal’s weight was measured using a standard 

30/60/100 g Pesola scale (Pesola®, Schindellegi, Switzerland) and a standardized snout-

to-vent length (SVL) length (mm) was recorded.  I standardized the length measurement 

by ensuring the animal was relaxed and fully elongated before recording its size, which is 

necessary to minimize sampling and observer variability, especially in larger snakes.  

Neonates, juveniles < 340 mm SVL, and gravid snakes were marked with a unique 

microbrand (Winne et al. 2006) or scale clip (Brown and Parker 1976).  Non-gravid 

snakes ≥ 340 mm SVL were injected intra-coelomically with a passive integrated 

transponder (PIT) tag (8 mm x 1.35 mm FDX-B, Biomark Inc., Boise Idaho, USA).  PIT 

tags were delivered using a sterilized single-use needle.  Following application of marks, 

snakes were placed in their original cotton bag dampened with water.  Once recovered, 
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all animals were released at the site of capture.  Handling time generally lasted between 

2-5 minutes per animal.  Anesthesia was unwarranted for these marking procedures.   

Garter snake diet 

To assess changes in garter snake predation on S. fontinalis and native sympatric 

amphibians, garter snakes were palpated to encourage regurgitation following Fitch 

(1987).  Gravid female snakes were not palpated.  Individual snakes recaptured with 

stomach contents were palpated again if: 1) a stomach sample was not obtained on the 

previous day’s capture, or 2) more than two weeks elapsed since the last stomach sample 

was obtained.  The number of prey, species, life stage, and weight were recorded for each 

stomach sample.  After regurgitation, snakes were given the opportunity to re-consume 

their prey.  Prey items not re-consumed were discarded at the site of capture.  

Analytical Methods 

CDFW and collaborating researchers have amassed a large historic dataset on the 

abundance and distribution of herpetofauna in the Trinity Alps Wilderness, including the 

basins used in this study.  While most of the historic research has focused on R. 

cascadae, two years of CMR and distribution data (2004-2005) and three years of diet 

data (2004-2006) on garter snakes (Thamnophis spp.) were collected in Echo Lake Basin 

(Garwood and Welsh 2007).  These data represent a snap-shot of garter snake natural 

history prior to basin-wide eradication of S. fontinalis and served to establish a pre-

treatment baseline for garter snake demography, spatial distribution, and diet.  Because 

fish were functionally extinct within the first month of the 2016 field season, 2016 
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through 2018 were considered post-treatment years for all analyses.  Changes in this 

system as a result of non-native trout removal were made by comparing current trends to 

the historic data.  Siligo Basin, however, has not undergone consistent long-term 

monitoring, and pre-treatment data does not exist for this site.  Consequently, all analyses 

consider 3 treatment groups: 1) Pre-treatment - Echo Lake Basin (2004-2006), 2) Post-

treatment - Echo Lake Basin (2016-2018), and 3) Control - Siligo Basin (2016-2018).  

With the exception of the space-use analysis, all inferences were made in a 

Bayesian framework where the posterior probability distribution of model parameters 

was approximated using Markov chain Monte Carlo (MCMC).  Bayesian inference has 

several advantages over typical frequentist approaches, including: 1) probabilistic 

statements can be made about the parameter(s) of interest, whereas probabilistic 

statements in frequentist statistics concern the data (which are real and observed) or the 

reliable of the method/estimator (e.g., 95% confidence interval); 2) hierarchical (e.g., 

mixed-effect) models are relatively easy to fit; 3) computing derived quantities with full 

propagation of error is straightforward without having to use more difficult approaches 

(e.g., delta method); 4) the estimates from Bayesian analyses are exact and do not rely on 

asymptotic assumptions in the maximum likelihood estimator, and 5) constructing 

models in a Bayesian framework fosters understanding of model structure since coded 

models appear similar to the written algebraic expression of the model (Kéry and Schaub 

2012).   

Unless otherwise noted, all statistical analyses were performed using the software 

JAGS version 4.2 (Plummer 2003) executed through R version 3.4.3 (R Development 
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Core Team 2017) using the R2jags package (Su and Yajima 2012).  For all models 

implemented in the Bayesian framework, I examined model convergence using the 

Brooks-Gelman-Rubin convergence diagnostic (r-hat, Gelman and Rubin 1992, Brooks 

and Gelman 1997) and by visual inspection of trace plots.  Goodness-of-fit was generally 

assessed using a posterior predictive check based on the Bayesian p-value.  More 

parameters are reported as the mean ± 95% credible interval (95% CRI), unless otherwise 

noted.  Last, rather than using indicator variables (Kuo and Mallick 1998) or some form 

of information criteria (e.g., WAIC) to rank a suite of candidate models to test a priori 

hypotheses regarding the potential responses of garter snakes to fish eradication, I elected 

to construct one ‘full’ model for each analysis consisting of variables of direct interest 

while accounting for confounding variables and base my assessment of ‘effect’ on the 

posterior distribution of the parameter(s) of interest (Kéry 2010).   

Abundance, survival, and recruitment 

To assess changes in abundance, survival, and recruitment in garter snakes 

following the eradication of S. fontinalis, I constructed a robust design hierarchical state-

space Jolly-Seber model (Jolly 1965, Seber 1965, Appendix A).  I collapsed each back-

to-back survey effort into a single secondary occasion so that the resulting abundance 

estimates represented a single summer rather than a single survey.  I only considered 

snakes larger than 330 mm SVL, which corresponds to animals in at least their third year 

of life (i.e., 2+) that have successfully recruited into the population as sub-adults or 

adults, the age at which many Thamnophis spp. begin to sexually mature (Carpenter 

1952, Waye 1999, Rose et al. 2018).  I restricted my analysis to these older age classes to 
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avoid violation of the closure assumptions of this model by the pulse of neonates born 

mid to late summer.  I fit the ‘superpopulation’ parameterization of the Jolly-Seber model 

(Crosbie and Manly 1985, Schwarz and Arnason 1996) following the model specification 

of Crawford et al. (2018) modified from Kéry and Schaub (2012).  The model was fit 

using parameter expanded data augmentation (PX-DA; Tanner and Wong 1987, Royle et 

al. 2006, Royle et al. 2011), which consists of appending a large number of all zero 

encounter histories to the observed encounter histories. The augmented dataset includes 

the true population size (N), which is then analyzed using an indicator variable to 

describe whether or not an individual in the augmented encounter history is included in 

the population.  A zero-inflated version of the original model is fit to the new augmented 

data set to account for the augmentation.  PX-DA aids in computation by MCMC and 

allows greater flexibility in specifying individual effects.  See Kéry and Schaub (2012) 

for an easy-to-follow description of data augmentation.   

I estimated survival (Ф�) and conditional entry probability (η�) with group (species 

by basin) and year fixed effects.  Conditional entry probability is the probability an 

animal enters the population in year t, given is has not yet entered in any previous year.  I 

was not able to estimate site-level effects (e.g., positive control vs. negative control) due 

to relatively few captures of T. atratus in fishless sites and few captures of T. sirtalis in 

fish-occupied sites.  I estimated availability (γ�) as a time-varying random effect specific 

to each group.  Availability in this context is defined as the probability an animal is in the 

study area and available for sampling given it is alive at year t.  I specified a basin-

specific random effect of time on capture probability ( 𝑝𝑝�), and allowed this to vary by 
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species across each secondary occasion.  I estimated per-capita recruitment (𝑓𝑓), 

abundance (𝑁𝑁�), and growth rate ( 𝜆𝜆�) as derived parameters for each species by basin and 

year combination.  I specified uninformative or weakly informative prior distributions for 

all parameters except survival, where I specified an informative prior from a beta 

distribution that reflects observed survival probabilities of Thamnophis spp. in the wild 

(Table 1). The beta distribution was used to limit estimation of unrealistic survival 

probabilities at or near one, which occurred in all model runs using uninformative priors 

[e.g., dunif(0,1)] and has been reported as an issue with this model type elsewhere (e.g., 

Halstead et al. 2011).  The model was run on three chains with 300,000 iterations, a burn-

in of 100,000 iterations, and each chain was thinned by 10.  Consequently, inference for 

each parameter was made using a 60,000-iteration sample from the posterior probability 

distribution.  

Somatic growth rate and body condition 

To assess whether T. atratus are growing slower in the absence of introduced fish, 

I examined differences in their asymptotic growth rate between Echo Lake Basin and 

Siligo Basin from 2016 through 2018 using a von Bertalanffy growth model (Fabens 

1965) modified from Eaton and Link (2011, Appendix B).  The Eaton and Link (2011)  

parameterization of the von Bertalanffy model considers SVL as a latent (unobserved) 

state and accounts for measurement error and individual heterogeneity in growth and in 

the observed SVL using a non-decreasing gamma process (Eaton and Link 2011).  I 

included a fixed sex effect on the gamma parameter (λ), which can be interpreted as the 

magnitude of individual heterogeneity in growth, with smaller values indicating more 
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Table 1.  Prior distributions of parameters included in each analysis and statistical model. 
Analysis Model/ 

Parameterization 
Parameter Prior 

Abundance, 
Survival, 
Recruitment 

Robust design  
Jolly-Seber/  
Superpopluation 

Survival prob. (Ф�) 
Conditional entry prob. (η�) 
Sd of availability (γ�) 
Sd of capture prob. (𝑝̂𝑝) 

Beta (4,3) 
Gamma (1,1) 
Uniform (0,5) 
Uniform (0,5) 

Somatic growth  von Bertalanffy/  
Eaton and Link 

Individual heterogeneity (λ) 
Sex effect on λ 
Basin effect on λ 
Asymptotic growth rate (k) 
Sex effect on k 
Asymptotic length (L∞) 
Sex effect on L∞ 

Uniform (0,10) 
Uniform (-1,1) 
Uniform (-1.5,2) 
Uniform (0,5) 
Uniform (-2,6) 
Uniform (200,1000) 
Uniform (-500,100) 

Body condition Gaussian glmm Treatment intercept 
Treatment slope 
Sex effect 
Sd of individual effect  
Residual sd 

Normal (0, 0.001) 
Normal (0, 0.001) 
Normal (0,1) 
Uniform (0,5) 
Uniform (0,100) 

Microhabitat  Bernoulli glmm Treatment intercept 
Treatment*size slope 
Sex effect 
Sd of individual effect 

Normal (0, 0.001) 
Normal (0, 0.001) 
Normal (0,1) 
Uniform (0,5) 

Prob. of consuming 
native amphibians  

Bernoulli glmm Treatment intercept 
Treatment*size slope 
Sex effect 
Sd of individual effect 

Normal (0, 0.001) 
Normal (0, 0.001) 
Normal (0,1) 
Uniform (0,5) 

# of  native 
amphibians 
consumed 

Poisson glmm Treatment intercept 
Treatment*size slope 
Sex effect 
Sd of individual effect 

Normal (0, 0.001) 
Normal (0, 0.001) 
Normal (0,1) 
Uniform (0,5) 

 

 

variation in growth.  I also included a fixed sex effect on asymptotic length (L∞) and fixed 

sex and basin effects on the asymptotic growth rate (k). The model was run using three 

chains with 300,000 iterations, a burn-in of 100,000 iterations, and each chain was 
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thinned by 10. Inference for each parameter was made using a 60,000-iteration sample 

from the posterior probability distribution.   

To investigate whether fish removal had an effect on T. atratus body condition, I 

used the length to weight ratio as an index of body condition before and after fish 

eradication.   I considered all captures of known sex snakes ≥ 445 mm SVL.  This size 

class was likely to be affected by the removal of a stream dwelling food subsidy since 

nearly 90% of snakes in this size range were observed foraging in streams, and the 

majority of historical diet samples obtained from snakes ≥ 445 mm SVL contained non-

native fish.  I constructed a generalized linear mixed effect model assessing the 

relationship between mass (response) and SVL across the three treatment groups.  The 

model included interactive effects of treatment and SVL, a fixed effect of sex, and a 

random individual effect to incorporate the inherent correlation between mass and SVL 

over repeated captures of the same animal.  I used uninformative or minimally 

informative priors for every parameter (Table 1).  The model was run using three chains 

with 20,000 iterations, a burn-in of 5,000 iterations, and each chain was thinned by two.  

Inference for each parameter was made using a 22,500-iteration sample from the 

posterior probability distribution.    

Home range and space use overlap 

To assess changes in home range size and spatial distribution of garter snakes 

before and after trout eradication, I constructed and compared fixed-kernel utilization 

distributions (UDs).  I constructed UDs in a maximum-likelihood framework because 

methods for UD analysis under the ML framework are better developed and more 
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assessable than Bayesian methods.  Utilization distributions are probabilistic home range 

models that estimate the intensity of use of a particular unit of space for a given animal 

(Van Winkle 1975).  They are often used to estimate the area corresponding to a 

particular level of use (e.g, 50% core-use or 95% home-range area), to compare the joint 

probability of use or overlap between 2 animals (Millspaugh et al. 2004), or in resource 

selection studies (Millspaugh et al. 2006).  I focus on these former two elements, but 

instead of describing space use for a particular animal, I constructed population-level 

UDs across both species of garter snake to assess how the size and overlap of their 

population-level home ranges change following eradication of a non-native fish.  It is 

important to note these UDs only capture garter snake use of foraging habitat since 

surveys were not focused on garter snakes during rest, hibernation, or aestivation.   

Construction of UDs involves selecting a bandwidth (smoothing) parameter that 

dictates the degree to which distant points determine the density estimate at any given 

point.  Bandwidth selection is often the crux of constructing UDs (Gitzen et al. 2006).  

The two most common automatic bandwidth selection techniques in wildlife research 

include least squares cross validation (LSCV) and reference (Millspaugh et al. 2006).  I 

constructed UDs using both of these techniques, but neither functioned well.  The LSCV 

approach failed to converge for most UDs and the reference bandwidth selection method 

produced kernels that were unrealistic, resulting in predicted high-use areas coinciding 

with inhospitable foraging habitat (e.g., moraines or talus slopes).  When habitat 

boundaries are sharp such as they are in my study area, kernel UD methods should be 

adapted (Millspaugh et al. 2006).  Given this, I followed an approach similar to that 
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described by Garwood (2009).  I selected a bandwidth (h) parameter based on iteratively 

altering bandwidth values until the resulting UD for all locations across all years for both 

species of garter snake did not include large amounts of inhospitable foraging habitat 

outside of wetland patches.  This global bandwidth value (h = 25) was then used for all 

subsequent UD subsets.     

Traditional home range analyses generally focus on the individual as the sampling 

unit (Otis and White 1999) and population-level patterns are therefore inferred from the 

collection of individual home ranges (Fieberg and Kochanny 2005).  However, this 

approach is not realistic in situations where individuals are too small to be radio-tracked, 

or when individual resight data are depauperate.  In situations such as this, population-

level processes of space use must be inferred from all detections of a particular species. 

Unfortunately, this approach makes it possible for marked individuals with frequent 

encounters to drive the perceived population-level spatial process.  In order to alleviate 

the risk of single individuals with large encounter histories from over-influencing the UD 

of a particular species in a given area, and to eliminate spatial autocorrelation between 

captures of known individuals, some studies have included only one capture per 

individual per year (e.g., Pope et al. 2008).  This approach, however, runs the risk of 

distorting the UD of a given species, especially if recaptures of individuals occur in sites 

other than their original capture.  Moreover, excluding multiple captures may reduce the 

ability to assess the degree of activity in a site that is used consistently.  For example, 

sites with an abundant food source might translate to greater levels of activity (i.e., 

frequent detections) compared to sites with poor food resources.  Consistent and repeated 
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detections of individuals at a particular site might indicate a site’s importance to a 

particular animal or population carrying out aspects critical for growth and development, 

whereas single detections of animals away from these sites might be indicative of 

individuals dispersing or in search of alternative prey resources.  Because I was interested 

in the total activity of each species, I included all locations of all individuals, in addition 

to locations of unknown individuals (e.g., identified to species but escaped before 

capture).   

To assess changes in the area (ha) of space use before and after treatment, I 

calculated home range sizes based on fixed kernel UDs and estimated the percentage 

change in home range size in each species of garter snake between Echo Lake and Siligo 

basins from 2016 through 2018 and within Echo Lake Basin before and after treatment.  

Home range is a ubiquitous term in ecology that is individual-based and describes the 

area used to carry out normal activities such as food acquisition, mating, and raising 

progeny (Burt 1943).  However, because I used animal locations pooled across 

individuals by species, home range is population-based in this context and is better 

thought of as the within-basin species range, but I will use the term home range herein for 

simplicity. 

The degree of overlap in UDs between a pair of individuals or species can provide 

insights into individual or species interactions (Millspaugh et al. 2000).  In experimental 

studies, when comparisons are made across years and between control and treatment 

sites, inference can be made about the degree to which a particular treatment may 

influence the observed space sharing.   To assess the joint space use and degree of 
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overlap between UDs from T. atratus and T. sirtalis before and after trout eradication, I 

estimated the following index of space use overlap:  

 

volume of intersection (VOI)  
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where UD1 and UD2 are the utilization distributions of species 1 and 2, respectively.  The 

VOI measures the shared volume between 2 animal’s or population’s UDs (Seidel 1992) 

and ranges from 0 to 1, indicating zero to complete overlap, respectively, between a 

particular pair of UDs.   

Home range and overlap statistics were calculated for the 50% and 95% isopleth 

contours.  I estimated the uncertainty in each metric by bootstrapping.  Here, I created 

10,000 bootstrap replicates (sampling with replacement) and constrained the size of each 

bootstrap dataset to be equal to that of the original dataset for each particular species by 

site by year combination.  Utilization distribution, home range, and UD overlap statistics 

were estimated using the R package adehabitatHR (Calenge 2006).  Sample sizes used to 

generate each statistic are included in Table 2. 
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Table 2.  Number of locations used to construct fixed kernel utilization distributions for 
T. atratus and T. sirtalis in Echo Lake and Siligo basins, Trinity Alps Wilderness, CA. 

Basin Species Year # of locations 
Echo T. atratus 2004 69 

  2005 27 
  2016 57 
  2017 17 

  2018 26 

 T. sirtalis 2004 78 
  2005 19 
  2016 29 
  2017 54 

  2018 22 

Siligo T. atratus 2016 86 
  2017 123 

  2018 134 

 T. sirtalis 2016 21 
  2017 34 
  2018 19 

 

 

Microhabitat use 

Optimal foraging theory suggests altered resources should lead to habitat 

decoupling, wherein an individual or population shifts their habitat use to reflect the shift 

in available resources (Krebs et al. 1974, Charnov 1976).  I used logistic regression to 

assess changes in the probability of T. atratus use of lentic habitats within Echo Lake 

Basin before and after trout removal and between Echo Lake and Siligo from 2016 

through 2018.  This was used to quantify the extent of movement from lotic (fish bearing) 

to lentic (amphibian rearing) habitats following the eradication of fish, and to assess the 
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degree of similarity in T. atratus habitat use of lentic and lotic environments across 

populations of snakes from different basins.   

I constructed a generalized linear mixed effect model with a Bernoulli response  

(1 = lentic, 0 = lotic) to estimate the probability of use in lentic vs. lotic waterbodies.  I 

included a linear effect of SVL, which likely influences habitat use since size dictates 

prey availability (e.g., small snakes are gape limited) and prey types are distributed non-

randomly across habitats (e.g., tadpoles are generally restricted to ponds).  The model 

also included an interactive effect of treatment with SVL, and an individual random 

effect to model individual variation in use of a particular habitat.  I used uninformative or 

weakly informative priors for all parameters (Table 1).  The model was run using three 

chains with 50,000 iterations, a burn-in of 10,000 iterations, and each chain was thinned 

by five.  Inference for each parameter was made using a 25,000-iteration sample from the 

posterior probability distribution.    

Garter snake diet 

To make up for the decrease in prey biomass resulting from fish eradication, it is 

plausible T. atratus would increase both the rate and number of native amphibians 

consumed.  For example, a snake might have to consume 20 1.5 g tadpoles instead of one 

30 g fish to make up for the reduction in energy per unit prey, and it could achieve this by 

feeding more frequently or ingesting more individual prey per feeding bout.  To test the 

effect of fish eradication on T. atratus diet, I examined changes in the probability of 

palpating native amphibian prey from individual T. atratus in Echo Lake Basin prior to 

and after fish eradication.  I also made comparisons between Echo Lake and Siligo basins 
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in 2016 through 2018.  I constructed a generalized linear mixed effect model with a 

Bernoulli response (1 = native amphibian, 0 = otherwise).  I used uninformative or 

weakly informative priors for all parameters (Table 1).  The model included interactive 

effects of treatment and SVL and a random individual effect.  Each model was run using 

three chains with 100,000 iterations, a burn-in of 20,000 iterations, and each chain was 

thinned by 10.  Inference for each parameter was made using a 24,000-iteration sample 

from the posterior probability distribution.    

I compared the mean number of native amphibians palpated from individual T. 

atratus in Echo Lake and Siligo basins using a Poisson generalized linear mixed effect 

model.  Because I was focused on possible changes in the number of native amphibians 

consumed per feeding bout, I only included snakes with native prey remains in their 

stomach sample (e.g., stomach samples with no prey or stomachs with non-native fish 

were excluded).  This Poisson model mirrored the model structure and posterior 

probability distribution constraints from the Bernoulli glmm, above.   

I was unable insure the availability of native amphibians was not different 

between pre- and post-treatment sampling periods since pre-treatment counts of larvae, 

metamorph, and small young-of-the-previous-year amphibians were not obtained prior to 

S. fontinalis removal.  An alternative index to actual counts is the number of R. cascadae 

egg masses laid during pre-and post-treatment years.  R. cascadae is the most abundant 

amphibian in the study area, and counts of their egg masses might be the only other index 

related to the relative numbers of larval and metamorphic amphibians, which are the life 

stages most common in the guts of T. atratus in this system (Garwood and Welsh 2007, 
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Pope et al. 2008).  The average number of egg masses encountered in Echo Lake Basin 

from 2004 through 2006 was 48, whereas the average number of egg masses laid in 2016 

through 2018 was 57 (J. Garwood, unpub. data).  This difference of nine egg masses is 

likely not biologically significant from a prey availability standpoint, however, since it 

would only take a few egg masses to produce enough larval and metamorphic amphibians 

in this basin to outnumber their garter snake predators by several orders of magnitude 

(e.g., an average R. cascadae egg mass contains approximately 375 embryos).  
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RESULTS 

Demography 

Abundance, survival, and recruitment 

From 2016 through 2018 I captured 29 and 106 individual sub-adult and adult T. 

atratus in Echo Lake and Siligo basins, respectively.  Over the same time period I 

captured 19 and 23 individual sub-adult and adult T. sirtalis in Echo Lake and Siligo 

basins, respectively.  The number of captures per individual T. atratus ranged from one to 

four, and individuals were caught an average of 1.50 times each.  The mean capture 

probability over this time period was estimated at 0.12 (95% CRI = 0.064 to 0.19) in 

Echo Lake Basin and 0.07 (95% CRI = 0.04 to 0.10) in Siligo Basin.  This contrasts with 

pre-treatment (2004 to 2005) captures of individual T. atratus, which ranged from one to 

six captures per individual, and individuals were captured an average of 1.63 times each 

(capture probability: 0.09, 95% CRI = 0.05 to 0.14).  The number of captures per 

individual T. sirtalis ranged from one to four in both the pre-treatment post-treatment 

years, and individuals were caught an average of 1.43 and 1.45 times, respectively, before 

and after non-native trout eradication.  The mean capture probability in T. sirtalis was 

estimated at 0.06 (95% CRI = 0.03 to 0.10) in Echo Lake Basin prior to fish removal, 

0.08 (95% CRI = 0.04 to 0.14) in Echo Lake Basin after fish removal, and 0.05 (95% 

CRI = 0.02 to 0.09) in Siligo Basin.  No individuals of either species were captured in 

both the pre- and post-treatment sampling periods.  
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The abundance of both species decreased in parallel from 2004 to 2005.  

Thamnophis atratus decreased from 54 (95% CRI = 34 to 95) to 46 (95% CRI = 19 to 92) 

while T. sirtalis decreased from 65 (95% CRI = 44 to 99) to 45 (95% CRI = 21 to 84, 

Figure 3).  From 2016 to 2018, T. atratus abundance decreased from 37 (95% CRI = 21 

to 62) to 29 (95% CRI: 17 to 49) in Echo Lake Basin, partly driven by the incidental 

mortality of five animals in 2016 caused by fish eradication techniques.  Their abundance 

increased over the same time period in Siligo Basin from 115 (95% CRI = 68 to 200) to 

159 (95% CRI = 68 to 228; Figure 3).  This translates to an overall post-treatment 

population  

 

 

 
Figure 3.  Derived abundance estimates and 95% CRIs for T. atratus and T. sirtalis in Echo 
Lake and Siligo basins from 2004 to 2005 and from 2016 to 2018, Trinity Alps Wilderness, 
CA. Model type: robust-design Jolly-Seber. 
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growth rate of 0.84 (95% CRI = 0.40 to 1.62) in Echo Lake Basin and 1.48 (95% CRI = 

0.75 to 2.43) in Siligo Basin.  There was a 0.90 probability that the 2016 to 2018 growth 

rate in the control basin was larger than that in the treatment basin over the same period 

(PosteriorSiligo – PosteriorEcho).  In contrast, T. sirtalis abundance increased in both basins 

over this time, from 24 (95% CRI = 10 to 51) to 33 (95% CRI = 16 to 66) in Echo Lake 

Basin and from 28 (95% CRI = 10 to 64) to 55 (95% CRI = 27 to 106) in Siligo Basin 

(Figure 3), corresponding to an overall growth rate of 1.60 (95% CRI = 0.54 to 4.00) and 

2.32 (95% CRI = 0.77 to 5.44) in Echo Lake and Siligo basins, respectively.  Here, there 

was a 0.70 probability the overall growth rate in the control basin was higher than in the 

treatment basin over the same time period.  Annual population growth rates for both 

species are shown in Figure 4.   

Across both pre-and post-treatment sampling periods, apparent survival in T. 

atratus was lowest immediately following the eradication of non-native trout (0.52; 95% 

CRI = 0.24 to 0.83) and highest in the control basin from 2017 to 2018 (0.71; 95% CRI = 

0.46 to 0.91; Figure 4).  On the contrary, T. sirtalis apparent survival was highest in Echo 

Lake Basin from 2016 to 2017 (0.69; 95% CRI = 0.41 to 0.92) and lowest in Siligo basin 

from 2017 to 2018 (0.60; 95% CRI = 0.26 to 0.89), although the survival probability in T. 

sirtalis did not vary substantially across both basins (Figure 4).   

Prior to fish eradication, per capita recruitment in T. atratus and T. sirtalis in 

Echo Lake Basin (2005) was estimated at 0.35 (95% CRI = 0.00 to 1.26) and 0.13 (95% 

CRI = 0.00 to 0.54), respectively (Table 3).  These were among the lowest per-capita 

recruitment rates observed across all years. The highest per-capita recruitment rates were  
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Figure 4.  Population growth rate and survival probability (± 95% CRI) in T. atratus and 
T. sirtalis from 2004 to 2005 and from 2016 to 2018 in Echo Lake and Siligo basins, 
Trinity Alps Wilderness, CA.  Values above the red dashed line (λ =1) indicate positive 
population growth whereas values below the line indicate negative population growth. 
Model type: robust-design Jolly-Seber. 
 

 

Table 3.  Per-capita recruitment estimates in T. atratus and T. sirtalis in 2005, 2017 and 
2018 in Echo Lake and Siligo Basins, Trinity Alps Wilderness, CA.  Model type: robust-
design Jolly-Seber. 

Basin Species Year Estimate (95% CRI) 
Echo T. atratus 2005 0.347 (0.0-1.26) 

  2017 0.406 (0.0-1.32) 
  2018 0.319 (0.0-1.1) 

 T. sirtalis 2005 0.127 (0.0-0.54) 
  2017 0.642 (0.0-2.21) 
  2018 0.56 (0.02-1.79) 

Siligo T. atratus 2017 0.60 (0.04-1.40) 
  2018 0.50 (0.06-1.10) 

 T. sirtalis 2017 0.98 (0.03-3.0) 
  2018 0.56 (0.02-1.77) 
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observed in T. sirtalis in 2017 (Echo Lake Basin: 0.64, 95% CRI = 0.00 to 2.21; Siligo 

Basin: 0.98, 95% CRI = 0.03 to 3.00).  Thamnophis atratus per-capita recruitment was 

lower on average, but generally followed the same trend as T. sirtalis from 2017 and 

2018, decreasing slightly over this period (Table 3). 

Somatic growth rate and body condition 

I measured 264 growth increments from 99 individual T. atratus from 2016 

through 2018.  Overall, the predicted asymptotic length (L∞) for female and male T. 

atratus was 709 mm SVL (95% CRI = 622 to 844) and 495 mm SVL (95% CRI = 454 to 

540), respectively.  The two sexes grew at substantially different rates.  The asymptotic 

growth rate (k) in females was estimated at 0.48 (95% CRI = 0.31 to 0.54), whereas 

males grew nearly 1.49 times as fast (95% CRI = 0.37 to 1.92).  The asymptotic growth 

rate in Siligo Basin was slightly smaller than in Echo Lake Basin (mean difference = -

0.02; 95% CRI = -0.16 to 0.10).   The average variation in individual female and male 

growth rates (λ) was approximately 0.91 (95% CRI = 0.13 to 5.01) and 0.71 (95% CRI = 

0.08 to 4.48), respectively, with males displaying more variation in growth indicated by a 

smaller lambda.   

I assessed differences in T. atratus body condition using 144 mass and length 

measurements on 89 non-gravid known-sex individuals ≥ 445 mm SVL.  Overall, the 

weight to length ratio was slightly smaller in males, although this effect was miniscule 

(mean difference = -0.03; 95% CRI = -1.88 to 1.83).  On average, post-treatment T. 

atratus were 10.30 g lighter (95% CRI = 2.78 to 17.80) than they were prior to fish 

eradication, and 6.28 g lighter (95% CRI = 0.67 to 13.17) than snakes of comparable size 
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in Siligo Basin (Figure 5).  However, the difference in the weight to length ratio was most 

obvious in large females (e.g., 600 mm SVL or +1 sd).  At this length, the expected 

difference in weight between pre- and post-treatment Echo Lake Basin snakes was 23.5 g 

(95% CRI = 14.37 to 32.35).  

Distribution 

Garter snakes were typically encountered in amphibian breeding patches in both 

Echo Lake and Siligo basins or within fish bearing streams of Siligo Basin.  With the 

exception of adult T. atratus, they were almost always detected in waterbodies containing 

larval, metamorphic, or juvenile/adult frogs.  Adult T. atratus were usually encountered 

in streams where amphibians were undetected entirely or rarely seen, and in many cases 

(e.g., > 80% in Siligo Basin), adult T. atratus were encountered while actively foraging 

for fish.   

Overall, the majority of garter snakes of both species were relatively site-faithful, 

with only five and 15 observations of individual T. atratus and T. sirtalis observed 

moving between sites in Echo Lake Basin and seven and one observations of individual 

T. atratus and T. sirtalis moving between sites in Siligo Basin.  The greatest number of 

habitat patches an individual garter snake was captured in was three, and in the majority 

of cases movements between sites were unidirectional.  Round-trip movements between 

sites were only observed in T. sirtalis in pre-treatment years.  Thamnophis atratus was 

the only species observed moving between basins, with two individuals moving from 

Echo Lake Basin to Siligo Basin after fish eradication.   
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Figure 5.  Predicted (dashed lines) and observed (points) relationship between the scaled 
snout-to-vent length (0 = an average size snake ≥ 445 mm SVL) and weight in male and 
female T. atratus in Echo Lake and Siligo basins, Trinity Alps Wilderness, CA.  The 
difference in predicted weights are greatest between snakes in Echo Lake Basin prior to 
fish eradication and those in Echo Lake Basin following fish removal, but only in the 
largest animals. 
  



40 
 

  

Home range 

Prior to the removal of S. fontinalis in Echo Lake Basin, the home range of T. 

atratus was approximately 0.59 (± 0.17 sd) and 6.93 (± 0.85 sd) ha at the 50% and 95% 

isopleths.  Approximately 72% of the detections during this period occurred in Deep 

Creek Meadow, where S. fontinalis were abundant (Garwood and Welsh 2007).  In 2016 

through 2018, the mean home range of T. atratus increased 1.51 and 1.85 times at the 

50% and 95% isopleths, respectively, but the core distribution did not shift from Deep 

Creek Meadow.  This apparent within-basin range expansion during post-treatment years 

was largely driven by their 2016 distribution, where T. atratus were observed in many R. 

cascadae breeding patches outside of Deep Creek Meadow.  However, this diffused 

distribution was highly ephemeral.  By 2017, their distribution shrunk considerably by 

67% and 69% at the 50% and 95% isopleths, respectively.  In Siligo Basin their home 

range remained relatively constant year to year (Figure 6). 

Overall, the home range of T. sirtalis shrunk considerably between pre- and post-

treatment years, corresponding to their overall decrease in abundance between these 

sampling periods.  In 2016 their home range size was nearly identical in size to T. atratus 

at the 95% isopleth, although their core use area was smaller (Figure 6).  They then 

experienced a dramatic increase in their home range size from 2016 to 2017, in concert 

with their increase in abundance and the decline in home range area of T. atratus.  Over 

the same period in Siligo Basin, the home range size of T. sirtalis varied little at both 

isopleths, similar to that observed in T. atratus (Figure 6).   
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Figure 6.  Home range size (± 1 sd) from fixed kernel utilization distributions in T. 
atratus and T. sirtalis in Echo Lake and Siligo basins from 2004 to 2005 and from 2016 
to 2018, Trinity Alps Wilderness, CA. 
 

 

Space use overlap 

Overall, the distribution of T. atratus was more stable year to year compared to T. 

sirtalis, indicated by consistently higher values of space use overlap (Figure 7).  

Thamnophis atratus space use overlap in Echo Lake Basin between pre- and post-

treatment years was 0.75 (± 0.10 sd) and 0.67 (± 0.06 sd) at the 50% and 95% isopleths, 

respectively.  Considering only 2016 through 2018, space use overlap was much lower in 

Echo Lake Basin compared to Siligo Basin at both the 50% and 95% isopleths (Figure 7).  

In T. sirtalis, space use overlap in Echo Lake Basin between pre- and post-treatment 

years ranged from 0.29 (± 0.12 sd) and 0.38 (± 0.08 sd) at the 50% and 95% isopleths, 
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Figure 7.  Volume of intersection/space use overlap (± 1 sd) between years within T. 
atratus and T. sirtalis at the 50% and 95% isopleths, Echo Lake and Siligo basins, Trinity 
Alps Wilderness, CA.   
 

 

respectively.  Similar to T. atratus, space use was more variable in the Echo Lake Basin 

compared to Siligo Basin from 2016 through 2018 (Figure 7).   

In Echo Lake Basin, space use overlap between T. atratus and T. sirtalis ranged 

from 0.00 (± 0.01 sd) to 0.12 (± 0.05 sd) prior to fish eradication.  From 2016 through 

2018, their space use overlap increased steadily from 0.0 (± 0.05 sd) in 2016 to 0.17 (± 

0.04 sd) in 2018 at the 50% isopleth. Their space use overlap was nearly identical at the 

95% isopleths, with the exception of 2018, where their space use overlap was estimated 

at 0.28 (± 0.04 sd, Figure 8).  In Siligo Basin over the same time period, space use 
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Figure 8.  Volume of intersection/space use overlap (± 1 sd) between T. atratus and T. 
sirtalis at the 50% and 95% isopleths, Echo Lake and Siligo basins, Trinity Alps 
Wilderness, CA.   
 

 

overlap between the two species was less than 0.05 at the 50% isopleth.  With the 

exception of 2018, space sharing by T. atratus and T. sirtalis was generally less than 0.20 

at the 95% isopleth (Figure 8).   

Microhabitat use 

In Echo Lake Basin from 2004 to 2006, T. atratus were detected in lotic features 

roughly 72% (81/112) of the time.  During this period, the majority of lotic waterbodies 

occupied by T. atratus contained non-native S. fontinalis (Garwood and Welsh 2007, 

Pope et al. 2008).  Within the first three years following eradication of S. fontinalis, the 

proportion of T. atratus captures in lotic water features decreased to approximately 
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33.7% (33/98).  The predicted probability of detecting an average size (380 mm SVL) T. 

atratus in lentic habitats increased approximately 3 times from 0.23 (95% CRI = 0.12 to 

0.37) to 0.71 (95% CRI = 0.53 to 0.87) during and immediately following the removal of 

non-native S. fontinalis (Figure 9).  Over the same period, the probability of lentic habitat 

use by an average size snake in Siligo Basin was only 0.53 (95% CRI = 0.40 to 0.66).  

However, in large snakes (~600 mm SVL or +1.5 sd) the predicted probability of lentic 

habitat use in all treatment groups was less than 0.10.   

Garter Snake Diet 

Across all treatments, 601 prey items were palpated from 270 stomachs.  

Approximately 43 percent (n = 259) of all prey items were palpated from 78 stomachs 

prior to fish removal (2004 - 2006), while 342 prey items were palpated from 192 

stomachs from 2016 through 2018.  Although the number of prey items per snake varied 

greatly (1 to 33), the majority of snakes with prey contained only 1 prey item (Figure 10).  

Amphibians dominated the diets of both snake species compared to non-native fish, with 

larger snakes generally consuming larger prey (Figure 11).   

In pre-treatment Echo Lake Basin, 18 of the 39 (46.2%) T. atratus with 

identifiable stomach contents contained native amphibians, totaling 97 individual native 

prey items.  The remaining stomach samples with prey contained non-native S. fontinalis.  

In 2016 through 2018, 28 of 31 (90.3%) T. atratus consumed native amphibians, totaling 

43 native prey items.  The three T. atratus that did not consume native amphibians in 

2016 through 2018 had consumed non-native trout in early 2016 when the 
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Figure 9.  Predicted probability of lentic habitat use in T. atratus as a function of scaled 
snout-to-vent length (0 = an average size snake) and treatment, Echo Lake and Siligo 
basins, Trinity Alps Wilderness, CA. Model: Bernoulli generalized linear mixed effect. 
 

 

last few S. fontinalis were being removed from Deep Creek Meadow.  In Siligo Basin 

where fish were present, 83 of 92 (90.2%) T. atratus stomachs contained a total of 230 

individual native amphibian prey while nine stomach samples contained non-native S. 

fontinalis. 
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Figure 10.  Frequency of stomach samples containing various numbers of prey items in T. 
atratus across Echo Lake and Siligo basins from 2004 through 2006 and from 2016 
through 2018, Trinity Alps Wilderness, CA. 
 

 

Overall, there was a 0.68 probability that the frequency of stomach samples 

containing native amphibians increased.  In Echo Lake Basin prior to fish eradication, the 

probability that a T. atratus stomach sample contained a native was estimated at 0.15 

(95% CRI = 0.08 to 0.25).  After fish removal, this probability increased to 0.26 (95% 

CRI = 0.16 to 0.37), which corresponds in an increase in the odds of native amphibian 

consumption by nearly 1.38 times (95% CRI = 0.67 to 1.67, Figure 12).  The most 

common amphibians consumed across all study years were R. cascadae and P. sierra. 
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Figure 11.  Relationship between snout-to-vent length and prey stage in T. atratus and T. 
sirtalis, illustrating the tendency of larger snakes to consume larger prey.  Thamnophis 
sirtalis was included to provide a contrast in diet with a sympatric predator.  Prey stages 
are grouped within their respective families for additional clarity.  Diet samples were 
obtained from 2004 through 2006, and from 2016 through 2018, Echo Lake and Siligo 
basins, Trinity Alps Wilderness, CA. 
 

 

However, I observed seven predation events on A. truei (Coastal Tailed Frog) following 

fish eradication, totaling eight larvae, one egg strand of three embryos, and one adult.  
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This constitutes the first documented predation by T. atratus on A. truei (Figure 11) 

(Demianew and Macedo, in prep). 

Although the probability of palpating a native amphibian from T. atratus 

increased following the eradication of S. fontinalis, the mean number of amphibians 

palpated from individual T. atratus did not increase.  In fact, there was a 0.95 probability 

that the average number of amphibians consumed per T. atratus was higher prior to fish 

removal, although the difference was minuscule (mean difference = 0.99; 95% CRI = -

0.20 to 2.48).  The mean number of amphibians palpated per individual snake was also 

slightly higher in the adjacent control basin from 2016 through 2018, but only marginally 

(mean difference = 0.35; 95% CRI = -0.42 to 1.01).  
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Figure 12.  Predicted probability of palpating a native amphibian from T. atratus as a  
function of scaled snout-to-vent length (0 = an average size snake) and treatment in Echo 
Lake and Siligo basins, Trinity Alps Wilderness, CA. The vertical tick marks represent 
observed data.  Model type: Bernoulli generalized mixed-effect model. 
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DISCUSSION 

Pope et al. (2008) postulated that the introduction of non-native fish into the 

Klamath Mountains mediated the invasion of T. atratus in high elevation habitats, 

catalyzing hyperpredation on native amphibians.  I evaluated the effects of the removal of 

these non-native fish on a population of T. atratus by comparing several aspects of T. 

atratus demography, distribution, and diet to a control population in an immediately 

adjacent basin.  Although I focused my assessment on T. atratus, I also examined 

changes in sympatric populations of T. sirtalis to try and understand how trout 

eradication might also affect this smaller congener in areas where both garter snake 

species co-occur.  I provided two contrasting, although not mutually exclusive, scenarios 

describing the potential dynamics that might follow eradication of the non-native prey 

subsidy, both of which were supported by several lines of evidence.  

Thamnophis atratus abundance decreased in Echo Lake Basin from 2016 through 

2018 consistent with Scenario 1 (Figure 1A), whereas their abundance increased in the 

control basin.  Simultaneously, T. sirtalis abundance increased in both basins during this 

same period.  At least part of the decrease in abundance was driven by emigration out of 

the basin.  I observed two instances of T. atratus moving out of Echo Lake Basin into 

areas where fish were not eradicated, also consistent with Scenario 1 (Figure 1A), but I 

never observed this species moving from the fish-harboring control basin into the 

treatment basin.  Moreover, I observed a within-basin range expansion in T. atratus 

within the treatment basin immediately following fish eradication; a consequence of 
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snakes moving from streams into lentic amphibian breeding ponds both within and 

outside of their original core-use area (consistent with Scenario 2, Figure 1B). Coinciding 

with the movements in T. atratus from streams to ponds, T. atratus displayed other 

behavior changes following fish removal, including increased rates of predation on native 

amphibians (consistent with Scenario 2, Figure 1B).  The increased predation on 

amphibians also included the first documented predation on A. truei, a species of special 

concern in California (Thomson et al. 2016).  Increased predation on amphibians was 

driven mostly by neonate and juvenile snakes.  Despite these behavioral changes to deal 

with the eradication of their non-native food subsidy, there were physical consequences 

of remaining in Echo Lake Basin post-restoration, as indicated by significant reductions 

in adult T. atratus body condition.  Together, these results provide convincing 

experimental evidence to support Pope et al. (2008)’s hyperpredation hypothesis, and 

they also suggest that in the absence of non-native salmonids, T. atratus may be unable to 

persist at high densities in sub-alpine mountain lake and meadow habitats of the Klamath 

Mountains. 

Demography, Distribution, and Diet 

Thamnophis atratus and T. sirtalis abundance decreased substantially from 2004 

to 2005.  This initial decline was possibly driven by a false spring event in 2005, or an 

early season warming period followed by an extended cold spell (Garwood and Welsh 

2007).  Cold weather is known to negatively affect garter snakes (Gregory 1977).  For 

instance, light winter snowpack (Shine and Mason 2004) and false springs (Hansen et al. 
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2015) can result in reduced over-winter and early spring survival.  The spring of 2005 

corresponds to the second longest Rana cascadae breeding season on record in the 

Trinity Alps (J. Garwood, unpub. data), which was likely driven by a late season snow 

event (Garwood and Welsh 2007).  This false spring could have resulted in snakes 

waking early and exiting their winter hibernacula into a cold inhospitable environment.  

This would likely have led to increased physiological stress from an inability to 

thermoregulate, which in turn would reduce their physiological capacity to acquire and 

consume prey, thus reducing their survival.      

Thamnophis atratus abundance decreased further from 2016 through 2018 

following complete eradication of non-native trout throughout Echo Lake Basin.  During 

this same period, their abundance increased in the neighboring control basin where fish 

were not removed.  On the contrary, populations of T. sirtalis in both basins increased 

from 2016 through 2018, with greater increases occurring in the control basin.  The 

mechanism(s) behind these contrasting population trends could be any or all of at least 

six factors, including: 1) incidental mortality on T. atratus resulting from CDFW’s fish 

removal efforts, 2) the removal of non-native trout prey from Echo Lake Basin, 3) T. 

atratus emigration out of Echo Lake Basin, 4) reduced body condition in breeding adult 

T. atratus coupled with 5) the absence of a substantial prey switch to amphibians 

following trout eradication, and 6) increasing amphibian populations region wide. 

Without a doubt, part of the observed decline in T. atratus resulted from 

incidental mortality attributed to CDFW’s fish eradication efforts.  There were five 

instances during my study (four in 2016 and one in 2017) where T. atratus drowned after 
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being tangled in gill nets deployed to remove non-native fish.  These animals, four of 

which were adult females, were included in the CMR analysis to contribute to annual 

abundance estimates.  Although these deaths were accidental, their contribution to the 

observed decline is real.  Overall, T. atratus abundance declined from 37 to 31 animals in 

Echo Lake Basin from 2016 to 2017, two thirds of that decline can be attributed the 

known deaths of 4 out of the 5 snakes that died that summer.  What is unknown, 

however, is if those snakes would have died or emigrated out of the basin on their own as 

a result of the restoration project.    

Non-native fish and native amphibians constitute the entire diet of T. atratus in 

the Klamath Mountains (Garwood and Welsh 2007, Pope et al. 2008).  In my study 

basins, fish were common in the largest wetland meadow complexes: Deep Creek 

Meadow in Echo Lake Basin prior to fish eradication, and Lower Siligo Meadow in 

Siligo Basin.  These sites consist of a mosaic of lentic kettle pools within a braided 

network of small streams that harbor fish.  Over the course of the study the majority of T. 

atratus were detected within these large meadow complexes despite available habitat and 

higher densities of native amphibians in neighboring sites.  Within these meadows, the 

majority of captures of large snakes occurred in streams that either contain or recently 

contained non-native fish.  Although large snakes have the ability to acquire smaller 

amphibian prey, they did not appear to do so frequently, and on only a few occasions did 

I palpate larval or juvenile frogs from the gut of adult T. atratus.   

Thamnophis atratus experience ontogenetic changes in habitat selection, foraging 

behavior, and prey selection, which probably reflects an advantage of consuming fewer 
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and larger meals as snakes grow (Lind and Welsh 1994).  At lower elevation, the diet of 

adult T. atratus consists mostly of another large stream dwelling prey species, the coastal 

giant salamander (Dicamptodon tenebrosus), even though yellow-legged frog (Rana 

boylii) larvae and juveniles are plentiful (Lind and Welsh 1990, Lind and Welsh 1994).  

In my study basins, non-native fish are the most abundant large stream-dwelling prey and 

are thus a likely limiting resource.  If this is the case, it would make sense that the 

absence of fish would lead to starvation and mortality, or encourage animals to seek 

stream dwelling prey elsewhere, either of which would contribute to the apparent 

population decline observed in the basin.   

On two occasions I observed individual T. atratus moving from Echo Lake Basin 

into fish bearing streams of Lower Siligo Meadow in Siligo Basin.  Snakes were never 

observed moving from Siligo Basin to Echo Lake Basin.  These animals, one female and 

one male, were last captured as juveniles in Echo Lake Basin in 2016, the last year fish 

were observed in Deep Creek Meadow, and both were recaptured as adults in 2018.  

Although two observations seem scant, these two snakes represent approximately 6% of 

all known individuals observed within Echo Lake Basin in 2016.  Given the low 

detection probability in T. atratus as a whole (Lind et al. 2005, this study), the true 

number of animals actually emigrating out of Echo Lake Basin may be much higher. 

The elimination of the non-native prey subsidy coincided with a dramatic 

reduction in the body condition in adult T. atratus, but only in the treatment basin.  This 

result is not surprising, however, since fish were the main prey resource in streams where 

adult T. atratus generally forage.  On several occasions, I observed T. atratus searching 
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for food in the large stream pools of Deep Creek Meadow following fish eradication, 

despite little to no observed prey.  The strong propensity of adult T. atratus to forage in 

streams despite alternative prey in nearby lentic pools is further supported by novel 

observations of predation on A. truei, an alternative stream-dwelling prey resource 

(Figure 11).  In diet studies of T. atratus in my study sites and elsewhere, A. truei have 

never been observed in the gut contents of T. atratus even though they commonly co-

occur (Lind and Welsh 1990, Lind and Welsh 1994, Garwood and Welsh 2007, Pope et 

al. 2008).  This is probably the result of 3 things: 1) availability of preferred prey, 2) the 

relatively small size and generally nocturnal behavior of A. truei, and 3) the strong 

ontogentic trends in prey selection by T. atratus.   

As described in this thesis and in other studies, adult T. atratus generally forage 

on large stream dwelling salmonids and amphibians.  Ascaphus truei is a relatively small 

amphibian, and although stream dwelling, it is generally nocturnal (Altig and Brodie 

1972).  These traits likely preclude it from being consumed in large numbers by a 

generally diurnal garter snake.  However, sub-adult or adult T. atratus were responsible 

for five of the seven predation events on A. truei in Echo Lake Basin, which began in 

Deep Creek Meadow immediately after fish eradication.  Predation on A. truei was not 

observed in Echo Lake Basin prior to eradication of S. fonintalis (Garwood and Welsh 

2007, Pope et al. 2008), or in Siligo Basin from 2016 through 2018 despite relatively high 

densities of this species (A. Macedo, unpub. data).  In all but one case, T. atratus 

predation on A. truei was concentrated on larvae, which appear relatively more active 

during the day than adults in this study area (pers. obs.).  If adult T. atratus are to persist 
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in this environment without preferred non-native fish, A. truei are a stream dwelling prey 

alternative, but they are not a reliable abundant substitute, especially for large snakes.  

Certain life stages of other amphibians might be more reliable, such as adult Rana 

cascadae, which often spend their summers in streams, although I did not observe 

increased predation on adult R. cascadae in this study.   

Although the total number of native amphibians consumed was nearly half that 

prior to fish eradication, likely a direct result of the decrease in T. atratus abundance, the 

probability of T. atratus preying upon native amphibians increased following eradication 

on non-native trout.  This increased rate in native amphibian consumption coincided with 

a substantial shift in habitat use from lotic streams to lentic pools.  This, in addition to the 

habitat decoupling, was largely driven by juvenile snakes preying on larval and 

metamorphic frogs.  There was almost no observable shift in habitat use in adult T. 

atratus and only a slight predicted increase in their predation on native amphibians.  

Together, these patterns likely contributed to the absence of a reduction in somatic 

growth rates in the fishless basin compared to the adjacent positive-control basin. 

Somatic growth is characterized by the asymptotic growth rate (k) and does not reflect the 

growth rate in adult snakes, but rather neonate and juvenile snakes as they grow rapidly 

to maturity.  These smaller life stages did not seem to be negatively affected by fish 

eradication since populations of their preferred prey (Anurans) were not removed.  

Although snakes in these smaller size classes can and do consume non-native fish 

(Garwood and Welsh 2007, Pope et al. 2008, this study), their diet shows they are not 

reliant on this resource to the extent adults are.  In these habitats, these neonate and 
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juvenile snakes appear fully capable of persisting on the assemblage of available native 

amphibians, especially larvae, metamorph, and juvenile stages, which consist mostly of 

as P. sierra and R. cascadae.            

Rana cascadae populations have been decreasing throughout the Klamath 

Mountains and in other parts of California for much of the last two decades (J. Garwood, 

unpubl. data, Pope et al. 2014)   However, over the last few years it appears their 

populations are increasing, at least in the areas where I conducted this study (Demianew 

and Garwood, in prep).  Because neonate and juvenile T. atratus and all age classes of T. 

sirtalis rely heavily on native amphibian populations for food, an increase in R. cascadae 

populations might contribute to increases in recruitment across both species of garter 

snake.  In the Sierra Nevada, T. elegans elegans is closely tied to the presence of native 

ranid frogs, and catastrophic population declines in high mountain amphibians resulting 

from non-native fish has likely led to declines of T. e. elegans (Mathews et al. 2002).  

Thus, it seems reasonable that garter snake populations may increase with increases in 

their prey populations.  The increasing abundance of both species in the control basin and 

T. sirtalis in the treatment basin mirrors the overall apparent increasing trend in sympatric 

amphibian populations in these basins.  The observed trends between predator and prey, 

however, are based on just a few years of data with estimates that have large uncertainty.  

Many more years of population monitoring could possibly strengthen the relationship 

between garter snake abundance and recruitment to the long term trends in native 

amphibian populations. 
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The observed distribution in T. atratus and T. sirtalis not only reflects the space 

and time variation in their main prey, but it likely also reflects habitat availability within 

each basin and interspecific competition between the two species.  These factors probably 

affect each garter snake species to varying degrees, with T. atratus distribution largely 

reflecting the distribution of their fish prey and stream habitats, whereas T. sirtalis 

distribution is largely tied to amphibian breeding patches, but only in meadows outside of 

those occupied by T. atratus.   

Others have pointed out the strong spatial association between T. atratus and non-

native fishes (Garwood and Welsh 2007, Pope et al 2008).   Eradication of these non-

native fish likely decoupled this association, which was reflected in the diffuse 

distribution of T. atratus within Echo Lake Basin following fish removal and their shift in 

lotic to lentic habitats.  Their post-treatment distribution was characterized by a within-

basin range expansion of nearly 100% at the 95% isopleth.  However, this increase in 

space use was largely driven by their 2016 distribution, where T. atratus were observed 

in the majority of R. cascadae breeding patches throughout Echo Lake Basin, several of 

which did not appear to be used by T. atratus prior to the basin-wide restoration effort.  

This pattern may have been driven by their pursuit of amphibian prey, but amphibian 

prey remained abundant in Deep Creek Meadow, the core use area of T. atratus, before 

and after restoration.  Their expanded distribution is more likely the consequence of 

snakes prospecting for fish prey in alternative nearby sites.  Recaptures of T. atratus in 

these peripheral lentic breeding patches almost never occurred, likely because they were 

all fishless and the amphibians present are neither preferred nor consistently available 
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prey.  This is exacerbated by the fact that most of these breeding patches are small, they 

lack permanent stream features that are favored by larger T. atratus, and most are 

susceptible to drought-associated desiccation which has likely affected the region for 

much of the last seven years.   

By 2017 and 2018, the distribution of T. atratus contracted substantially, nearly 

resembling their distribution prior to fish eradication.  Regardless of the initial within-

basin range expansion and subsequent range contraction, in all years their core use area 

(50% isopleth) was concentrated within Deep Creek Meadow.  In neighboring Siligo 

Basin, the home range size and distribution in T. atratus was relatively unchanged year to 

year, and the core area of those distributions were consistently concentrated around fish-

filled streams and the immediately adjacent Anuran breeding ponds in Lower Siligo 

Meadow.     

The home range size and distribution in T. sirtalis varied substantially from year 

to year within Echo Lake Basin.  This was probably driven in part by their small and 

fluctuating population size, diffuse distribution, and their patchily distributed ephemeral 

prey base, all of which influence the resulting utilization distribution.  The home ranges 

used in this study were based off all detections of this species.  Unfortunately, the total 

number of detections in a given year was usually very low (Table 2).  As such, small 

changes in the number of detections, which likely results from fluctuations in their 

population size, would represent a significant change in the proportion of detections used 

in the home range analysis.  Coupled with their relatively diffuse distribution that may 

reflect their patchily distributed and preferred amphibian prey (Garwood and Welsh 
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2007, Pope et al. 2008), greater fluctuations in their within-basin range size and 

distribution through time might be expected compared to the control basin, where their 

population and prey are more concentrated within fewer sites.  This small sample size 

issue likely does not affect T. atratus to the same degree, however, since T. atratus’ core 

use area was generally tied to one site throughout the study.  Similar to T. atratus, T. 

sirtalis distribution and home range sizes in Siligo Basin remained nearly constant 

throughout the study.   

The degree to which the distribution of T. atratus shapes that of T. sirtalis is not 

entirely clear.  In general, T. sirtalis were rarely observed throughout the amphibian 

breeding ponds in wetland meadows occupied by T. atratus (Figure 13), although they 

were encountered regularly in similar habitats where T. atratus were not found.  The 

biggest differences in these habitats were the presence of trout and an extensive network 

of streams.  In meadows where T. atratus and S. fontinalis co-occur, neonate and juvenile 

T. atratus were typically encountered amongst the archipelago of amphibian breeding 

ponds where one would expect to also encounter T. sirtalis, whereas adult T. atratus were 

almost always observed foraging in streams.  Habitat partitioning is a common 

phenomenon observed in sympatric species within the same guild (MacArthur and 

Wilson 1967, Shoener 1974), and has been documented in many species of snake 

(reviewed in Luiselli 2006).  Habitat and resource partitioning is evident within the 

largest size classes between T. atratus and T. sirtalis.  These habitat differences might 

have evolved to reduce competition where they naturally co-occur at lower elevations, 

but these differences might also be independent of competition (Shoener 1982).  
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Regardless of their evolutionary origins, the propensity of T. atratus to use stream 

habitats is not as strong in neonates and juveniles as it is in adults.  Although these 

animals are found commonly at the margin of streams in larger riverine systems at lower 

elevations (Lind and Welsh 2004, Welsh et al. 2010), smaller T. atratus generally occupy 

ponds in this system, which are relatively rare habitat features at lower elevations.   

The difference in habitat use between small and large snakes is possibly a 

behavioral response to reduce intraspecific competition, or because small snakes can 

more easily acquire smaller defenseless amphibian prey in pond habitats relative to larger 

and more mobile fish prey in lotic features.  The dense constellations of pond habitats are 

likely a relatively novel habitat type for T. atratus, and their occupation of these habitats 

put them in direct conflict with T. sirtalis in high elevation areas of the Klamath 

Mountains.  In sites where both species were caught within the same year, these garter 

snakes were almost never caught together on the same day.  In 2016 through 2018, I only 

every observed the two species together in the same water feature on a handful of 

occasions, and all but one of these occasions were in areas where T. sirtalis was the more 

abundant species.  Generally, the aquatic features where they co-occurred temporally 

were either very large (Echo Lake) or contained high densities of larval and transforming 

frogs (e.g., Snowmelt Pond), both of which probably help to reduce interference 

competition.  Moreover, I did not find any evidence that T. sirtalis moved into Deep 

Creek Meadow following restoration.  Although T. atratus declined within this site over 

the course of this study, many of the remaining snakes shifted their habitat use into the 

adjacent lentic amphibian breeding ponds, likely intensifying the potential for 



62 
 

  

 
Figure 13.  Detections of T. atratus and T. sirtalis from 2004 to 2006 and from 2016 
through 2018, Echo Lake and Siligo basins, Trinity Alps Wilderness, CA.   
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competitive exclusion of T. sirtalis.  Together these observations make for a compelling 

case that T. atratus do in fact exclude T. sirtalis in areas where they co-occur, but 

additional research, such as enclosure experiments, would be required to infer causation.      

The majority of research on sympatric species of snakes illustrates that they 

generally partition habitat or prey resources (Arnold 1972, Reinert 1984, Luiselli 2006, 

Edgehouse et al. 2014).  The fact that T. atratus and T. sirtalis do not partition prey and 

habitat resources completely is likely the result of recent sympatry, which resulted from 

non-native fishes mediating the elevational range expansion and increases in abundance 

of T. atratus (Pope et al. 2008).  Other sub-species of these snakes are known to exist in 

sympatry in coastal central California, but unlike here, competitive exclusion is reversed, 

with T. sirtalis apparently displacing T. atratus in areas where they co-occur (Edgehouse 

et al. 2014).  Edgehouse et al. (2014) does not provide convincing field data of this 

negative association, however, but rather provides evidence from a laboratory-based 

enclosure experiment, the results of which may be confounded by the fact that individuals 

of  T. siralis used in the experimental trials were significantly larger (Edgehouse et al. 

2014) and thus might have had a competitive advantage.  Their contrasting results might 

also be attributed to the aggressive behavior displayed within the sub-species across their 

respective ranges.  On average, T. atratus are larger than T. sirtalis in the Klamath 

Mountains and are much more aggressive in hand.  Additionally, compared to other 

populations of T. sirtalis in coastal northern California and central California, these high 

elevation T. sirtalis are relatively docile (pers. obs.).  Together, this might contribute to 

them being competitively inferior in aquatic habitats in my study area.  If they had been a 
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competitively superior snake, they may have thwarted the native invasion of T. atratus 

into sub-alpine habitats throughout the Klamath Mountains. 

Conclusion 

Recognizing the impacts non-native species have on food web structure and 

ecosystem function is critically important for understanding, managing, and potentially 

mitigating the impacts of non-native species (Ricciardi et al. 2013).  This is especially 

important in areas that are considered pristine and protected, such as designated 

wilderness lands, since negative impacts of introduced or invasive species may go 

unnoticed (Vredenburg 2004).  Without intimate knowledge of the role non-native 

species play in local food webs, formulation of appropriate removal strategies and 

predictions of their effectiveness will be difficult to accomplish, which might increase the 

likelihood of unexpected and unintended outcomes following management actions such 

as habitat restoration and non-native species eradication.  

In invasion biology, eradications are a great tool to experimentally test ecological 

processes involving non-native species’ effects on local food webs (Fukami et al. 2006).  

Not only can experiments be used to identify direct and indirect effects operating 

between species within a community, but they can be used to highlight the strength of 

top-down and bottom-up regulation and the role these processes have in structuring 

community assemblages (Russell 2011).  This thesis provides direct experimental 

evidence strengthening Pope et al. (2008)’s postulate that non-native trout mediate 

hyperpredation on native amphibians through increases in abundance of a shared 
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consumer.  This thesis also highlights the fact that conservation-based management 

actions can sometimes yield unpredicted outcomes resulting from unforeseen shifts in 

food web structure (e.g., novel predation on A. truei), despite intimate knowledge of the 

system prior to restoration.  Nevertheless, these short-term community responses and 

novel interactions contribute to the growing field of invasion biology.  In addition, they 

provide context for future restoration efforts, both in the Klamath Mountains and beyond, 

while contributing to the ecology and understanding of sympatric predators and their 

prey. 
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APPENDIX A 

Appendix A: Superpopulation parameterization of the Jolly-Seber model, modified from 
Crawford et al. (2018) based on Kéry and Schaub (2012).  This example model was used 
to estimate changes in abundance, survival, per-capita recruitment, and population 
growth rate in T. atratus across two populations in two adjacent basins.  The Jolly-Seber 
model was specified in the jags dialect of BUGS.  See Crawford et al. (2018) for a formal 
model description.  
 
 
 

sink("ATRATUS.jags") 
cat(" 
    model{ 
     
#Survival  
     for (i in 1:M) { 
      g[i] <- basin[i]+1 
       for (y in 1:(n1-1)){      
        phi[i,y] <- phi.g[g[i],y]     
     }  
    }  
     
 for (u in 1:2){ 
  for(y in 1:(n1-1)){ 
      phi.g[u, y] ~ dbeta(4,3)    
  } 
 } 
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Entry  

for (i in 1:M) { 
      for (y in 1:n1) { 
       nu[i,y] <- nu.g[g[i],y]      
     }  
    }  
     for (u in 1:2) { 
      for (y in 1:n1) { 
      ent[u,y] ~ dgamma(1, 1)     
       b[u,y] <- ent[u,y] / sum(ent[u,1:n1]) 
     }  
    }  
 
#Conditional entry   

for (u in 1:2) { 
      nu.g[u,1] <- b[u,1]         
       for (y in 2:n1) { 
        nu.g[u,y] <- b[u,y] / (1-sum(b[u,1:(y-1)])) 
     }  
    }  
     
#Temporary emigration 

for (i in 1:M) { 
      for (y in 2:n1){            
       gamma[i,y] <- gamma.g[g[i],y]   
     }  
    } 

for (u in 1:2) { 
      for (y in 2:n1){ 
       gamma.eta[u,y] <- gam.mu[u] + gam.eps[u,y]    
       gamma.g[u,y] <- 1/(1+exp(-gamma.eta[u,y]))  
       gam.eps[u,y] ~ dnorm(0,gam.tau[u]) 
     }  
      gam.mean[u] ~ dunif(0,1)                      
      gam.mu[u] <- log(gam.mean[u]/(1-gam.mean[u]))   
      gam.tau[u] <- pow(gam.sd[u],-2)  
      gam.sd[u] ~ dunif(0,5)                        
    }      
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#Capture  
for (i in 1:M) { 

      for (t in 1:n2) { 
       p[i,t] <- p.g[g[i],t] 
     }  
    }  
     

for (u in 1:2){ 
      for (t in 1:n2) {  
       p.eta[u,t] <- p.mu[u] + p.eps[t]    
       p.g[u,t] <- 1/(1+exp(-p.eta[u,t]))         
     }   
  p.mean[u] ~ dunif(0,1)                     
      p.mu[u] <- log(p.mean[u]/(1-p.mean[u]))    
    }  
     
 for (t in 1:n2) { 
      p.eps[t] ~ dnorm(0,p.tau) 
    }     
     
 p.tau <- pow(p.sd,-2) 
     p.sd ~ dunif(0,5)  
 
#Inclusion  
    psi.rd ~ dunif(0,1)       
    
#State process 

for (i in 1:M){ 
 #First  
   w.rd[i] ~ dbern(psi.rd)                  
   z.rd[i,1] ~ dbern(nu[i,1])                 
  f[i,1] <- 0     
                            
 # Subsequent  

for (y in 2:n1) {       
        q[i,y-1] <- 1-z.rd[i,y-1]                           
        mu1a[i,y] <- phi[i,y-1] * z.rd[i,y-1]               
        mu1b[i,y] <- nu[i,y] * prod(q[i,1:(y-1)])        
        mu1[i,y] <- mu1a[i,y] + mu1b[i,y]               
        z.rd[i,y] ~ dbern(mu1[i,y]) 
        avail[i,y] <- gamma[i,y] * z.rd[i,y] 
        f[i,y] ~ dbern(avail[i,y])  
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 # Observation process 
for (j in 1:nss[y]) {    

        y.rd[i,(cnss[y]+j)] ~ dbern(p.eff[i,(cnss[y]+j)]) 
          p.eff[i,(cnss[y]+j)] <- f[i,y] * p[i,(cnss[y]+j)] * w.rd[i]      
     
      }  
     }  
    }  
 
#Recruitment  

for (i in 1:M) { 
      for (t in 1:n1) { 
       u.rd[i,t] <- z.rd[i,t] * w.rd[i]    
     }  
    }  
 
 for(i in 1:M) { 
  recruit[i,1] <- u.rd[i,1] 
   for(t in 2:n1){ 
    recruit[i,t] <- (1-u.rd[i,t-1]) * u.rd[i,t] 
  }  
 }  
 
#Abundance  

for (t in 2:n1) { 
      N.loc[t] <- sum(u.rd[1:M,t])                         
  B[t] <- sum(recruit[1:M,t])      
     N.loc.Siligo[t] <- inprod(basin[1:M], u.rd[1:M,t])        
      N.loc.Echo[t] <- N.loc[t] - N.loc.Siligo[t] 
  B.Siligo[t] <- inprod(basin[1:M], recruit[1:M,t])   
  B.Echo[t] <- B[t] - B.Siligo[t]      
    }  
  

for (i in 1:M) { 
      N.loc.ind[i] <- sum(u.rd[i, 3:n1]) 
      N.loc.alive[i] <- 1-equals(N.loc.ind[i], 0) 
    }  
     

Nsuper.loc <- sum(N.loc.alive[])           
     
    }  
    ",fill=TRUE) 
sink()    
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APPENDIX B 

Appendix B: Eaton and Link parameterization of the von Bertalanffy growth model, 
modified from Eaton and Link (2011).  This example model was used to estimate 
individual, sex, and basin fixed effects on growth parameters in two populations of T. 
atratus.  The von Bertalanffy model was specified in the jags dialect of BUGS.  See 
Eaton and Link (2011) for a formal model description and additional code. 
 

 

sink("THAT_EL.jags") 
cat(" 
model{ 
  
 for(i in 1:53){     # Individuals recaptured 1x  
  for (j in 1:1){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps)   
   H[i,j] ~ dgamma(P[i,j],lambda)    
   P[i,j] <- lambda*H.m[i,j]    
   H.m[i,j] ~ dunif(150,850)     
    }   
  for (j in 2:2){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] <- H[i,j-1]+increment[i,j] 
   increment[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- (lambda+alpha*sex[i])*abs(H.m[i,j]-H.m[i,j-1]) 
   H.m[i,j] <- H.m[i,j-1]+((a+beta0*sex[i])-H.m[i,j-1])*(1-exp(- 

(k+beta1*sex[i]+beta2*basin[i])*(dslc[i,j]/260)))   
    } 
   } 
 for(i in 54:86){     # Individuals recaptured 2x  
  for (j in 1:1){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- lambda*H.m[i,j] 
   H.m[i,j] ~ dunif(150,850) 
    }   
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for (j in 2:3){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] <- H[i,j-1]+increment[i,j] 
   increment[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- (lambda+alpha*sex[i])*abs(H.m[i,j]-H.m[i,j-1]) 
   H.m[i,j] <- H.m[i,j-1]+((a+beta0*sex[i])-H.m[i,j-1])*(1-exp(- 

(k+beta1*sex[i]+beta2*basin[i])*(dslc[i,j]/260))) 
    } 
   } 
 for(i in 87:97){     # Individuals recaptured 3x  
  for (j in 1:1){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- lambda*H.m[i,j] 
   H.m[i,j] ~ dunif(150,850) 
    } 
  for (j in 2:4){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] <- H[i,j-1]+increment[i,j] 
   increment[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- (lambda+alpha*sex[i])*abs(H.m[i,j]-H.m[i,j-1]) 
   H.m[i,j] <- H.m[i,j-1]+((a+beta0*sex[i])-H.m[i,j-1])*(1-exp(- 

(k+beta1*sex[i]+beta2*basin[i])*(dslc[i,j]/260))) 
    } 
   } 
 for(i in 98:99){     # Individuals recaptured 4x  
  for (j in 1:1){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- lambda*H.m[i,j] 
   H.m[i,j] ~ dunif(150,850) 
  }   
  for (j in 2:5){ 
   h[i,j] ~ dnorm(H[i,j],tau.eps) 
   H[i,j] <- H[i,j-1]+increment[i,j] 
   increment[i,j] ~ dgamma(P[i,j],lambda) 
   P[i,j] <- (lambda+alpha*sex[i])*abs(H.m[i,j]-H.m[i,j-1]) 
   H.m[i,j] <- H.m[i,j-1]+((a+beta0*sex[i])-H.m[i,j-1])*(1-exp(- 

(k+beta1*sex[i]+beta2*basin[i])*(dslc[i,j]/260))) 
  } 
 } 
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# Priors and Derived Parameters for Recapture Data  
  
 lambda ~ dunif(0, 10) #individual heterogeneity 
 SdOverRootmean <- 1/sqrt(lambda) 
 k ~ dunif(0,5) #growth rate 
 a ~ dunif(200,1000) #asymptotic length 
 tau.eps ~ dgamma(0.001,0.001) 
 sd.eps <- 1/sqrt(tau.eps) 
 alpha ~ dunif(-1,1) #sex effect on lambda 
 beta0 ~ dunif(-500,100) #sex effect on length 
 beta1 ~ dunif(-2,6) #sex effect on growth rate 
 beta2 ~ dunif(-1.5,2)  # basin effect on growth rate 
} 
",fill = TRUE) 
sink() 
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