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ABSTRACT 

THE EFFECT OF THE LOSS OF LGL1 IN MURINE NEURAL PROGENITOR 

CELLS ON MAPK SIGNALING AND PROLIFERATION 

 

Monique LaCourse 

 

Glioblastoma is an incurable, aggressive, and highly invasive type of brain tumor 

that harbors tumor initiating cells characterized by disrupted polarized cell divisions. A 

cell polarity gene lethal (2) giant larvae 1 (Lgl1) has been implicated in gliomas and is a 

tumor suppressor initially identified in Drosophila with roles in proliferation. The loss of 

Lgl1 in Drosophila activates the MAPK protein kinase JNK and the Ras pathway and 

therefore its downstream kinase ERK, a transcription factor modulator. Furthermore, 

when Lgl1 is knocked out in mice, a phenotype similar to glioma is seen. Loss of the 

human form of Lgl1, Hugl1, and increases in c-Jun, an oncogene and JNK target, has 

been associated with glioma in humans. Additionally, the protooncogene transcription 

factor c-Myc is documented in glioma to directly correlate to tumor grade and an increase 

in an analogous form, d-Myc, in Drosophila has been shown to promote survival of Lgl 

mutants through a Ras mechanism. Here we sought to determine if the cancer properties 

associated with loss of Lgl in mice and humans are related to changes in MAPK 

signaling. To accomplish this, murine neural progenitor cells from the subventricular 

zone of mice with a Lgl1 knockout were cultured in vitro. These cells were plated 
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adherently and characterized for changes in phosphorylation states of MAPK proteins 

ERK, JNK and p38 as well as two protooncogene MAPK downstream targets, c-Jun and 

c-Myc. In addition, to understand if MAPK phosphorylation is related to proliferation we 

characterized the proliferation rates of these cells in the presence of chemical inhibitors 

of p38 and ERK’s upstream activating kinase MEK. Differential expression patterns were 

observed in MAPK proteins and their downstream targets associated with the loss of 

Lgl1, under standard conditions and with the treatment of DMSO as a drug vehicle 

control and chemical inhibitors of p38 and MEK. Additionally, it was found that the loss 

of Lgl1 in neurosphere culture slightly increased growth and under adherent conditions 

this effect was not seen, however, changes did occur in the presence of p38 and MEK 

inhibitors. This supports previous data and signifies the importance of MAPK pathway in 

cancer phenotypes and beginning to characterize the role of the Lgl1 protein in the 

mouse.  
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INTRODUCTION 

Glioblastoma Origins in Neural Stem and Progenitor Like Cells 

Glioblastomas comprise approximately 17% of central nervous system tumors 

which are incurable, aggressive, and highly invasive. Their diffuse nature makes surgery 

impossible and chemotherapy and radiation treatments rarely increase the mean patient 

survival of 14 months (Phuphanick 2017). A characteristic feature which makes them 

difficult to treat is their phenotypic heterogeneity due to the glioblastoma cells existing in 

different differentiation states (Singh et al. 2004). Genetically-engineered mouse models 

have shown glioblastoma tumors to harbor stem-cell like tumor propagating cells 

originating from neural stem and progenitor cells which upon transplantation to an 

immunocompromised mouse have the ability to regenerate the tumor (as reviewed by 

Liebelt et al. 2016; Singh et al. 2004; Llaguno et al. 2009; Sugiarto et al. 2011). These 

undifferentiated cells are resistant to current radiation and chemotherapy treatments 

signifying they have a key role in glioblastoma recurrence and show the need for further 

research to develop treatments to target these cells (Bao et al. 2006; Chen et al. 2012). 

Additionally, human and murine glioblastoma tumor propagating cells are characterized 

by disrupted polarized cell divisions, increased self-renewal, and impaired differentiation 

capacities (Sugiarto et al. 2011). Better understanding the molecular mechanisms behind 

these cancer properties could provide insight into the etiology and treatments for this 

devastating cancer. 



2 

 

 

Lethal Giant Larvae Homolog 1 as a Highly Conserved Cell Polarity Gene 

Loss of cell polarity is considered a hallmark of cancer formation and cell 

proliferation. Mutations in genes governing asymmetric cell division and apical-basal cell 

polarity promote tumor formation in Drosophila and mammals (reviewed in Neumuller 

and Knoblich 2009). One of these genes is lethal (2) giant larvae homolog 1 (Lgl1), 

which is a membrane bound tumor suppressing protein with roles in cell polarity and 

proliferation that is conserved across the eukaryotic kingdom (Gateff 1978; Mechler et al. 

1985; Lee et al. 2006; Humbert et al. 2003). The gene was initially characterized in 

Drosophila through a genetic screen which found it to contribute to larval morphology 

deformities by being a recessive regulator of malignant neuroblastomas. It was named for 

its extraordinary ability to create fatal overgrowth in the brain and imaginal discs in 

Drosophila (Gateff 1978). It was later identified in Drosophila this dysregulation in 

symmetrical division occurred in neuroblasts, stem cells of the developing brain, due to a 

signaling disruption between Lgl, Pins, and aPKC (Lee et al. 2006). There are two 

mammalian homologues, Lgl1 (Hugl1) and Lgl2 (Hugl2). Similarities in their roles is 

related to the conserved structure in the Lgl protein across different species consisting of 

multiple WD40 domains which are used as a scaffold for coordination of multiprotein 

complex assemblies and contain serine and threonine phosphorylation sites. 
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Lgl in Drosophila Development 

Mutations in Drosophila lethal giant larvae gene (D-Lgl) causes loss of apical-

basal polarity, loss of epithelial organization, and uncontrolled proliferation (Baek 1999; 

Bilder 2001; Humbert et al. 2003; Justice et al. 2003). D-Lgl co-localizes with Discs-

large (Dlg) and Scribble to establish and maintain the basolateral domain while 

functioning competitively with protein complexes that are necessary for the apical 

membrane domain, the Par complex (Par3/Par6/aPKC) and Crumbs complex 

(Crumbs/Pals/Patj) (Bilder and Perrimon 2000; Ohshiro et al. 2000; Peng et al. 2000; 

Albertson and Doe 2003; Betschinger et al. 2003; Tanentzapf and Tepass 2003). D-Lgl 

acts together with Numb, a negative regulator of Notch, a protein related to glial 

differentiation and self-renewal of the neural progenitor cell (Betschinger et al. 2003). 

Depletion of Lgl upregulates Notch signaling in Drosophila eye tissue and increased 

Notch has been noted to prevent differentiation and encourages undifferentiated 

proliferation (Parsons et al. 2014). In the Hippo pathway, which has roles in proper 

control of cell survival and organ size, loss of Lgl causes deregulation potentially 

inducing tumorous tissue growth through an increase in Yorkie activity (Grzeschik et al. 

2010; Froldi et al. 2010). Similarly, an increase in Yorkie activity is also seen through 

upregulation of one of the mitogen activated protein kinases (MAPK), Jun N-terminal 

kinase (JNK) (Sun and Irvine 2013). This work in Drosophila has led to many 

mammalian studies to characterize the differences between species and further elucidate 

Lgl’s role in development and pathology. 
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Lgl1 in Mammalian Development and Pathology 

Studies shifted to mammalian model after the promising studies in Drosophila in 

hopes to uncover a treatment for pathologies related to Lgl. Lgl1 is broadly expressed in 

mice with the highest expression in the brain (Klezovitch et al. 2004). Numb mutant mice 

display hyperplasia of the developing cortex (Li et al. 2003). Also related to increased 

Notch signaling, in transgenic mice the Lgl1 gene product controls cell cycle exit and 

apical-basal polarity of neural progenitor cells. This results in aberrant growth and 

symmetric cell division of neuroepithelial cells forming a phenotype similar to glioma 

partly due to their inability to differentiate (Klezovitch et al. 2004) (Figure 1). In humans, 

it has been suggested that normal polarity signaling is necessary for maintenance of 

healthy tissue and disrupted cell polarity may contribute to epithelial-to-mesenchymal 

transition and tumorigenesis (Shin et al. 2006; Nakaya and Sheng 2013; Casarsa et al. 

2011). However, Lgl’s role in leukemia has been inconsistent and the absence of Lgl1 in 

mice does not alter leukemiai by Notch, c-Myc, and Jak2 signaling (Hawkins et al. 2014). 

Recent data has suggested opportunities for further research on the mechanism may lie in 

the mitochondria related signaling, MAPK and Ras signaling, and mTor signaling 

(reviewed in Cao et al. 2015). Overall there remains a gap in truly understanding the 

mechanism of action of Lgl1 and its role in cancer particularly in mammalian models 

such as mice which showed such a severe and fatal phenotype with the loss of Lgl1 

(Klezovitch et al. 2004). 
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Figure 1. In vivo murine Lgl1 knockout displays overgrowth of the brain. (A, B) Changes 

to the morphology of E12.5 mouse embryos with Lgl1 loss. (C, C’ through E, E’) 

Histological changes in brain structure compared to WT samples of E12.5 embryos. D, 

D’ and E, E’ represent magnified images of the previous boxed areas. (F, F’ through H, 

H’) Histological changes in brain structure compared to WT samples of E15.5 embryos. 

G, G’ and H, H’ represent magnified images of the previous boxed areas. Inset of H’ 

shows an aberrantly localized blood vessel on the ventricular wall. (I, I’) Visualization of 

ventricle dilation and damage with loss of Lgl1 function (adapted from Klezovitch et al. 

2004).  
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Hugl-1 in Human Glioma 

The molecular mechanisms of the human homolog of Lgl is still being understood 

in various tissue types and cancers. It has been found that Hugl1 suppresses various 

epithelial cancers by inhibiting proliferation and migration and promoting apoptosis and 

cell adhesions (Lu et al. 2009; Song et al. 2013; Kuphal et al. 2006). One study found 

decreased levels of Hugl1 in human glioma tissues, indicating it is involved in glioma 

progression. However, over-expression in vitro either stably or transiently did not affect 

glioma cell proliferation or regulate the Hippo pathway as suggested in the Drosophila 

model. In an orthotopic model of nude mice with a glioma cell line, over-expression of 

Hugl1 inhibited gliomagenesis and proliferation and promoted apoptosis (Liu et al. 

2015). Furthermore, Hugl1 is constitutively phosphorylated and inactivated in 

glioblastoma cells. Cell motility and invasion of glioblastoma cells was reduced in vitro 

and in vivo, respectively, and differentiation promoted in vitro and in vivo when a non-

phosphorylatable and constitutively active form of Lgl1 was expressed in a glioblastoma 

cell line, in primary patient cells, and in intracerebral xenografts (Gont et al. 2014). 

Phosphorylation of Hugl1 was attributed to increased aPKC activity from increased PI 3-

kinase due to the loss of PTEN of which this loss occurs in 90% of glioblastomas (Gont 

2016). While this data supports previous work in Drosophila, the molecular mechanism 

of action is still not fully understood in humans and certainly not in mice. 
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Mitogen Activated Protein Kinase (MAPK) Pathway 

Mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that 

mediate intracellular signaling associated with a variety of cellular activities including 

cell proliferation, differentiation, survival, death, and transformation (McCubrey et al. 

2006; Dhillon et al. 2007). The mammalian MAPK family consists of p38, extracellular 

signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). They are comprised 

of several isoforms: ERK1 to ERK8; p38-α, -β, -γ, and -δ; and JNK1, 2 and 3 (Schaeffer 

and Weber 1999). Each signaling axis to activate these MAPK proteins consists of three 

components which phosphorylate each other in the following order: a MAPK kinase 

kinase (MAP3K) phosphorylates a MAPK kinase (MAP2K) which in turn phosphorylates 

the MAPK. Activated MAPKs phosphorylate various substrate proteins including 

transcription factors such as Elk-1, c-Jun, ATF2, and p53 (reviewed in Kim and Choi 

2010).  

MAPKs have been implicated in numerous functions in many types of cancer 

with cancerous mutations being primarily associated with the Ras/Raf/MEK/ERK 

pathway while the stress activated pathways, JNK and p38, appear to counteract 

malignant formation (reviewed in Dhillon et al. 2007). A summary of the MAPK 

pathway can be found in Figure 2. Roles for each have been documented in the properties 

associated with glioblastoma. 
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Figure 2. Mitogen-activated protein kinase (MAPK) signaling pathways. MAPK 

signaling pathways mediate intracellular signaling initiated by extracellular or 

intracellular stimuli. MAP3Ks, which are activated by MAP4Ks or GTPases, mediate 

phosphorylation and activation of MAP2Ks, which in turn phosphorylate and activate 

MAPKs. Activated MAPKs phosphorylate various substrate proteins including 

transcription factors, resulting in regulation of a variety of cellular activities including 

cell proliferation, differentiation, migration, inflammatory responses, and death. The 

mammalian MAPK family includes ERK, p38, and JNK (adapted from Kim and Choi 

2010). 
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MAPK in relation to Lgl1, neural stem cells, and glioblastoma 

ERK. The RAF/ERK signaling pathway is activated during neural stem cell 

proliferation and neuronal and astrocytic differentiation (Rhee et al. 2016). Additionally, 

the phosphorylation of ERK is necessary for neuronal differentiation and survival of 

differentiating cells (Li et al. 2007). The RAS/RAF/MEK/ERK signaling cascade is 

implicated in a number of cancers and therefore a common target for chemotherapies and 

is even referred to as the “Achilles heel of the MAPK pathway in cancer therapy” (Liu et 

al. 2018). Mutations in upstream kinase MEK has led to hyper activation of ERK and 

been shown to induce gliomas in vivo with the additional activation of AKT or loss of 

Ink4a/Arf. Recently a large genomic screening of various grades of diffuse glioma tissue 

found a substantial amount of activating KRAS and NRAS mutations (Ceccarelli et al. 

2016). Furthermore, glioma cell proliferation is controlled by ERK activity-dependent 

surface expression of PDGFRA in glioma cells. Treatment with a MEK inhibitor induced 

an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 

phosphorylation concomitant with diminished surface expression of PDGFRA which 

decreased cell proliferation (Chen et al. 2014). Curcumin was found to effect glioma cell 

line by activating the ERK pathway and inducing autophagy. When the ERK pathway 

was inhibited the curcumin-induced autophagy was inhibited thus enhancing cytotoxicity 

(Aoki et al. 2007). PKC isoforms differentially effect ERK with PKC α inducing the 

activation of nuclear ERK and PKC ε inducing the activation of ERK at focal adhesions 

to mediate glioma cell adhesion and motility (Besson et al. 2001). 
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p38. MAPK p38 has been found to have varying roles in different tissues in 

relation to inflammation, development, and cancer progression (Bradham and McClay 

2006). A p38 scaffold protein assembly induces the of expression of gene programs for 

neurogenesis and endogenous p38 has been found to promote migration of adult neural 

stem/progenitor cells (Oh et al. 2009; Hamanoue et al. 2016). Additionally, p38 

phosphorylate Dlg to promotes it localization to the membrane where it combines with 

Lgl to maintain cell polarity (Sabio et al. 2005). The invasive and progressive nature of 

glioma has been linked to MKK3 and subsequently p38 activation. The inhibition of 

either of these significantly reduced invasiveness in vitro and greatly sensitized glioma 

cells to cytotoxic therapies (Demuth et al. 2007). Finally, p38 and JNK pathways were 

shown to affect VEGF secretion in malignant glioma cells; therefore, possibly 

contributing to VEGF-induced angiogenesis (Yoshino et al. 2006). 

JNK. Jun N-terminal kinase (JNK) has a known role in cancer; however, JNK1 

and 2 have shown to have different and sometimes opposing roles in different tissues 

(Bubici and Papa 2014). JNK1 was found to have an important role in neural 

development as knockout mice had aberrant phenotypes (Kuan et al. 1999). In 

Drosophila, the loss of Lgl is associated with increased phosphorylation of JNK that 

results apoptosis (Di Giacomo et al. 2017; Froldi et al. 2010; Menendez et al. 2010; 

Grifoni et al. 2015). Furthermore, phosphorylation of JNKs and c-Jun has been shown to 

strongly correlate with the histological grade of glioblastoma and poor prognosis (Li et al. 

2008). Elevated levels of JNKs activity was observed in glioblastoma cell lines and in 

human tumor tissues with JNK2 having the most pro-tumorigenic role in glioblastoma in 
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comparison to JNK1 and 3 (Antonyak et al. 2002; Li et al. 2008). Sphere and monolayer 

culture conditions were evaluated for human glioma stem cell lines. It was found that 

JNK signaling and sphere culture was crucial for the maintenance of stemness. JNK2 was 

again found to be the most important isoform to maintain stemness and increased 

phosphorylation of it and subsequently increased Notch signaling was found in spheres in 

comparison with monolayer culture conditions (Yoon et al. 2012). Additionally, JNK 

activity is required for the maintenance of stem-like glioblastoma cells. In this study, 

human glioma cells were xenografted into mice and a transient and systemic JNK 

inhibitor administered. As a result, there was a depletion of self-renewing and tumor-

initiating populations, inhibition of tumor formation by stem-like glioblastoma cells in 

the brain, and it provided a survival benefit with minimal adverse effect (Matsuda et al. 

2012). 

c-Jun and Myc. c-Jun and Myc are both proto-oncogenes transcription factors 

downstream of MAPKs. c-Jun is activated by JNK through phosphorylation at Ser63, 

Ser73, Thr91, and Thr93; and by ERK and p38 via increased gene expression (Chang and 

Karin 2001). While Myc activation has been tied to the MAPK family (Zhu et al. 2008). 

In Drosophila, poor survival of Lgl mutants due to p-JNK mediated apoptosis was 

rescued when dMyc expression or RAS activity was high (Froldi et al. 2010; Menendez 

et al. 2010; Grifoni et al. 2015). Therefore, Myc-mediated cell competition was proposed 

for cancer survival where there is a direct relationship between fitness and Myc 

expression in relation to Hugl (Di Giacomo et al. 2017). Along with this levels of Myc 

correlated directly with tumor grade and therefore prognosis (Herms et al. 1999). Myc 
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inhibition in vivo and and in vitro for both murine and human cell lines and tissues 

reduced proliferation and increased apoptosis (Annibali et al. 2014). On the other hand, it 

was found that c-Jun accumulation in glioblastoma was not due to MAPK signaling but 

IRES mediated cap-independent translation (Blau et al. 2012).  

 

In Summary 

There is evidence that the MAPK family and oncogenes, c-Jun and c-Myc, are 

involved with Lgl and glioma to promote cancer survival, progression, and apoptosis. 

However, the molecular mechanisms connecting the dots between various pathways are 

poorly understood and therefore targeted drugs with minimal adverse effects are difficult 

to develop. Additionally, it remains unclear whether loss of polarity is a consequence of 

uncontrolled proliferation or a causative factor in cancer initiation. To further elucidate 

the effects of these proteins and proliferation in relation to Lgl, we will use murine neural 

progenitor cells with Lgl1 knocked out and MAPK small molecule inhibitors. 

Specifically, SB203580 will be used to inhibit the phosphorylation of p38 by binding to 

the ATP-binding pocket and PD0325901 to inhibit MEK and therefore its downstream 

targets such as ERK1/2.



13 

 

  

STATEMENT OF AIMS 

These aims are designed to elucidate the role of Lgl1 in the mouse in relation to MAPK 

signaling and proliferation. There is a strong correlation with cell polarity in cancer 

phenotypes and Lgl1’s role in the brain. It is not known the molecular mechanisms 

behind Lgl1’s role in glioma like phenotypes in the mouse and how proliferation relates. 

A summary of the experimental design to accomplish these aims can be found in Figure 

3. 

1.) Does loss of Lgl1 affect MAPK signaling? 

This aim is designed to evaluate the effect of the loss of Lgl1 in murine neural 

progenitor cells on MAPK signaling pathways. We hypothesized there would be changes 

to MAPK signaling specifically an increase in activity with the loss of Lgl1. To evaluate 

this, murine neural progenitor cells isolated from the subventricular zone of neonatal 

mice with the Lgl1 gene knocked out were cultured under conditions that support the 

analysis of growth and proliferation. Total cytoplasmic protein was isolated from these 

cells cultured either under standard conditions or in the presence of MAPK inhibitors. 

Immunoblots for the endogenous and phosphorylated forms of MAPKs were evaluated. 

Fold changes were calculated from the normalized densitometry values to evaluate the 

effect of the loss of Lgl1 and MAPK inhibitors. 
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2.) Does loss of Lgl1 affect expression and phosphorylation of classic MAPK targets 

involved in proliferation and cancer? 

This aim is designed to characterize MAPK activity by evaluating the effect of the 

loss of Lgl1 in murine neural progenitor cells on classic MAPK targets through 

immunoblot analysis. We hypothesized there would be increased expression and 

phosphorylation of oncogenes c-Jun and c-Myc correlated with an increase in MAPK 

activity.As described in Aim 1, total nuclear proteins were isolated from these cells after 

treatment with MAPK inhibitors followed by a fold change analysis of the normalized 

densitometry values.  

3.) Does loss of Lgl1 change proliferation alone and/or in the presence of MAPK 

inhibitors in primary murine neural progenitor cells? 

This aim is designed to evaluate the effect of loss of Lgl1 alone and/or in the 

presence of MAPK inhibitor in murine neural progenitor cells on proliferation as an 

adherent culture. We hypothesized the loss of Lgl1 would increase proliferation and this 

increase would not be seen when the MAPKs are inhibited. The cells were plated 

adherently in a 96 well plate in quadruplicate alone and in the presence of MAPK 

inhibitors. The CyQuant cell proliferation assay was used to assess cell growth over 96 

hours with a fluorometric output based on DNA content. 

 



15 

 

  

 

Figure 3. Experimental design. Neural progenitor cells from the subventricular zone of 

mice 7018 and 8322 with Lgl1 knocked out were plated adherently and treated with an 

inhibitor for p38, 10 µM SB203580, and an inhibitor for MEK, 1.0 µM PD0325901. 

Immunoblots were used to evaluate the first and second aim designed to see if the loss of 

Lgl1 changes MAPK signaling or their downstream targets, c-Jun and c-Myc. To evaluate 

the third aim of the effect of Lgl1 on proliferation a 96-well fluorescent proliferation 

assay was used. 
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METHODS 

Neural Progenitor Cell Maintenance Culture Conditions 

Primary neural progenitor cells were isolated from the subventricular zone of 

adult Lgl1loxp/loxp mice (Klezovitch et al. 2004) by a postdoctoral fellow in the Petritsch 

laboratory at UCSF’s Helen Diller Cancer Center. The cells were treated with adenovirus 

containing either GFP or GFP-Cre to create genetically matched Lgl1+/+ and Lgl1-/- 

primary neural progenitor cells for biological replicates 7018 and 8322 at passage six and 

two, respectively. The cells were propagated and maintained as neurospheres in ultra-low 

adherent vessels at a density of 25,000 cells/mL in neurobasal-A medium (Gibco 

#10888022) supplemented with 1:50 vitamin B27 without vitamin A (Gibco #12587010) 

and 1:100 L-glutamine (Gibco #25030081) along with epidermal growth factor (Sigma 

Aldrich #E9644) and fibroblast growth factor (Pepro-Tech #100-18B) every other day. 

They were incubated at 37°C and passaged when the spheres started to darken in the 

center every 4-6 days with Accutase (Corning #MT25058Cl) at 37°C for 5-8 minutes. 

They were cryopreserved in basal media supplemented with 10% DMSO and 20% BIT 

9500. 

Adherent Culture Conditions 

Biological replicate 7018 at passage 10, 11, and 12 and 8322 at passage 11 and 12 

were used for adherent conditions. Replicates 7018 p10 and the passage 11 cells came 

from cryopreservation then cultured as spheres for 5 days prior to being harvested for 
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adherent culture. The passage 11 cells were then plated back and continued as spheres for 

harvest and plating as adherent at passage 12. Culture vessels were coated with poly-L-

ornithine (Millipore A-004-C) at 15 µg/mL in phosphate buffered saline (PBS) for 30 

minutes at room temperature, washed three times with PBS, then coated with laminin 

(Corning #354239) at 6.1 µg/mL in PBS at 37°C for 3 hours. Cells were maintained as 

spheres for 5 days except for 8322 p2+12 for 6 days. A single cell solution was prepared 

with Accutase by straining the cells with a 37-micrometer strainer (STEMCELL #27250). 

Biological replicate 7018 at passage 10, 11, and 12 and 8322 at passage 11 and 12 were 

plated adherently at 30,000 cells/cm2 for 24 hours prior to treatment. Cells cultured under 

standard conditions were evaluated for the effects of Lgl1 only. To assess how loss of 

Lgl1 affected p38 and ERK signaling, cells were cultured in SB203580 at 10 µM 

(Adipogen Syn-1074) or PD0325901 at 1.0 µM (SelleckChem S1036). The inhibitors 

were dissolved in DMSO (Tocris 31-762) and applied to the cells at 1:2000; therefore, a 

drug vehicle control culture received DMSO at 1:2000.  

Immunoblots 

Cells were harvested with Accutase (Corning #MT25058Cl) after 2 hours of 

treatment with inhibitors and pelleted for protein extraction. NE-PER Nuclear and 

Cytoplasmic Extraction Reagents were used to extract cytoplasmic and nuclear protein, 

then the proteins were quantified with a BCA assay according to manufacturer 

instructions (Thermo Fisher #78835, #23227). Proteins were denatured at 95°C for 5 

minutes in 6x Laemmli buffer. Samples were run at 110 volts at 4°C in precast Novex 10-
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20% Tris-glycine gels (Invitrogen #XP10205) in 1X SDS running buffer. Proteins were 

transferred to a PVDF membrane activated in 100% methanol (Millipore #IPVH00010) 

in cold transfer buffer (1X Tris-Gly Buffer, 20% Methanol and ddH2O to volume) at 20V 

for 2-8 hours at 4°C. The membrane was place in blocking buffer (1X TBST, 1% BSA 

and 0.1% nonfat milk) for 15 minutes on a rocker prior to primary antibody diluted in 

blocking buffer being applied and incubated overnight at 4°C. Primary antibodies applied 

were c-Jun, p-c-Jun (Ser63), c-Myc, p38, p-p38, ERK, p-ERK, JNK, p-JNK, and 

GAPDH (Appendix A). After washing the membrane three times in 1X TBST on a 

rocker, a horseradish (HRP) peroxidase conjugated secondary protein (Thermo Fisher 

#31460) was applied for 1 hour diluted 1:2000 in blocking buffer at room temperature. 

Following three more washes in 1X TBST the blot was developed with WesternSure 

Premium Chemiluminescent Substrate (Li-Cor #C50528-02) prepared at a 1:1 ratio 

immediately prior to imaging with the Li-Cor-C-Digital blot scanner. GAPDH was used 

as a loading control and initial blots were run with 1.5-2 µg protein to confirm 

concentration by densitometry. Nuclear blots were loaded with 3-5 µg of protein and 

cytoplasmic with 8-10 µg protein. Following the imaging of the primary antibody, all 

blots were acid stripped (Thermo Fisher #21059) for 5-10 minutes to obtain a GAPDH 

loading control for each gel run. After stripping the membrane was washed for 

thoroughly three times on a rocker, blocked again for 15 minutes, and GAPDH primary 

antibody applied at 1:2000 for 1 hour at room temperature. Secondary antibody 

application and imaging steps remain the same. Densitometry was performed with Image 

Studio and Microsoft Excel used to analyze the output.  
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Proliferation Assay 

Plates with 96-wells were coated for adherent culture and a single cell suspension 

prepared and plated as detailed above with a multi-channel pipettor. Cells were allowed 

to adhere for 4 hours before the first time point was taken and DMSO or drugs were 

added as detailed above. Each time point was run in quadruplicate and due to the nature 

of the reagents, a separate set of cells were plated for each timepoint. The CyQuant NF 

Cell Proliferation Assay Kit was utilized, and plates were visualized with a Spectramax i3 

Plate Reader. 

Data Analysis 

Western blot 

Densitometry values were obtained with Image Studio. Values of proteins of 

interest were normalized to conserved glycolysis gene, GAPDH, and phosphorylated 

forms of the proteins were also normalized to their endogenous protein level. Fold 

changes were calculated between genotype, Lgl1-/-/Lgl1+/+, for no treatment. To evaluate 

the treatments and control for the effect of drug vehicle, first the fold change between 

treatment within genotype was calculated as follows: DMSO/NT, SB/DMSO, and 

PD/DMSO. Those fold change values were used to create a fold change between 

genotype, Lgl1-/-/Lgl1+/+. Heat maps were created according to the color values recorded 

in Table 1. Additionally, a one sample t-test was performed on the log of the fold change 

values with a p-value of 0.05. 
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Proliferation 

The most dissimilar value from the average was removed from all quadruplicates 

before the fluorescent output values were averaged. Fold changes for the different 

conditions and heat maps were created in the same manner as the western blots. 

Additionally, a one sample t-test was performed on the log of the fold change values with 

a p-value of 0.05. 

 

Table 1. Fold change heat map key. Key for fold change heat maps of western blot 

densitometry values and proliferation fluorescence output. The miniscule effect was only 

evaluated in the proliferation data. 

Heat Map Key 

Fold Change Range Color Indication 

≥ 2.0 
 

Increase 

= 1.8- 2.0 
 

Mild increase 

= 1.5- 1.8 
 

Slight increase 

= 1.3- 1.5 
 

Miniscule increase 

= 0.85- 1.3 
 

No effect 

= 0.75- 0.85 
 

Miniscule decrease 

= 0.6- 0.75 
 

Slight decrease 

= 0.5- 0.6 
 

Mild decrease 

≤ 0.5 
 

Decrease 

N/A 
 

Not present or evaluated 

≤ 0.25 or ≥ 4.0 * Strong decrease or increase 
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RESULTS 

Sphere Culture Propagation and Harvest 

Neural progenitor cells were maintained and propagated as spheres for 5 days 

except 8322 p12 for 6 days due to slow and abnormal growth. Cells were harvested with 

92.5- 98.9% viability as determined by trypan blue prior to plating under adherent 

conditions after 5 days of growth (Appendix D). The loss of Lgl1 slightly increased 

sphere growth except in 7018 p11 with an average fold change of 1.34 including 7018 

p11 and 1.44 excluding 7018 p11 (Appendix E).  

Loss of Lgl1 Affects MAPK Signaling 

Low yields of protein extract were obtained particularly in cells treated with 

PD0325901 (MEK/ERK inhibitor), of higher passage, and in 8322. Cells of passage 12 

and in particular 8322 had less cells adhered after 24 hours in comparison to 7018 and 

passage 10 and 11. Furthermore, upon addition of PD0325901 for 2 hours, the majority 

of cells were no longer adhered. Therefore, data for c-Jun, JNK1/2/3, and p-JNK1/2/3 is 

not complete for all replicates. In particular, c-Jun was not evaluated in 7018 p11 for any 

treatment and in 8322 for cell treated with PD0325901 in Lgl1-/-. Additionally, JNK was 

not evaluated in 8322 and p-JNK was not evaluated in 8322 p12. 

Immunoblot data was highly variable across replicates. Despite fold changes of at 

least 1.5 or 0.75 in multiple replicates, a one sample t-test on the log of the fold changes 

revealed few genes with a significant change due to the loss of Lgl1 (p-value ≤ 0.05). 
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With a p-value of 0.05, the loss of Lgl1 significantly affected the phosphorylation of p38 

when normalized to p38 (t= 2.80, df= 4, p-value= 0.049) in the presence of a p38 

inhibitor, 10 µM SB203580, and the phosphorylation of JNK p54 when normalized to 

GAPDH (t= 10.34, df= 2, p-value= 0.009) in the presence of a MEK inhibitor, 1.0 µM 

PD0325901 (Table 2). Additionally, 7018 p10 lacked a p-JNK p54 band and a band 

slightly larger than p-p38 was visualized in 7018 p11 for cells treated with SB203580 

only and in all treatments for 8322 p11 (Appendix H, J). 

Overall, the loss of Lgl1 and inhibitors affecting the MAPK pathway did not have 

an effect on endogenous levels of MAPK proteins. The loss of Lgl1 had no effect on p38 

and JNK levels and a preferential decrease in 8322 of ERK1/2. In the presence of DMSO, 

there was no effect on p38 except a slight decrease in passage 11, an increase in ERK1, a 

preferential increase in 8322 of ERK2, no effect in 7018 in JNK p54, and a slight 

decrease in JNK1/2/3 p54 in 7018. In the presence of a p38 or MEK inhibitor there was 

no effect on p38, ERK1/2, and JNK p46/p54 (7018 only) (Figure 4). 
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Table 2. Minimal significant changes to MAPK signaling with the loss of Lgl1. The p-

values from a one sample two-tailed t-test on log fold change of densitometry values of 

western blots from adherent cultures treated for 2 hours with nothing, 1:2000 DMSO, 10 

µM SB203580 (p38 inhibitor), and 1.0 µM PD0325901 (MEK inhibitor). Densitometry 

values of proteins of interest were normalized to GAPDH and the phosphorylated forms 

also normalized to their endogenous levels. Fold changes were calculated between 

genotype, Lgl1
-/-

/Lgl1
+/+

, for no treatment. To evaluate the treatments and control for the 

effect of drug vehicle, first the fold change between treatment within genotype was 

calculated as follows: DMSO/NT, SB/DMSO, and PD/DMSO. Those fold change values 

were used to create a fold change between genotype, Lgl1
-/-

/Lgl1
+/+

. Bolded text indicates 

a significant change due to loss of Lgl1 with a p-value of 0.05 or less. 

 

 
1- sample t-test p-value 

Norm to: Gene NT DMSO 

1:2000 

SB203580 

10 µM 

PD0325901 

1.0 µM 

GAPDH cJun 0.369 0.339 0.400 0.172 

GAPDH p-cJun 0.137 0.087 0.544 0.524 

cJun p-cJun 0.280 0.057 0.617 0.387 

GAPDH c-Myc 0.382 0.138 0.284 0.589 

GAPDH p38 0.893 0.454 0.238 0.678 

GAPDH p-p38 0.442 0.588 0.464 0.361 

p38 p-p38 0.442 0.655 0.049 0.482 

GAPDH ERK1 0.048 0.520 0.140 0.491 

GAPDH p-ERK1 0.894 0.872 0.426 0.452 

ERK p-ERK1 0.588 0.851 0.087 0.151 

GAPDH ERK2 0.158 0.135 0.257 0.660 

GAPDH p-ERK2 0.434 0.977 0.612 0.588 

ERK p-ERK2 0.276 0.319 0.750 0.521 

GAPDH JNK p54 0.979 0.525 0.352 0.542 

GAPDH p-JNK p54 0.196 0.771 0.181 0.009 

JNK p-JNK p54 0.225 0.911 0.438 0.141 

GAPDH JNK p46 0.586 0.743 0.268 0.366 

GAPDH p-JNK p46 0.067 0.437 0.847 0.941 

JNK p-JNK p46 0.224 0.774 0.825 0.846 
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A.) B.)  
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C.) D.)  

Figure 4. The loss of Lgl1 affects MAPK signaling and downstream targets, c-Jun and c-

Myc. Heat maps (refer to Table 1 for key) of fold changes between genotype (Lgl1
-/-

/Lgl1
+/+

) for western blot densitometry values and proliferation fluorescent output data 

for adherent cultures from mice 7018 and 8322 at passage 10, 11, and 12. Westerns were 

normalized to GAPDH and the phosphorylated form to the endogenous protein of 

interest. Proliferation data was collected over 96 hours with data points every 24 hours; 

this data was normalized to the 24-hour time point. Treatments/inhibitors were added at 

plating for proliferation and after 24 hours for westerns; they were then normalized to the 

drug vehicle control, DMSO, to control for its affect. A.) Represents data for no treatment 

(NT) where the culture was adhered for 26 hours. B.) Represents data for DMSO, the 

drug vehicle, at 1:2000 after 2 hours in culture normalized to NT to evaluate its affect. C.) 

Represents data for cells treated with 10 µM SB203580 for 2 hours and normalized to the 

drug vehicle, DMSO at 1:2000. D) Represents data for cells treated with 1.0 µM 

PD0325901 for 2 hours and normalized to the drug vehicle, DMSO at 1:2000. 



26 

 

  

 

The loss of Lgl1 had no effect on phosphorylation of p38, an increase in 

phosphorylation of ERK1/2, a preferential increase in 8322 of phosphorylation of p-JNK 

p54 in, and an increase in the phosphorylation of JNK p46. In the presence of DMSO, the 

loss of Lgl1 had no effect on the phosphorylation of p38 and JNK p54 and a decrease in 

phosphorylation of ERK1/2 and JNK p46. DMSO reverses the effect of the loss of Lg1l 

in no treatment with ERK1/2 and JNK p46 from increased to decreased levels. The p38 

and MEK inhibitors had increased sensitivity with the loss of Lgl1 decreased the 

phosphorylation of p38 and ERK in comparison to no treatment. In the presence of a p38 

inhibitor, the loss of Lgl1 decreased phosphorylation of p38, increased phosphorylation 

on ERK1, increased phosphorylation of ERK2 in 7018 and decreased it 8322, and was 

inconclusive on the phosphorylation of JNK. In the presence of a MEK inhibitor (effect 

of drug vehicle controlled), the loss of Lgl1 decreased the phosphorylation of p38, had no 

effect on the phosphorylation of ERK1 and JNK p54, and was inconclusive for the 

phosphorylation of ERK2 and JNK 46 (Figure 4). 

Loss of Lgl1 Affects the Expression and Phosphorylation of c-Jun and c-Myc 

For reasons mentioned above, due to lack of sample, c-Jun was not evaluated in 

7018 p11 for any treatment and in 8322 for cells treated with PD0325901 in Lgl1-/-. 

Additionally, the loss of Lgl1 in the presence of the MEK inhibitor, 1.0 µM PD0325901, 

in 8322 p11 completely shuts down the phosphorylation of c-Jun at serine 63 and c-Myc 

levels (Figure 5).  



27 

 

  

Overall, the MEK inhibitor drastically decreased the amount of c-Jun in Lgl1-/-cells. As 

well as c-Myc levels and the phosphorylation of c-Jun at serine 63 in both genotypes and 

preferentially in the Lgl1-/-cells and in 8322. The p38 inhibitor, 10 µM SB203580, also 

decreased c-Jun and c-Myc levels and affected the phosphorylation of c-Jun. DMSO had 

a notable effect on the Lgl1-/-cells by decreasing c-Myc levels and the phosphorylation of 

c-Jun. While the loss of Lgl1 alone had no effect on c-Jun and c-Myc levels and a 

decrease on the phosphorylation of c-Jun. In the presence of DMSO, there was no effect 

on c-Jun levels and a decrease in c-Myc and the phosphorylation of c-Jun. The p38 

inhibitor increases c-Jun and c-Myc levels preferentially in 7018 and decreases 

phosphorylation of c-Jun. The MEK inhibitor decreases c-Jun levels, affects the 

phosphorylation of c-Jun, and increases c-Myc levels in 7018 while decreasing them in 

8322 (Figure 4).  

 

Figure 5. MEK inhibitor, PD0325901 at 1.0 µM, completely inhibits phosphorylation of 

c-Jun and expression of c-Myc in 8322 p11 in Lgl1
-/-

cells. Immunoblot normalized to 

GAPDH from biological replicate 8322 p11 under adherent conditions following 2 hours 

of treatment with inhibitors. Labels are defined as follows: no treatment (NT), DMSO at 

1:2000 (DMSO), 10 µM SB203580 (SB10), 1.0 µM PD0325901 (PD1.0). 
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Exceptions of note exist in data generated from replicate 7018 p11 which had an 

anomalous strong decrease in the phosphorylation of ERK1/2 with the loss of Lgl1 and in 

the presence of DMSO an increase in the phosphorylation of ERK1/2. Additionally, in 

7018 p12 in the presence of DMSO, a decrease in c-Jun and c-Myc levels were associated 

with an increase in ERK1 levels and the phosphorylation of p38 and JNK1. The opposite 

effect was seen in 7018 p12 in the presence of a p38 inhibitor where there is an increase 

in c-Jun and c-Myc levels (Figure 4). 

Loss of Lgl1 Affects Proliferation 

The proliferation assay was performed under neurosphere and adherent culture 

conditions. Spheres tended to clump together more in 96 well plates and the reagent for 

the assay could not fully penetrate the spheres leading to inconsistent data. Therefore, 

adherent culture conditions were used to evaluate proliferation and MAPK signaling with 

western blots. No significant difference in proliferation was seen with the loss of Lgl1 

under any treatment with a p-value of 0.05 (Table 3). 
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Table 3. No significant change in proliferation with the loss of Lgl1. One sample two-

tailed t-test p-values for fold change (Lgl1
-/-

/Lgl1
+/+

) of proliferation rates of spheres over 

5 days of growth and adherent culture over 4 days of growth normalized to the 24-hour 

timepoint. In sphere data, 8322 p12 was excluded since it grew for 6 days. In 

proliferation data, 7018 p10 and 8322 p12 were excluded due to loss of potency in 

reagents. Adherent cultures were allowed to adhere for 4 hours prior to treatment with 

nothing (NT), DMSO (1:2000), 10 µM SB203580 (SB), and 1.0 µM PD0325901 (PD). 

Fold changes were calculated between genotype, Lgl1
-/-

/Lgl1
+/+

, for no treatment and 

sphere data. To evaluate the treatments and control for the effect of drug vehicle, first the 

fold change between treatment within genotype was calculated as follows: DMSO/NT, 

SB/DMSO, and PD/DMSO. Those fold change values were used to create a fold change 

between genotype, Lgl1
-/-

/Lgl1
+/+

. With a p-value of 0.05 there was no significant change 

in proliferation due to the loss of Lgl1. 

Proliferation 1- sample t-test p-values 

Culture condition Treatment P-value 

Sphere NT 0.057 

Adherent NT 0.572 

DMSO 0.477 

SB 0.872 

PD 0.202 
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Adherent proliferation data on 7018 p10 and 8322 p12 was discarded due to the 

light and temperature sensitive reagents losing potency. The loss of Lgl1 caused a slight 

increase in proliferation in sphere culture which was not found in adherent culture except 

in 7018 p12 (Figure 6). In the presence of DMSO, there was a slight decrease in 

proliferation with the loss of Lgl1 in adherent culture except in 7018 p12. The addition of 

a p38 inhibitor only caused an increase in 8322 p11 and in the presence of a MEK 

inhibitor decreased proliferation in all replicates and preferentially in 8322 (Figure 4, 7).  

 

Figure 6. The loss of Lgl1 causes a slight increase in proliferation in sphere culture 

conditions. Fold change (Lgl1
-/-

/Lgl1
+/+

) of proliferation rates of spheres over 5 days of 

growth and adherent culture over 4 days of growth normalized to the 24-hour timepoint. 

The loss of Lgl1 slightly increases the proliferation of spheres in comparison to adherent 

culture conditions except in 7018 p12. 

 

 

7018 p10 7018 p11 7018 p12 8322 p11
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Figure 7. Inconsistent changes in proliferation with the loss of Lgl1 under adherent 

culture conditions. Heat map of fold change (Lgl1
-/-

/Lgl1
+/+

) of proliferation data. Spheres 

were grown for 5 days and adherent cultures for 4 days and normalized to the 24 hour 

timepoint. Cultures were allowed to adhere for 4 hours prior to treatment with nothing, 

DMSO (1:2000), SB203580 (10 µM), and PD0325901 (1.0 µM). Fold changes were 

calculated between genotype, Lgl1
-/-

/Lgl1
+/+

, for no treatment and sphere data. To 

evaluate the treatments and control for the effect of drug vehicle, first the fold change 

between treatment within genotype was calculated as follows: DMSO/NT, SB/DMSO, 

and PD/DMSO. Those fold change values were used to create a fold change between 

genotype, Lgl1
-/-

/Lgl1
+/+

. The color in the replicate label reflects the fold change of the 

sphere growth. 

 

The increase in proliferation seen with a p38 inhibitor in 8322 p11 was associated 

with an anomalous decrease in c-Jun and c-Myc levels and the phosphorylation of c-Jun. 

The decrease in proliferation seen in the presence of an MEK inhibitor was associated 

with a decrease in c-Jun levels. The preferential decrease in proliferation in 8322 p11 

with the MEK inhibitor was associated with a decrease in c-Myc levels that was 

preferential in 8322 and an anomalous increase in phosphorylation of p38 (Figure 7). 
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DISCUSSION 

We found differential expression patterns associated with the loss of Lgl1 in 

MAPK proteins and their downstream targets under standard conditions and with the 

treatment of DMSO and chemical inhibitors of p38 (10 µM SB203580) and MEK/ERK 

(1.0 µM PD0325901). Additionally, changes to growth and proliferation were found due 

to the loss of Lgl1 in the presence of p38 and ERK inhibitors. These results signify the 

importance of MAPK pathway in cancer phenotypes and the beginning of characterizing 

the role of Lgl1 in the mouse. 

Loss of Lgl1 Affects MAPK Signaling 

Immunoblot analysis shows loss of Lgl1 increased the amount of phosphorylated ERK in 

both 7018 and 8322 cell lines and a preferential increase in p-JNK p54 in 8322 (Figure 

4A). The drug vehicle, DMSO, had a significant effect on ERK levels and the 

phosphorylation levels of ERK and JNK. DMSO has been found to have a significant 

effect on development of embryonic stem cells with morphological changes to embryoid 

bodies and downregulation of stemness factors (Pal et al. 2011). Additionally, 

hyperosmotic stress induced by the addition of DMSO in HeLA cells was found to result 

in the breakage of the cortical cytoskeleton and the detachment of the cell membrane 

from the cortical cytoskeleton, causing the formation of cell blebs (Ruan et al. 2015). In 

melanoma cells, continued exposure to DMSO resulted in cytoskeletal reorganization 

characterized by thick and regularly oriented microfilament bundles that led to increased 
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adhesion to the substrate and inhibited cell growth (Lampugnani et al. 1987). In this 

experiment, passage 12 had an extra passage of sphere propagation from cryopreservation 

where they were exposed to DMSO as well, another source of variation between 

replicates.  

 The cells were plated on poly-L-ornithine which has been shown to promote 

differentiation through an ERK mediated mechanism. p-ERK has also been found to be 

necessary for differentiation (Ge et al. 2015).  Additionally, 8322 had lower protein 

yields which could suggest a p-JNK- induced apoptosis often seen with the loss of Lgl1 

in Drosophila if there is not an increase in c-Myc (Di Giacomo et al. 2017). DMSO 

reversed the effects seen under standard conditions with ERK and JNK and decreased c-

Myc, a stemness marker. This could be explained by the effect DMSO has on 

differentiation and its associated decrease of stemness markers (Pal et al. 2011).  

 The inhibitors were functional and preferential with the loss of Lgl indicating that 

MAPKs affect cellular functions differently with the loss of Lgl. Unfortunately, due to 

the biological variation between replicates and not deep enough of an analysis, the 

molecular mechanism was not able to be determined. Of note there was an increase in 

phosphorylation of ERK2 in 7018 and decreased it 8322 which could be associated to the 

more sensitive nature of 8322 due to the knockout being induced at an earlier passage. In 

the presence of a MEK inhibitor the loss of Lgl1 decreased the phosphorylation of p38 

potentially indicating a loss in the invasive ability of the cells. 
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We did not observe consistent upregulation of JNK or an increase the 

phosphorylation of JNK which has been noted numerous times (Yoon et al. 2012; Di 

Giacomo et al. 2017; Grifoni et al. 2015; Froldi et al. 2010; Menendez et al. 2010). This 

could be attributed to the monolayer conditions as reported in Yoon et al. 2012. 

Biological replicate 8322 and in particular passage 12 grew oddly as spheres and upon 

harvest had low protein yields. Unfortunately, the low protein yields led to insufficient 

protein to evaluate JNK in order to test the hypothesis that p-JNK is related to apoptosis.  

Variation seen in the replicates could be attributed to differences in the mice and 

isolates from their brains since the cells were not sorted. Additionally, 8322 had the 

knockout induced at p2 and 7018 at p6. In both sphere and adherent culture 8322’s were 

consistently more sensitive and less robust. Furthermore, these cells were primary cells 

approaching higher passages. They have been culture by many different students over the 

years with varying reagents before being used for these experiments. In this study, it was 

attempted to minimize this variation by harvesting the samples over 3 weeks with one 

person performing the experiments and culturing them with reagents from the same lot 

number.  

Loss of Lgl1 Affects c-Jun and c-Myc 

Blau et al. 2012 found that changes in c-Jun were not consistently associated with 

changes in MAPK signaling in glioblastoma which would support an alternative 

translation model. They found that c-Jun protein accumulation was not associated with an 

increase in c-Jun mRNA. Instead a potent internal ribosome entry site was discovered 
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that direct cap-independent translation in glioblastoma cells (Blau et al. 2012). The 

changes observed could be associated with alternative translation.  

 The strongest increase in c-Myc due to the loss of Lgl1 occurred in the presence 

of the p38 inhibitor in 7018 p12. This correlated with the strongest decrease in p-JNK 

p46 and an increase p-ERK which would support previous data which c-Myc promotes 

survival in relation to an increase in RAS activity and the cells are rescued from p-JNK 

initiated apoptosis (Grifoni et al. 2015). 

 

The loss of Lgl1 Affects Proliferation 

The loss of Lgl1 in spheres slightly increased proliferation indicating a stemness 

property that was seen in a previous study that compared sphere and monolayer culture in 

glioblastoma cell lines (Yoon et al. 2012). The MEK inhibitor decreased proliferation in 

both genotypes and preferentially with the loss of Lgl1, indicating a potential treatment 

for Lgl1 related cancers. 
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SUMMARY 

Further experimentation must be completed to conclusively determine MAPK’s 

role in relation to Lgl1 with statistical relevance. It would useful to be able to differentiate 

between the JNK isoforms and focus on the role of JNK2 (Yoon et al. 2012). Sphere 

culture should be revisited due to the effects of adherent substrates and data supporting 

stemness in spheres. Glioma stem cells could be obtained and Lgl1 knocked down and 

overexpressed while performing the same experimental design. In vivo studies in the 

mouse evaluating these pathways would be of interest to remove the artifacts of in vitro 

studies. Immunohistochemistry on Lgl1 knockout mouse brains for MAPKs and their 

targets could reveal a clearer role or possible stratification in the overgrowth. Coupled 

with immunohistochemistry of post-mortem human glioblastoma tumors for comparison 

of signaling and patterns within the tumor. 

Many Ras/Ref/MEK/ERK inhibitors are being developed and explored for use in 

treating a number of different cancers. However, just as the MEK inhibitor, PD0325901 

at 1.0 µM, had extreme effects on the cells used in this experiment, a lot of inhibitors 

comes with similar devastating side effects in vivo. Understanding in greater detail how 

mutations and activations in that pathway function will help to create a more targeted 

drug. 
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APPENDICES 

Appendix A. Antibodies used for western blots. List of antibodies and their 

manufacturers and dilutions used for western blots. 

Antibody Dilution Manufacturer Catalog # 

cJun 1:500 Abcam 31419/32137 

p-cJun S63 1:500 Abcam 32385 

cMyc 1:500 Cell Signaling 5605 

p-p38 1:500 Cell signaling 9211 

p38 1:500 Cell signaling 9212 

p-ERK 1:500 Cell signaling 4370 

ERK 1:500 Cell signaling 4695 

p-JNK 1:1000 Abcam 124956 

JNK 1:1000 Abcam 179461 

Lgl 1:1000 Abcam 39292 

CD133 1:500 Thermo Fisher Pa5-38014 

GAPDH 1:2000 Abcam 181602 

2° Anti-Rb HRP 1:2000 Thermo Fisher 31460 
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Appendix B. Cell culture reagents and supplies. List of cell culture reagents and supplies 

used with catalog numbers and concentrations. 

Reagent Manufacturer Catalog # Concentration 

Neurobasal-A Gibco 10888022 1X 

Vitamin B27 w/o Vit A Gibco 12587010 1:50 

L-glutamine Gibco 25030081 1:100 

EGF Sigma-Aldrich E9644 20 ug/mL 

FGF Pepro-tech 100-18B 20 ug/mL 

Accutase Corning MT25058CI -- 

Laminin Corning 354239 6.1 ug/mL 

Poly-O Millipore A-004-C 15 ug/mL 

BIT 9500 STEMCELL 09500 1X 

DMSO Tocris 31-762 1:2000 

SB203580 Adipogen Syn-1074 10 uM 

PD0325901 SelleckChem S1036 1.0 uM 

37 micron cell strainer STEMCELL 27250 -- 
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Appendix C. Reagents and kits used for immunoblots and proliferation assay. List of 

reagents and kits along with catalog numbers to perform immunoblots and proliferation 

assay. 

Reagent/Kit Manufacturer Catalog # 

NE-PER Nuclear and Cytoplasmic Extraction Reagents Thermo Fisher 78835 

Pierce BCA Protein Assay Kit Thermo Fisher 23227 

Bovine serum albumin Thermo Fisher BP9706100 

CyQuant NF Cell Proliferation Assay Kit Invitrogen C35006 

Novex Tris-Glycine 10-20% gels Invitrogen XP1020_ 

PVDF membrane Millipore IPVH00010 

WesternSure Premium Chemiluminescent Substrate Li-Cor C50528-02 

Stripping Buffer Thermo Fisher 21059 
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Appendix D. Viability of neurospheres harvested for adherent assays was consistently 

above 92%. Percent viability of neurospheres harvested for adherent culture assays. 

 
  

7018 p10 7018 p11 7018 p12 8322 p11 8322 p12

Lgl1+/+ 98.9 92.5 96.1 96.9 94.2

Lgl1-/- 98.5 97.8 97.2 97.7 95.7
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Appendix E. Counts and proliferation of neurospheres prior to harvesting for adherent 

culture assays. Proliferation of spheres prior to harvesting for adherent culture. All 

replicates were propagated for 5 days except 8322 p12 for 6 days due to slow and 

abnormal  growth. Cells seeded and harvest are in millions of cells. Growth is referred to 

as harvested over seeded values. Fold change defined as Lgl1
-/-

/Lgl1
+/+

 of growth values. 
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Appendix F. Western blots for all replicates of phosphorylated c-Jun and c-Jun. Western 

blots on nuclear extracts from adherent cultures normalized to GAPDH on c-Jun and 

phosphorylated c-Jun (Ser63). Labels are defined as follows: no treatment (NT), DMSO 

at 1:2000 (DMSO), 10 µM SB203580 (SB10), 1.0 µM PD0325901 (PD1.0). 
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Appendix G. Western blots for all replicates of c-Myc. Western blots on nuclear extracts 

from adherent cultures normalized to GAPDH on c-Myc. Labels are defined as follows: 

no treatment (NT), DMSO at 1:2000 (DMSO), 10 µM SB203580 (SB10), 1.0 µM 

PD0325901 (PD1.0). 
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Appendix H. Western blots for all replicates of phosphorylated p38 and p38. Western 

blots on cytoplasmic extracts from adherent cultures normalized to GAPDH on p38 and 

phosphorylated p38 (Thr180/Tyr182). Labels are defined as follows: no treatment (NT), 

DMSO at 1:2000 (DMSO), 10 µM SB203580 (SB10), 1.0 µM PD0325901 (PD1.0).  
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Appendix I. Western blots for all replicates of phosphorylated ERK and ERK. Western 

blots on cytoplasmic extracts from adherent cultures normalized to GAPDH on ERK1/2 

p44/42 and phosphorylated ERK1/2 (Thr202/Tyr204). Labels are defined as follows: no 

treatment (NT), DMSO at 1:2000 (DMSO), 10 µM SB203580 (SB10), 1.0 µM 

PD0325901 (PD1.0). 
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Appendix J. Western blots for all replicates of phosphorylated JNK and JNK. Western 

blots on cytoplasmic extracts from adherent cultures normalized to GAPDH on JNK1/2/3 

p54/46 and phosphorylated JNK1/2/3 (Thr183/Thr183/Thr221). Labels are defined as 

follows: no treatment (NT), DMSO at 1:2000 (DMSO), 10 µM SB203580 (SB10), 1.0 

µM PD0325901 (PD1.0). 

 

 


