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ABSTRACT 

EVALUATING HABITAT SELECTION MODELS TO IMPROVE SITE SELECTION 
IN A POPULATION MONITORING PROGRAM FOR TOWNSEND’S BIG-EARED 

BATS (CORYNORHINUS TOWNSENDII) 

Katrina J. Smith 

Winter roost (hibernacula) surveys offer a unique opportunity to monitor 

Townsend’s big-eared bats (Corynorhinus townsendii) while the population is generally 

closed, using a simple count method to census the population. Existing knowledge of C. 

townsendii hibernacula facilitates long-term population trend analysis but improving the 

accuracy of trend estimates requires identification of additional hibernacula to increase 

the proportion of the population monitored. Over 800 caves are known within Lava Beds 

National Monument; 322 of these have never been surveyed in the winter and could 

potentially hold a substantial portion of the C. townsendii population currently missing 

from the annual census. Given funding limitations, the process of selection for new 

survey sites should be carefully evaluated to improve the probability that new sites will 

contain larger numbers of bats, thus increasing the proportion of the population 

monitored. Therefore, I proposed and validated predictions for several habitat selection 

models built from multiple datasets for a species of concern, Townsend’s big-eared bats 

(Corynorhinus townsendii), threatened by disease (white-nose syndrome) and disturbance 

in an area with 30 years of survey history (Lava Beds National Monument, Siskiyou 

County, CA). Hibernating bat abundance in 30 caves was negatively correlated with 

mean winter cave temperature measured hourly over four years. However, the complexity 
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of monitoring over 800 caves renders intensive temperature monitoring infeasible. 

Instead, I explored several cave morphology metrics thought to influence airflow as 

proxies for cave microclimate. Principal components analysis suggested a link between 

cave temperature and trench length, trench depth, and constriction area, but models built 

from an intensive dataset (n=30) did not perform well in predicting bat abundance. 

Boosted regression tree models built from an extensive dataset (n=191) were validated 

(n=50) and show moderate predictive performance using just three cave morphology 

variables. These most important predictors included interactions between number of 

entrances, passage slope, and passage size, along with cave length and trench length. Use 

of this model to prioritize unsurveyed sites could lead to faster discovery of important 

hibernacula, given the large number of caves to be surveyed and that most of them are 

unlikely to be occupied. Discovery of new hibernacula would increase the monitored 

proportion of the C. townsendii population that resides within Lava Beds National 

Monument, potentially providing a more accurate population monitoring program. As 

this C. townsendii population monitoring program provides the most consistent data at 

some of the largest known hibernacula in the western U.S., continued development and 

implementation of this program is critical to informing decisions related to this species of 

special concern.  
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INTRODUCTION 

Wildlife population trend monitoring facilitates an understanding of both normal 

variability and the effects of stochastic events such as disease and human disturbance. 

Effective population trend monitoring programs can influence management decisions by 

identifying species at risk of population decline, or, alternatively, prioritizing application 

of protections to one population or species over another (Morrison et al. 2006, Nichols & 

Williams 2006). Population monitoring in bats is limited by the cryptic habitat use 

patterns of most species, resulting in the application of variable and inconsistent survey 

methods, and consequent imprecise trend estimates. Much of the published data on bat 

population monitoring is opportunistic and very few studies incorporate repeated site 

visits or consistent survey methods (O’Shea et al. 2003). Surveys at cavernicolous winter 

roosts (hibernacula) offer an opportunity to count bats during a period when the 

population is generally closed and thus provide an important opportunity to effectively 

monitor some populations (Tuttle 2003). This approach has been used for cave-roosting 

species in the eastern U.S. for decades (Langwig et al. 2015). However, a recent 

summary of known hibernacula in the western U.S. reports sparse records of bat 

abundance for most species despite increased survey effort in many types of potential 

hibernacula structures (Weller et al. 2018). A major exception to this pattern is for a 

single species, Townsend’s big-eared bat (Corynorhinus townsendii), which hibernates 

primarily in caves and mines (Humphrey & Kunz 1976). This species roosts openly on 
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walls and ceilings rather than in crevices, making it relatively easy to observe and 

facilitating census counts (Pearson et al. 1952).  

The National Park Service (NPS) at Lava Beds National Monument (Lava Beds 

NM) supports the most robust C. townsendii population trend monitoring program in 

California and presents an example of data that are vital to the accurate assessment of 

species extinction risk (Bonham 2016). Existing knowledge of C. townsendii hibernacula 

facilitates long-term population trend analysis but improving the accuracy of trend 

estimates requires identification of additional hibernacula to increase the proportion of 

the population monitored. Over 800 caves are known within Lava Beds NM; 322 of these 

have never been surveyed in the winter and could potentially hold a substantial portion of 

the C. townsendii population currently missing from the annual census. Given funding 

limitations, the process of selection for new survey sites should be carefully evaluated to 

improve the probability that new sites will contain larger numbers of bats, thus increasing 

the proportion of the population monitored. 

Continued monitoring for this species of concern is vital to the future of their 

conservation. Though the NPS Inventory and Monitoring program supports annual 

surveys at the largest known hibernacula within Lava Beds National Monument 

boundaries, additional prospective surveys are limited by availability of qualified 

surveyors. 

According to a recent statewide status review of C. townsendii, this is the 

Bonham’s review (2016) suggests that microclimates in caves and mines are important 

factors in habitat selection by C. townsendii, but that a comprehensive assessment of cave 
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or mine morphology, especially in relation to size of passages, is lacking. Listed as a 

species of concern in many of the states it occupies, C. townsendii populations have 

experienced declines due to habitat loss and human disturbance of roost structures. In 

addition, an introduced fungal disease known as white-nose syndrome (WNS) threatens 

hibernating bat species including, potentially, C. townsendii.  

First documented in New York in 2006, WNS has spread quickly across the 

continent with a recent jump from the Midwest to Washington state (Lorch et al. 2016). 

WNS is caused by the cryophilic soil fungus Psuedogymnoascus destructans, which 

invades skin tissue on the muzzle and wing membranes (Cryan et al. 2012). This disease 

affects bats during hibernation, increasing arousal frequency and depleting fat stores 

necessary to survive through the winter (Reeder et al. 2012). WNS causes additional 

physiological disruptions leading to dehydration and electrolyte imbalance from invasion 

of skin tissue by fungal hyphae (Cryan et al. 2012). Throughout the disease’s short 

history of spread across North America, WNS has caused severe population declines in 

some hibernating bat species, while others have remained relatively unaffected (Frick et 

al. 2010).  Population decline from WNS is correlated with differences among species in 

body size, torpor bout length, and environmental characteristics of winter roost sites 

(Langwig et al. 2012, Langwig et al. 2016, Hayman et al. 2016). This new threat to bat 

populations warrants increased efficiency and effectiveness of bat monitoring to inform 

species distribution models, disease surveillance, and population trend analysis (Frick et 

al. 2010, Langwig et al. 2014).  
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Though no clinical sign of WNS has yet been documented in eastern subspecies 

of C. townsendii, the fungus that causes this disease has been detected on the muzzle and 

forearm during hibernation (Coleman 2014, White-nose Syndrome Response Team 

2018). This suggests that all subspecies of C. townsendii could be vectors for WNS 

transmission, an important consideration as Myotis spp. and Eptesicus fuscus, species 

more likely to be affected by WNS, roost in some of the same caves as C. townsendii at 

Lava Beds NM (NPS unpublished data). In addition, a single case of physical contact 

between a torpid C. townsendii individual and a torpid Myotis ciliolabrum/californicus 

individual (species identification unconfirmed due to disturbance risk) was documented 

during 2018 hibernacula surveys (NPS unpublished data). The clinical effect of WNS on 

western C. townsendii populations remains uncertain and will only be detected through 

disease surveillance and robust population trend monitoring programs.  

Occupancy of cave and mine hibernacula by C. townsendii appears correlated 

with internal microclimate conditions and site morphology across several western states 

(Gilles et al. 2014, Sherwin et al. 2000). This habitat association may be explained by the 

physiological mechanisms of torpor, favoring selection of hibernacula with cold 

temperatures that allow individuals to conserve energy (Szewczak 1997, Boyles & 

McKechnie 2010, Rodhouse 2016). Though among-site differences in microclimate are 

likely the ultimate cause of habitat selection, microclimate data are more difficult to 

obtain than cave morphological characteristics that can be easily collected. Analysis of 

the relationship between microclimate, simple cave morphology metrics, and hibernating 

bat abundance is essential to the development of efficient site selection strategies for 
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discovering new C. townsendii hibernacula and developing effective trend-monitoring 

programs.  The goal of this research was to improve site selection in the C. townsendii 

population monitoring program at Lava Beds National Monument through investigation 

of the habitat selection of hibernating bats among volcanic caves.  

 Study Objectives 

1) Describe C. townsendii habitat associations in relation to cave microclimate and 

efficiently-measured cave morphology variables collected for large numbers of 

caves with low effort. 

2) Create a predictive model of bat abundance with efficiently-measured cave 

morphology variables.  

3) Validate model predictions of bat abundance with a novel dataset of previously 

unsurveyed caves within the monument.  

4) Evaluate the feasibility of using predictive models for site selection to improve 

the probability of finding new C. townsendii hibernacula among the remaining 

unsurveyed caves.  
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METHODS 

Bat Surveys in the Study Area 

Located in northeastern California, Lava Beds National Monument is a 19,000-

hectare NPS site protecting over 800 volcanic caves, a plethora of cliff faces and rock 

crevices, and high elevation mixed-conifer forests that support 14 species of bats (Figure 

1). Cave inventory and bat monitoring are supported by the NPS as the protection of 

volcanic caves and associated wildlife are included in the monument’s enabling 

legislation. Although historic hibernacula survey records date back to 1988, the current 

population monitoring program has been implemented annually since 2012. Current 

hibernacula survey protocols focus on C. townsendii, but observations of Eptesicus fuscus 

and Myotis spp. are also recorded. The C. townsendii population at known hibernacula 

within Lava Beds NM consists of more than 1,500 individuals and was stable from 1991-

2012 (Weller et al. 2014). 

Hibernacula surveys are restricted to a short mid-winter time frame 

(approximately one week each January) to improve population estimates, as bats are most 

likely to be torpid in hibernacula during in the coldest months and bats may move among 

hibernacula during the winter (Weller et al. 2014). To reduce disturbance to hibernating 

bats and ensure accurate observations, surveyors are well-experienced in moving through 

caves and identifying bat species during a single visit to each cave per winter. Surveyors 

move quietly through all cave passages, scanning walls and ceilings with lights, using 
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binoculars to identify bats from a distance. Binoculars and photos are used to count the 

number of individuals in a cluster (roosting in direct contact with other bats). The total 

number of caves surveyed each year varies depending on the availability of surveyors.  

Current site selection for the C. townsendii monitoring program uses a stratified 

random sampling method based on estimates of bat abundance per cave from previous 

years’ surveys (Table 1, Thomas 2014). Caves with high abundance (greater than 30 bats, 

n=11) in previous years are surveyed annually. As additional surveyor time allows, caves 

with low abundance in previous years (less than 30 bats, n=71) as well as unsurveyed 

caves of interest (n=322) are selected on a rotating random basis. Caves eliminated from 

the sampling frame include those with three consecutive counts of zero bats since 2010, 

considered unoccupied sites (n=19), along with surface tubes, bridges, and those 

considered unsafe or sensitive due to fragile geologic or cultural resources (n=343). 

Surface tubes and bridges were identified for elimination from the sampling frame by 

experienced NPS staff according to guidelines detailed in Appendix A. These sites had 

internal microclimates very similar to the surface microclimate and are assumed to have 

extremely low bat abundance. These assumptions are supported by data from 137 surveys 

at these site types showing mean bat abundance of 0.22 (SE=0.07) bats per surface tube 

or bridge (NPS unpublished data).  
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Figure 1. Aerial imagery, roads, trails, and boundaries of Lava Beds National Monument, 
Siskiyou County, California. Volcanic caves are dispersed across the monument except near the 
Petroglyph Point unit shown in the northeast. Cave locations were purposely excluded from this 
locator map to protect sensitive locations in compliance with the Federal Cave Resources 
Protection Act. Vegetation communities include sagebrush-steppe, juniper woodlands, and 
ponderosa pine forest, but are sparse on recent lava flows (dark areas shown on aerial imagery). 
Agricultural fields and remnants of Tule Lake border the north end of the monument, managed by 
the US Fish and Wildlife Service. A few parcels of private land border the monument to the east, 
but much of the monument boundary is surrounded by the Modoc National Forest (US Forest 
Service).   
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Cave Microclimate 

 Cave microclimate data (temperature and relative humidity) was collected hourly 

from HOBO Pro v2 dataloggers placed 0-2 meters above the floor in the deep zones of 30 

caves. Relative humidity was excluded from this analysis due to its collinearity with 

temperature. Instead, temperature was used to better compare these results with other 

studies of bat hibernacula. These dataloggers were installed for preliminary 

implementation of the NPS Klamath Inventory and Monitoring Network’s Integrated 

Monitoring Protocol for Cave Entrance Communities and Cave Environments (Krejca et 

al., 2017). Twenty caves were randomly selected from a sampling frame containing all 

known caves greater than 91 meters in length using a Generalized Random Tessellation 

Stratified (GRTS) sampling method. Ten additional caves were selected based on expert 

opinion of their resource value; these included four ice caves and six known bat 

hibernacula. One cave originally included in the monitoring protocol was excluded from 

my analysis due to access issues related to cultural significance. Though statistical 

inference from this sample selection method does not easily generalize to all caves in the 

monument, this design provided reasonable representation across the range of bat 

abundance categories used to define strata for the current hibernacula survey design 

(Table 1). Linear regression was chosen to describe the relationship between log10-

transformed mean bat abundance compiled from 8 years of survey data (2010-2017) and 

mean winter cave temperature compiled from 4 years of data collection (November 15 – 
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March 15, 2012-2016). Two separate analyses were used to determine patterns among 

only occupied caves and among all monitored caves.   

 
Table 1. Distribution of volcanic caves in relation to known bat abundance or cave type used for 
site selection in the Townsend's big-eared bat (Corynorhinus townsendii) population monitoring 
program at Lava Beds National Monument. Caves selected for microclimate analysis (n=30) were 
compiled from pilot implementation of the Klamath Inventory and Monitoring Network’s 
Integrated Monitoring Protocol for Cave Entrance Communities and Cave Environments.  

Selection 
Group 

Number 
Selection Group Qualification 

Number of 
Caves per 
Selection 
Group 

Number of Caves 
Selected for 

Microclimate 
Analysis 

1 Mean > 30 bats 11 7 
2 Last Count 6-30 bats 20 6 
3 Last Count 0-5 bats 51 4 
4 Last Two Counts = 0 bats 34 6 
5 Three Counts = 0 bats 19 7 
6 Surface Tube, Bridge, or Unsafe Access 343 0 
7 Unsurveyed Caves of Interest 322 0 
 TOTAL 800 30 

 

Habitat Data Collection 

Two separate datasets were used describe C. townsendii habitat associations in 

relation to cave microclimate and cave morphology variables. The first was an intensive 

dataset consisting of the 30 caves used in microclimate monitoring. Cave morphology 

variables were measured at each of these 30 sites. The second was an extensive dataset 

(n=191 caves) with efficiently-measured cave morphology metrics representing all caves 

longer than 15 meters with hibernacula survey records. The intensive dataset was 

expected to yield more accurate habitat association models but involved more logistical 

complexity and required more time to collect. The extensive dataset was used to 
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investigate whether models created using data that required relatively little time to collect 

would provide predictive power for bat abundance to adequately inform the prioritization 

of the 322 unsurveyed caves of interest. 

Ten cave morphology metrics (Table 2) were measured or compiled for the 30 

sampled caves with robust maps, microclimate data, and bat survey records. All cave 

morphology variables were measured by the author in the field using a laser rangefinder 

and compass, except direct cave length and depth, which were calculated from existing 

cave survey data extracted from a Lava Beds NM database.  

 Eight cave morphology metrics (Table 2) were compiled for 191 caves with bat 

survey records, excluding sites identified as surface tubes or bridges (Appendix A). This 

dataset built upon previous cave inventory records from the monument’s cave database. 

All variables except trench length and cave morphology category were extracted from a 

Lava Beds NM cave database. Trench length was measured in ArcGIS (ESRI 2011) using 

the monument’s 2005 aerial imagery and cave location points. Cave morphology 

categories were assigned using cave maps to identify whether a cave had a single or 

multiple entrances (S or M), sloped or flat passages (S or F), and had small, medium, or 

large passage size (S,M,L) based on maximum ceiling height. One combination of these 

categories did not exist in the dataset (MSS: multiple entrances, sloped passages, small 

ceiling height), therefore this category had eleven possible values with at least five caves 

in each possible category value (Appendix B). 
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Table 2. Cave morphology metrics used to predict habitat selection by Townsend's big-
eared bats (Corynorhinus townsendii) in volcanic caves at Lava Beds National 
Monument. Two separate datasets were used to compare predictive ability of intensive 
data collected in the field specifically for this project with extensive dataset compiled 
from existing database records, aerial imagery, and cave maps. 
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Predictor Variable Units Definition 

Trench Depth a m Distance from surface to bottom of volcanic trench 
at the cave entrance closest to the deepest passage 

Entrance Area  

(single) a 
m2 Area of the deep entrance* 

Entrance Area  

(total) a 
m2 Summed area of all cave entrances 

Constriction Area a m2 

Area of the first constriction (passage smaller than 
50% of the entrance area) beyond the deep 

entrance*; if the entrance is the smallest 
constriction, entrance area was measured for both 

Distance to 
Constriction a m 

Distance to the first constriction (passage smaller 
than 50% of the entrance area) beyond the deep 

entrance* 

Slope a degrees Degree of cave slope from the deep entrance* to 
first area beyond the entrance where slope changes 

Distance to Change 
in Slope a m Distance from the deep entrance* to first area 

beyond the entrance where slope changes 

Entrance Azimuth a degrees Compass direction looking out of deep entrance* 

Direct Cave Length a m Distance from the deep entrance* to the end of the 
deepest passage (excludes length of side passages) 

Direct Cave Depth a m Depth from the deep entrance* to the deepest 
section of cave passage 

Total Cave Length b m Total cave survey length including all side 
passages and multiple levels 

Trench Length b m Distance from cave entrance to opposite end of 
volcanic trench 

Trend b cardinal 
direction Directional trend of cave passages (e.g. NW-SE) 

Morphology 
Category b category 

Three letter code describing 1) a single or multiple 
entrances, 2) sloped or flat passage floor, and 3) 
passage size based on maximum ceiling height: 
small (< 1.5 m), medium (1.6-6 m), or large (> 6 

m) 
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a: Data collected in the field specifically for this project at 30 caves. 

b: Data compiled from records in the existing cave database, using existing cave maps, or 

calculated from aerial imagery and cave locations at 191 caves. 

* Deep entrance is defined as the entrance that most likely has the greatest influence on airflow 

into the cave. This is often the entrance with the shortest distance to the deepest cave passage, 

though other entrances were selected based on the researcher’s field expertise for caves with 

multiple entrances or multiple levels. 

  

System b y/n Subflow within the Mammoth Crater Geologic 
Flow 

Branched b y/n Presence/absence of branched passages 

Multilevel b y/n Presence/absence of multiple levels 

Entrances b integer Total number of entrances to a single cave 
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Building Habitat Selection Models 

Principal components analysis 

Principal components analysis (PCA) was used to visually identify patterns among 

cave morphology and microclimate variables to reduce the number of variables used in 

linear regression. This approach reduces the problematic effect of multicollinearity on 

regression model outputs from the use of several ecological predictor variables (Graham 

2003). PCA was also used to evaluate the within-sample predictive power of different 

approaches to measuring two types of cave morphology variables. First, I compared the 

within-sample predictive power when using the area of a single cave entrance or the total 

area of all cave entrances. Second, I compared the within-sample predictive power when 

using missing values or mean entrance aspect as a fill-in value for vertical cave entrances 

that have no true aspect. A probabilistic PCA with two principal components was 

performed in R statistical software using package “pcaMethods” (R Core Team, 2018). 

Multicollinearity was assessed for all variables prior to conducting the PCA and resulted 

in the removal of entrance area and direct cave length due to correlations greater than 

0.60 with other variables. Entrance area was correlated with constriction area (0.69) and 

trench depth (0.75); direct cave length was correlated with total cave length (0.66) and 

cave depth (0.67).  

Generalized linear modeling 

Linear regression with a Gaussian error distribution and an identity link were used 

to further describe the relationship between cave microclimate and morphology. Cave 
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morphology variables with a strong relationship to temperature in the initial PCA were 

included in a linear regression candidate model set. Model selection was performed using 

AICc values and weights, but parameter estimates and their 95% confidence intervals 

were compared across the top four models. Predictions of bat abundance from the linear 

model best describing mean winter temperature were created for the validation dataset, 

but were excluded due to the model’s poor predictive performance.  

Boosted regression trees 

Boosted regression trees were chosen for use with the extensive dataset (n=191) 

due to their improved predictive performance (Elith et al. 2008). This machine learning 

approach creates decision trees using threshold values for each predictor variable. 

Boosting the regression tree analysis is a sequential method where additional trees are 

added to improve the performance of the previous collection of trees. All trees are then 

combined to yield a single consensus prediction. These models do not produce AICc 

scores but rather provide an estimate of the relative influence of each predictor variable. 

Variables with higher relative influence provide a larger decrease in the residual sum of 

squares and are therefore weighted when building the boosted regression tree model 

(Elith et al. 2008. These highly weighted variables can be interpreted as the most 

influential predictor variables.     

 Due to the limited availability of morphology variables that were easy to measure 

for all caves in the extensive dataset (n=191), principal components analysis was not used 

to reduce the number of variables prior to conducting boosted regression tree analysis. No 

multicollinearity was found between these seven variables; all were included in the 
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analysis. Simplification of models by stepwise removal of predictor variables with low 

relative influence was assessed following methods outlined in Elith et al. (2008) but did 

not improve model performance and was therefore not used for further analysis.  

To determine the optimal settings for the boosted regression tree analysis, I 

conducted a systematic assessment of values for tree complexity, learning rate, and bag 

fraction. The analysis yielded very similar cross-validation (CV) deviance and correlation 

for all value combinations considered reasonable based on guidance in Elith et al. (2008). 

Therefore, I set tree complexity equal to 4 for the intensive dataset, corresponding to four 

predictor variables. For the extensive dataset, tree complexity was set to 5, as this is a 

commonly used upper limit of tree complexity in the ecological application literature 

(Elith et al. 2008). To reduce overfitting of the model, the proportion of the data used to 

build each regression tree, known as bag fraction, was set to 0.75, and learning rate, used 

to inform sequential regression tree construction, was set to 0.001. This produced an 

optimal number of tress greater than 1000, as suggested by Elith et al. (2008).   

Evaluating Habitat Selection Models  

To validate habitat selection models, 50 caves with no prior hibernacula survey 

data were selected through stratified random sampling based on cave length to ensure that 

shorter caves (more abundant in the sample frame) were not selected more frequently 

than longer caves (substantially less abundant in the sample frame). Caves classified as 

surface tubes or bridges (Appendix A) were excluded due to previous survey data 

showing extremely low abundance at these sites (NPS, unpublished data). From the 
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remaining dataset of 322 unsurveyed caves, ten were selected from each of the five 

length bins (15-44m, 45-75m, 76-106m, 107-136m, greater than 137m). Important cave 

morphology variables as identified by the PCA (entrance area, constriction area, trench 

depth) and included in the extensive dataset (trench length, morphology category) were 

measured at all 50 caves in 2017. Bat abundance surveys at these sites were completed in 

conjunction with normally-scheduled hibernacula surveys in January 2018. Prior to 

surveys conducted for this thesis, the Institutional Animal Care and Use Committee 

(IACUC) from Humboldt State University approved protocol no. 15/16.W.111-A, titled 

“Characterizing Western Bat Hibernacula through Cave Morphology and Microclimate” 

on January 23, 2017. 
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RESULTS 

Describing Cave Microclimate and Bat Abundance 

Mean winter temperature (November 15 – March 15, 2012-2016) compiled for the 

intensive dataset (n=30 caves) showed warmer temperatures and increased variability 

among sites with fewer hibernating bats with direct reference to the abundance categories 

used for stratified random site selection in the population monitoring program (Figure 2). 

Closer investigation of this pattern using linear regression again suggested hibernating 

bat abundance was inversely related to mean winter cave temperature, but that this 

pattern was stronger among occupied caves (Figure 3A). When considering habitat 

selection among all caves in the dataset (occupied and unoccupied sites), this pattern was 

less strong as influenced by variability in unoccupied sites (Figure 3B). All six caves in 

this dataset with mean winter temperature below 0℃ contained ice deposits present year-

round; the two caves occupied by bats had substantially smaller ice deposits than the four 

unoccupied ice caves (Kern & Thomas 2014). Small ice deposits ranged from 

approximately 3 to 6 square meters, while large ice deposits ranged from approximately 

20 to 60 square meters (NPS unpublished data).  
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Figure 2. Variation in mean winter temperature from the deep zone of 30 volcanic caves shows 
warmer temperatures and increased variability among sites with fewer hibernating bats (C. 
townsendii). The bold line, box, and whiskers represent the mean, quartiles, and 95 percentiles, 
respectively.  Data collected at Lava Beds National Monument, Tulelake, California with Onset 
HOBO Pro U23-001 v2 dataloggers from Nov 15- Mar 15, 2012-2016. 



21 
 

  

 

Figure 3. Negative relationships with beta values, 95% confidence intervals, and R2 values as 
determined by linear regression using mean winter cave temperature to describe log10-
transformed mean bat abundance for (A) occupied caves (n=18) and (B) all caves (n=30). 
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Patterns in Cave Microclimate and Morphology 

Principal components analysis (PCA) showed cave temperature had a strong 

positive influence on the first principal component, while trench length, trench depth, and 

constriction area had strong positive influence on the second principal component (Figure 

4A). Depth was highly correlated with temperature and was therefore removed to reduce 

multicollinearity within the candidate model set. Simplification of the predictor variables 

through removal of those not related to temperature increased the amount of variance 

explained by the two principal components from 44% to 78%. The PCA scores plot 

showed little to no clustering of sites based on bat abundance categories (Figure 4B).  

Comparisons of PCAs showed minimal differences in percent of variance 

explained when using the combined area of all entrances compared to the area of a single 

entrance closest to the deepest passage in the cave. Similarly, for caves with vertical 

entrances, percent of variance explained when using missing values for entrance aspect 

did not differ from a PCA using the mean aspect of all cave entrances. Therefore, the 

simplest metrics (area of a single entrance, N/A for vertical entrances) were used in final 

analysis. 
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Figure 4. Principal components analysis of cave morphology and microclimate variables, and in 
relation to bat abundance. (A) Loadings plot showing a relationship between mean winter 
temperature (Nov 15-Mar 15, 2012-2016) and three cave morphology variables (trench length, 
trench depth, and constriction area). Percent of variance explained by two principal components 
improved from 44% to 78% when the remaining eight variables with weak relationships to 
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temperature were removed from analysis. (B) Scores plot showing little to no clustering of sites 
based on bat abundance categories. 
  

Investigations of the relationships between temperature and cave morphology were 

explored through generalized linear models (Table 3, Figure 5). Continuous predictor 

variables were selected from patterns identified in PCA (trench depth, trench length, and 

constriction area). Categorical predictor variables (Trend, Morphology Category, System, 

Branched, and Multilevel) were included in the candidate model set, but none were in the 

top 4 models (Table 3). All models with categorical predictor variables had very low 

AICc weights (<1%) and delta AICc values greater than 2 when compared to the top 4 

models. The top model had an R2 value of 0.44, suggesting moderate goodness-of-fit. 

Parameter estimates and 95% confidence intervals were similar across all four models, 

suggesting negligible effects of model selection uncertainty (Figure 5).  

 
Table 3. Model selection criteria for linear regression models describing mean winter cave 
temperature (Nov 15-Mar 15, 2012-2016) with three cave morphology predictor variables 
identified through PCA from a set of ten total cave morphology measurements (Figure 4). Data 
was collected at 30 caves in Lava Beds National Monument, Tulelake, California. 

 Temperature Models K AICc Δ AICc 
AICc 

Weight 
Trench Depth + Trench Length 4 76.12 0 0.42 
Trench Depth 3 76.56 0.44 0.34 
Constriction Area + Trench Depth + Trench Length 5 78.57 2.45 0.12 
Constriction Area + Trench Depth 4 78.95 2.83 0.1 
Trench Length 3 83.01 6.89 0.01 
Constriction Area + Trench Length 4 85.03 8.91 0 
Constriction Area 3 89.07 12.95 0 
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Figure 5. Scaled coefficient estimates and 95% confidence intervals for predictor variables in the 
top four linear regression models describing mean winter cave temperature (Nov 15-Mar 15, 
2012-2016) at 30 caves in Lava Beds National Monument, Tulelake, California. 
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Predicting Bat Abundance with Cave Morphology Variables 

The boosted regression tree model was built using the extensive dataset (n=191) 

with seven efficiently-measured predictor variables. Deviance and cross-validation (CV) 

correlation values indicated moderately poor predictive performance and possible 

overfitting (Table 4). However, predicted bat abundance was different from actual bat 

abundance by only a few individuals in most cases (Figure 6). In general, the model over-

predicted bat abundance, but predictions could be improved if a few individuals were 

subtracted from each prediction before being considered for use in prioritizing caves for 

future surveys.  

Three of the seven morphology variables provided 99% of the relative influence in 

model construction (Figure 7). When included separately in the boosted regression tree 

models, number of entrances, passage slope, and passage size were not identified as 

important variables (less than 10% of the relative influence). However, when coded as a 

unique categorical variable (Morphology Category), these variables had high relative 

influence (63%) on regression tree structure, suggesting an interaction between these 

three variables was critical to the prediction of bat abundance (Figure 7).  

Four cave morphology category values showed increased bat abundance at caves 

with multiple entrances, sloped passages, and medium or large ceiling heights (Figure 8). 

This increase was also seen at caves with a single entrance, flat or sloped passages, and 

medium or large ceiling heights (Figure 8). Five cave morphology category values 

showed the lowest mean bat abundance at small or medium sized caves, and all but one 
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was assigned a flat slope, though some outliers with moderate bat abundance exist in 

those category values (Figure 8). Partial dependence plots showed a positive relationship 

between bat abundance and cave length, as well as between bat abundance and trench 

length (Figure 9), though outliers produced some complexity in this pattern. 

Table 4. Performance metrics for the boosted regression tree model describing hibernating bat 
abundance in volcanic caves surveyed from 2010-2017 at Lava Beds National Monument, 
Siskiyou County, CA. 

Number of 
Predictor 
Variables 

CV 
deviance 

CV 
deviance 

SE 
CV 

correlation 

CV 
correlation 

SE 

Optimal 
number 
of trees 

Number 
of sites 

(n) 
7  30.387 13.12 0.387 0.092 3750 191 
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Figure 6. Comparison of predicted and observed bat abundance for a set of caves (n=50) used to 
validate the boosted regression tree model built from an extensive dataset (n=191) with seven 
predictor variables. Performance is moderate as shown by a distribution of points close to the 1:1 
line, though several points show distinct over-predictions. 
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Figure 7. Relative influence plot showing the importance of predictor variables in creating the 
boosted regression tree model used to predict bat abundance. Morphology category 
(entrances*slope*size) provides the most influence (63%), followed by cave length (30%) and 
trench length (6%) while the other four variables (system, trend, multilevel, and branched) 
collectively provide just 1% of the relative influence. 
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Figure 8. Boxplot describes log10-transformed mean bat abundance in relation to eleven possible 
combinations of cave morphology categories assigned based on information gathered from cave 
maps. Codes reflect single or multiple entrances (S/E), flat or sloped (F/S) passages, and small 
(<1.5 m), medium (1.5-6m), or large (>6m) ceiling heights (S/M/L). For example, SFS describes 
a cave with a single entrance, flat passages, and small ceiling heights.   
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Figure 9. Partial dependence plots for predictor variables used in boosted regression tree models 
showing positive relationships between bat abundance and cave length in meters (9A) as well as 
between bat abundance and trench length in meters (9B). Outliers with the longest cave and 
trench lengths produce a plateau in fitted function values.  
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DISCUSSION 

Cave Temperature 

The relationship between cold cave microclimate and high bat abundance has 

been well documented across several species in volcanic caves, limestone caves, mines, 

and rock crevices (Tuttle & Stevenson 1978, Perry 2012). Data from the deep zones of 

volcanic caves at Lava Beds National Monument showed similar patterns of high bat 

abundance in caves with mean winter temperatures between 0° and 4° Celsius (Figures 2 

and 3). The inverse relationship between cave temperature and bat abundance was 

stronger among occupied sites (Figure 3A), whereas increased variability in temperature 

among unoccupied sites generate a weaker relationship (Figure 3B). Year-round ice 

deposits may deter bats, as these caves otherwise provided similar temperatures to those 

caves with the highest bat abundance. As the ice volume in these caves changes over time 

(Zoltan & Thomas, 2014; Smith, 2014), changes in bat abundance at these sites will be 

important to document. Perhaps as the microclimate in these sites becomes too warm for 

ice in the future, it may instead provide ideal conditions for hibernating bats.   

Further efforts could be made to clarify the relationship between cave 

microclimate and bat abundance in pursuit of a better understanding of C. townsendii 

ecology. For example, dataloggers measured temperature at easy-to-reach locations on 

the floors and walls below actual bat roost locations. Further analysis of microclimate 

variation within occupied caves could improve understanding of variation in abundance 



33 
 

  

among sites, where occupied caves may have more passage area with suitable 

temperature conditions than unoccupied caves. Stability of microclimate may also 

influence habitat selection for C. townsendii in volcanic caves, though that issue was not 

addressed in this analysis. Further, patterns between relative humidity and bat abundance 

could be clarified but were excluded here due to their multicollinearity with temperature. 

Instead, this analysis prioritized improvement of site selection based on cave morphology 

variables that were easier to measure than precise temperature for more efficient 

application to hundreds of caves. 

Cave Morphology 

Though cave microclimate may be directly influencing bat abundance in 

hibernacula, this metric is expensive and time-intensive to monitor. Instead, I used cave 

morphology as a proxy for cave microclimate to predict bat abundance in hibernacula 

because morphology metrics are more cost-effective and less time-intensive to measure. 

Cave microclimates are created by airflow exchange between the surface and cave 

passages (DeFreitas & Littlejohn 1987, Tuttle & Stevensen 1978). Passage configuration 

can have a large influence on this airflow exchange. For example, cold air can sink and 

be stored in caves with large passage volume located in deep chambers below entrances 

and chimney effects can occur between multiple entrances (Halliday 1954, Tuttle & 

Stevensen 1978).  
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In the intensive dataset (n=30), important cave morphology variables identified 

through PCA and used in linear regression to describe mean winter cave temperature 

included trench length, trench depth, and constriction area (Figures 4 and 5). Though the 

loadings plot showed visual patterns indicating trench length, trench depth, and 

constriction area might be indicative of cave temperature, the scores plot showed little to 

no clustering among caves in relation to the abundance categories used for site selection. 

This may suggest that the variables and sites in this dataset do not accurately reflect bat 

abundance patterns among all caves in the monument. Trench length and trench depth 

defined microtopographic variation on the surface near cave entrances, potentially 

providing an above-ground cold air sink similar to those developed in ice caves described 

by Halliday (1954). Constriction area represented an abrupt change in passage size 

known to increase or restrict airflow within a cave (Tuttle & Stevensen 1978). 

In the extensive dataset (n=191), boosted regression tree models suggested that 

interactions between the number of entrances, passage slope, and passage size were the 

most influential predictor of bat abundance. Cave length and trench length followed in 

relative importance of creating bat abundance predictions, respectively. This combination 

of cave morphology metrics may best describe the complexity of airflow within a cave, 

where larger, longer caves could provide a more unique microclimate within the deep 

zone as compared to microclimates available on the surface (Tuttle and Stevensen 1978, 

DeFreitas & Littlejohn 1987, Ransome 1990). Trench length may be further 

differentiating available microclimate between surface and cave environments.  
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 In other studies of cave and mine hibernacula, entrance size and aspect have been 

strong predictors of bat presence (Barnhart & Gillam 2017, Gilles 2014, Dixon 2011, 

Sherwin et al. 2000). Models using topographic variables found elevation, slope, and 

vegetation cover to be indicative of mean annual cave temperature (Hejna et al. 2015, 

Sherwin et al. 2000, Barnhart & Gillam 2017). Though many of these same studies 

reported non-significant results of cave length as a predictor, conclusions often alluded to 

the variability of length measurements based on braided passages and multiple levels, 

creating complexity in standardizing cave length measurements. In a study that included 

mines, Sherwin et al. (2000) found passage dimensions and complexity to be insignificant 

predictors of C. townsendii abundance. However, many of these studies reflected larger 

study areas with more landscape variation than is present within Lava Beds National 

Monument, which may have led to differences found between this analysis and those 

studies.  

Of the studies that focused on cave morphology, hibernating C. townsendii 

selected sites far from cave or mine entrances (Humphrey & Kuntz 1976). In a study of 

13 volcanic caves in Idaho, probability of occupancy by hibernating C. townsendii was 

correlated with presence of a collapse or constriction and lower mean ceiling height 

(Gillies et al. 2014). A similar study in Utah predicted a greater probability of occupancy 

at caves and mines with entrances less than 1.5 meters in height (Sherwin et al. 2000).  

further supports the use of cave morphology as moderately powerful predictors of bat 

abundance. These studies, along with the analysis presented here, provide further support 
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for the use of cave morphology variables as a proxy for temperature in predicting bat 

abundance.  

Evaluation of Predictive Model 

Though many studies have used landscape topography or cave morphology 

metrics to predict cave temperature or bat abundance, very few studies go on to validate 

these predictions. Though this model generally overpredicted bat abundance, the 

difference between predicted and observed values was only a few individuals for most 

sites. The patterns shown by evaluation of the interactive morphology term and partial 

dependence plots (Figures 8 & 9) suggested that short caves with low ceiling height have 

the lowest bat abundance. This analysis provides a unique opportunity to increase 

monitoring program efficiency by avoiding surveys at unoccupied sites that contribute 

little to the population census.   

Overall, moderate predictive performance requires relatively little data collection 

effort, as the relative influence plots (Figure 7) suggested just three predictor variables 

were needed to explain most of the variation in bat abundance. Identification of these 

variables for the remaining 322 unsurveyed caves is possible, as data was collected from 

aerial imagery and cave maps. Though there may be a small portion of the unsurveyed 

caves for which accurate maps do not yet exist, most of these unsurveyed sites could be 

classified according to predictor variable categories used in this analysis.  

If this model is used to prioritize sites for or eliminate sites from future surveys, 

there will likely be some errors associated with imperfect predictions. This could be 
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caused by missing or erroneous data from incomplete or inaccurate cave maps. Though 

reliable cave maps are available for approximately 70% of the caves in the monument, 

we may be unable to accurately classify morphology metrics at those sites without maps 

which could lead to complexity in future analysis. However, the monument partners with 

an extensive network of cave surveyors through the Cave Research Foundation; this 

partnership could be used to complete prioritized survey projects.  

Though data related to spatial movement, social interaction, population 

demographics were not included in this analysis, these factors likely contribute to habitat 

selection and may improve future modeling efforts. Roost selection may vary by age, and 

sex, and latitude (Ransome 1990). Learned response and conspecific attraction may also 

be important, as bats communicate using a variety of techniques, including local 

enhancement, social facilitation, imitative learning, and intentional signaling (Wilkinson 

1995). Further, habitat selection may vary among bats that roost individually and those 

that roost in direct contact with other bats, where thermoregulatory function or social 

interaction may influence bat abundance within or among potential hibernacula. Future 

efforts to describe C. townsendii ecology should consider these hypotheses.   

  

Management Suggestions 

Use of this model to prioritize unsurveyed sites could lead to faster discovery of 

important hibernacula, given the large number of caves to be surveyed and that most of 

them are unlikely to be occupied. Discovery of new hibernacula would increase the 
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monitored proportion of the C. townsendii population that resides within Lava Beds NM, 

potentially providing a more accurate population monitoring program. As this C. 

townsendii population monitoring program provides the most consistent data at some of 

the largest known hibernacula in the western U.S., continued development and 

implementation of this program is critical to informing decisions related to this species of 

special concern.  

Application of the predictive model would require additional time spent assigning 

and compiling the identified predictor variables for the remaining 322 unsurveyed caves 

of interest. The most influential predictor (a categorical term describing the number of 

entrances, passage slope, and passage size) would require the most time to compile 

(approximately 80 hours) as this requires locating and interpreting individual cave maps. 

Some cave maps may be underdeveloped with insufficient detail to accurately assign 

morphology categories. The proportion of caves for which this applies is currently 

unknown and could create complexity in future analysis.  

Alternatively, future site selection could simply eliminate caves below a length 

and maximum ceiling height threshold, an expansion of methods used to eliminate 

surface tubes and bridges from the sample frame before this analysis. This approach still 

requires interpretation of cave maps but requires only a single metric to be recorded from 

maps. Further analysis would be required to evaluate the exact cutoff values and potential 

errors associated with eliminating these sites from future surveys.  

Application of these models will not be an effective approach to population 

monitoring for other hibernating bat species present in volcanic caves (Myotis spp. and 
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Eptesicus fuscus) at Lava Beds NM. Records are sparse with no clear relation to cave 

morphology or temperature (NPS unpublished data). In addition, Myotis spp. and E. 

fuscus are often found roosting inside crevices with only part of the body visible, making 

species identification difficult (Szewczak et al. 1998, NPS unpublished data). These 

species may be roosting in talus slopes, rock crevices, basal tree hollows, or human-

developed structures, making site identification difficult without intensive telemetry 

research (Evelyn et al. 2004). Effective monitoring for these species will require acoustic 

techniques. Pilot acoustic monitoring efforts during summer months of 2016-2017 shows 

ubiquitous occurrence of several species across the monument (NPS unpublished data). 

The North American Bat Monitoring program may be a suitable framework to consider in 

development of new population trend, activity level, or occupancy monitoring programs 

for species other than C. townsendii.  

Though alternative approaches to population monitoring will be required for bat 

species other than C. townsendii, the predictive modeling methods developed and 

presented here could be applied to other aggregating wildlife species with identifiable 

habitat associations. Maximizing efficiency of surveys by selecting sites more likely to be 

occupied by the species of interest will reduce monitoring costs when the objective is to 

maximize the proportion of the population monitored. Alternatively, surveying sites that 

are potential habitat but are unoccupied is important when the objective is to study 

change over time in the area occupied. This is an important consideration for the long-

term implementation of this monitoring program in relation to the potential effects of 

white-nose syndrome on roosting behavior and habitat selection, as bats may roost in 
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smaller numbers at more dispersed locations to reduce disease-related mortality. The 

approaches described here, combining efficient site-level habitat metrics with machine 

learning analyses, could be used to improve the efficiency of monitoring site selection in 

either of these situations. Overall, the efficient use of survey effort via targeted 

monitoring to inform active decision-making is critical to the effectiveness of ecological 

conservation (Nichols & Williams 2006).  
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APPENDIX A. CLASSIFICATION OF SURFACE TUBES AND BRIDGES 

 For the purpose of preliminary prioritization of unsurveyed caves, experienced 

NPS staff identified surface tubes and bridges according to the following designations. 

These site types a have internal microclimates very similar to the surface microclimate 

and are assumed to be unoccupied or have extremely low bat abundance. These 

assumptions are supported by data from 137 surveys at these site types showing mean bat 

abundance of 0.22 (SE=0.07) bats per surface tube or bridge (NPS unpublished data).  

Surface Tube: Shallow cave, small overburden, often at the end of a flow with 

dendritic/braided channels. Downward slope of floor usually not greater than -10⁰ . No 

deep zone is present. From Lava Beds NM’s cave database, the following records were 

identified as surface tubes: 1) Any cave record with notes from previous surveyors 

indicating 'surface tube' or 'no dark zone'. 2) Any cave record with length less than 50 

feet AND no indication of unexplored leads. 3) Any cave record with maximum ceiling 

height less than or equal to five feet, regardless of length. 

Bridge: Usually shorter than it is wide. If not, no deep zone is present due to multiple 

large entrances that allow substantial airflow and light infiltration.  Depth usually less 

than 50 feet. From Lava Beds NM’s cave database, the following records were identified 

as bridges: 1) Any cave record with notes from previous surveyors indicating 

'bridge' AND 'no dark zone'. 2) Any cave named 'Bridge' with length less than 100 feet 

and two entrances OR length less than 200 feet long and three or more entrances. 
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APPENDIX B. CAVE MORPHOLOGY CATEGORY HISTOGRAM 

 

 


