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ABSTRACT 

ASSESSING SPATIO-TEMPORAL PATTERNS OF FOREST DECLINE ACROSS A 

DIVERSE HETEROGENEOUS LANDSCAPE IN THE KLAMATH MOUNTAINS 

USING A 28-YEAR LANDSAT TIME-SERIES ANALYSIS 

 

 

Drew Stephen Bost 

 

Rates of tree mortality in California and the Pacific Northwest have greatly 

increased in recent years, driven largely by pest and pathogen outbreaks as well as the 

effects of hotter, warmer droughts. While there have been a multitude of regional-scale 

assessments of mortality and forest decline, landscape-level studies are necessary to 

better identify forests that are most vulnerable to decline and to anticipate future changes. 

This need is particularly notable in the remote and little-studied mountains of northwest 

California, which are renowned for their diverse, heterogeneous vegetation types. A 

recent observation of elevated levels of Shasta red fir (Abies magnifica var. shastensis) 

mortality in a central part of this region – the Russian Wilderness – appears to mirror the 

timing of these larger forest mortality events and has highlighted the need to investigate if 

recent levels of mortality are historically unusual. The main objectives of my study were 

to (1) characterize contemporary tree mortality and determine potential drivers of that 

mortality using field-measured data, (2) integrate both field-measured data and annual 

LandTrendr data to assess temporal and spatial patterns of the extent and magnitude of 

forest decline, (3) assess the relationship between topographic and structural attributes 
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with forest decline, and (4) determine whether climate is a potential driver of forest 

decline. To characterize contemporary tree mortality and determine potential drivers of 

that mortality, I established 142 field plots in the summer of 2015 measuring tree health 

and presence of any pests and pathogens on canopy tree species. Next, I used annualized 

LandTrendr algorithms across a 28-year time period (1986-2014) coupled with a regional 

forest type map to determine the timing, extent, and magnitude of canopy decline within 

each forest type. To assess potential drivers of canopy decline and identify specific 

vulnerabilities to drought, I used PRISM climate data and random forest classification 

using topographic and stand structure attributes. Plot data showed the highest proportions 

of mortality occurred in subalpine fir (Abies lasiocarpa, 35.3%) and Shasta red fir 

(28.6%), with evidence of fir engraver beetle (Scolytus ventralis) and Wien’s dwarf 

mistletoe (Arceuthobium abietinum subsp. wiensii) on many Shasta red fir individuals 

(34.7% and 20.4%, respectively). Forest decline was five times higher in the last two 

years of the time series (2013-2014) than in the previous twenty-six years. The greatest 

magnitude of decline was found in the red fir and subalpine conifer forest types, findings 

supported by my field-measured data. Canopy decline was greater at higher elevations, in 

denser canopies and in stands with larger trees. I did not detect any relationships between 

annual climate variables and forest decline, possibly due to a discrepancy between the 

course spatial scale of the climate data and fine-grained scale of forest disturbance, or 

because only two years exhibited pronounced canopy decline. My study demonstrates 

effectiveness in characterizing forest decline in a highly diverse landscape using a remote 
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sensing approach and highlights the complexity of climate, pests and pathogens, stand 

structure, and topography as they relate to tree mortality and forest decline. 
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INTRODUCTION 

Recent warming temperatures and reduced precipitation in western North 

America have produced longer and hotter droughts, leading to marked increases in tree 

mortality (Allen et al. 2010). The physiological stress of drought weakens tree defenses 

to pests and pathogens, making them more likely to die from infestation or infection 

(Anderegg et al. 2012, Park Williams et al. 2013). Coupled with the shortening of bark 

beetle life cycles caused by rising temperatures, elevated background mortality rates and 

massive tree die-off events are occurring with greater frequency (van Mantgem et al. 

2009, Bentz et al. 2010, Reilly and Spies 2015, Hart et al. 2017). Climate-induced 

mortality can cause large shifts in species composition as well as changes in ecosystem 

structure and function (Klos et al. 2009, van der Molen et al. 2011). In California, the 

unprecedented four-year drought of 2011-2015 has heightened concerns about tree 

mortality and has demonstrated the effects drought can have on forest ecosystems 

(Griffin and Anchukaitis 2014, Young et al. 2017). These effects should vary 

significantly depending on regional topographic characteristics, the extent of the climate 

event, and legacies of past land management (e.g., fire suppression), yet research 

exploring these interactions remains scarce (Allen et al. 2010). 

Some regions experiencing widespread tree mortality events and forest decline 

associated with climate change have garnered significant attention among researchers, 

land managers and the public (e.g., Guarín and Taylor 2005, van Mantgem and 

Stephenson 2007, Battles et al. 2008). For example, several recent studies in the Sierra 
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Nevada document an increase in both stand-replacing, high severity fires and bark beetle 

activity over the last several decades resulting in substantial tree mortality (Smith et al. 

2005, Miller et al. 2009). Drought and climate change are significant causes of these 

recent mortality events, raising concern for other regions of California and the Pacific 

Northwest (Martin et al. 2018, Bell et al. 2018). Other regions such as Colorado and 

Wyoming that are dominated by monospecific lodgepole pine (Pinus contorta) forests 

have seen large outbreaks of mountain pine beetle (Dendroctonus ponderoseae) 

associated with decreased winter snowpack (Biederman et al. 2014). Similarly, British 

Columbia saw a massive mountain pine beetle outbreak between 1999 and 2015 spurred 

by consecutively warmer than average winters (Williams & Liebhold 2002). While 

studying these events has been important for our understanding of climate-driven 

mortality, other regions have received far less attention. Landscapes with high levels of 

taxonomic diversity and topographic complexity offer great opportunities for assessing 

how forest mortality is affected by local site characteristics, and yet these regions are the 

least represented in the literature. 

The Klamath Mountains of northern California and southwestern Oregon are 

renowned for their high level of taxonomic diversity and diverse mosaic of vegetation 

types (Whittaker 1960, Stebbins and Major 1965, Sawyer 2007). This remote region 

contains ten federally-designated wilderness areas and is characterized by complex parent 

materials and topography, coupled with steep climatic gradients that give rise to a region 

with exceptionally high endemism and plant species richness (Coleman and Kruckeberg 

1999). Although fire has historically been an important type of forest disturbance (Taylor 
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and Skinner 2003), and much of the tree mortality-related research in this region has 

focused on the effects of wildfires on vegetation communities (Odion et al. 2004, Miller 

et al. 2009), recent studies have documented more subtle changes in vegetation associated 

with climate change (Copeland et al. 2016, DeSiervo et al. 2018). Observations have 

been made in the Russian Wilderness, a small wilderness area within the Klamath 

Mountains (Figure 1), documenting an ongoing mortality event primarily effecting Shasta 

red fir (Abies magnifica var. shastensis), a variety of the red fir complex that is a hybrid 

between California red fir (A. magnifica var. magnifica) and noble fir (A. procera), a 

more northern species (Oline 2008). Mortality of Shasta red fir was found to be 

associated with fir engraver (Scolytus ventralis), a native bark beetle species, and Wien’s 

dwarf mistletoe (Arceuthobium abietinum subsp. wiensii), a parasitic subspecies that 

primarily infests true fir hosts (DeSiervo et al. 2018). Shasta red fir mortality was also 

associated with an increase in minimum winter temperature between historical (1951-

1980) and recent (2004-2014) time periods, highlighting the complex interactions 

between, pests, pathogens, and climate as they relate to tree mortality. While that study 

was effective in documenting the potential biotic drivers of mortality, it relied on field 

measurements that provided a single-year snapshot of current conditions, with no way to 

assess when this mortality event might have begun or how it compared to earlier levels of 

mortality. In general, the limitations of this and other field-based studies lie in the 

inability to detect the timing and spatial patterns of mortality. The use of remote sensing 

offers a unique perspective into the dynamics of forest disturbance and climatic drivers of 
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ecosystem change by assessing both the timing and spatial patterns of mortality on a 

broader scale than what field-measured data offers by itself. 

Remote sensing has proven to be a highly effective means to quantify and assess 

tree mortality and forest disturbance (Kennedy et al. 2012, Meddens et al. 2013, Cohen et 

al. 2016). Remote sensing data is available from many sources, each with their own 

benefits and drawbacks depending on the image quality, spectral resolution, and desired 

spatiotemporal scale. Moderate Resolution Imaging Spectroradiometer (MODIS) data, 

for example, is limited in its spatial resolution (250-1000 m) but offers high temporal 

resolution with images taken twice a day, making it most useful in broad-scale analyses 

that require frequent coverage such as fire disturbance or pest outbreaks (Kennedy et al. 

2009, Mildrexler et al. 2009, Sulla-Menashe 2014, van Lierop 2015). In contrast, many 

private remote sensing data sources such as DigitalGlobe’s GeoEye, IKONOS, and 

Quickbird satellites are available at high spatial resolution but often lack the temporal and 

spectral resolution found in other coarser datasets (Kennedy et al. 2009). Landsat 

Thematic Mapper (TM) images offer an effective compromise between spatial and 

temporal resolution, providing data at a scale of 30 m every 16 days. This moderate 

spatial resolution and large temporal availability makes Landsat an ideal dataset for 

analyzing large-scale forest mortality and changes in forest cover over time (Kennedy et 

al. 2009). 

Landsat time series analysis, whereby annual, pixel-based change is detected 

through tracking spectral trajectories across a landscape, is frequently used to detect 

forest disturbance and decline (Morawitz et al. 2006, Goodwin et al. 2008, Wulder et al. 
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2008, Vogelmann et al. 2009, Meddens et al. 2012, Van Gunst et al. 2016, Potter 2016, 

Cohen et al. 2016). Landsat-based detection of Trends in Disturbance and Recovery 

(LandTrendr) is a time series analysis tool developed to detect more subtle changes in 

forest health and to remove some of the year-to-year variance associated with time series 

analyses (Kennedy et al. 2010). LandTrendr has been used effectively to map forest 

decline particularly among forests in the Pacific Northwest (Kennedy et al. 2012, Cohen 

et al. 2010, Meigs et al. 2011 Bell et al. 2018). Bright et al. (2014) used a combination of 

Lidar, LandTrendr, and Aerial Detection Survey (ADS) datasets to predict live and dead 

basal area within five bark beetle-affected forests, showing low to moderate success in 

predicting tree mortality, potentially due to errors in plot sampling characteristics, ADS 

subjectivity, or detection of other types of disturbance in LandTrendr datasets. Kennedy 

et al. (2012) used LandTrendr to develop disturbance and growth maps covering the 

entire Northwest Forest Plan that were used to answer monitoring questions related to the 

distribution and timing of forest disturbance. Meigs et al. (2015) assessed mountain pine 

beetle and western spruce budworm (Choristoneura freemani) outbreaks across Oregon 

and Washington using a combination of LandTrendr, aerial detection survey (ADS) and 

plot inventory data to compare the timing and extent of each insect’s disturbance. To date 

there has been no published research assessing long-term vegetative change using remote 

sensing focusing primarily on the Klamath Mountains. 

The objective of this study was to quantify temporal patterns of forest decline in 

the Russian Wilderness using a Landsat time-series analysis. In the face of recent major 

droughts in California and the Pacific Northwest region, understanding how forests may 
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be impacted by projected changes in climate, and the associated changes in pest and 

pathogen loads, will be critical to help land managers make informed decisions. By 

coupling annualized Landsat images and climate data across 28 years (1986-2014), 

stratified using mapped vegetation classes, I assessed the degree of mortality among 

forest types using a host of different climatic and topographic variables. Specifically, the 

main objectives of my study were to (1) characterize contemporary tree mortality and 

determine potential drivers of that mortality using field-measured data, (2) integrate both 

field-measured data and annual LandTrendr data to assess temporal and spatial patterns 

of the extent and magnitude of forest decline, (3) assess the relationship between 

topographic and structural attributes with forest decline, and (4) determine whether 

climate is a potential driver of forest decline. Based on my previous field observations, I 

predicted that forests dominated by Shasta red fir would show the largest signals of recent 

mortality. In addition, I expected to detect that drought and increasing temperatures were 

drivers of this mortality. 
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MATERIALS AND METHODS 

Study Area 

The study site was located in the Russian Wilderness, a 51 km2 wilderness area in 

northern California within the Klamath National Forest (41°17′N, 122°57′W) (Figure 1). 

The Russian Wilderness was designated by the United States Forest Service (USFS) in 

1984, consisting of moderate to high elevations in mountainous terrain ranging from 760-

2,500 m and comprised of granodiorite parent material. This wilderness provides a 

unique study area for documenting changes in forest structure due in part to its high 

diversity of conifer species and vegetation types (Sawyer and Thornburgh 1974). There 

are 18 documented conifer species within the wilderness boundaries, representing one of 

the highest densities of conifer taxa on record (Kauffmann 2012). Common forest types 

range from lower elevation mixed conifer forest containing ponderosa pine (Pinus 

ponderosa), lodgepole pine (Pinus contorta), and Douglas-fir (Pseudotsuga menziesii); 

upper elevation mixed conifer forests containing white fir (Abies concolor), Shasta red fir 

(Abies magnifica var. shastensis), western white pine (Pinus monticola) and mountain 

hemlock (Tsuga mertensiana); and subalpine forest types dominated by whitebark pine 

(Pinus albicaulis) (Sawyer and Thornburgh 1971, Sawyer and Thornburgh 1974). This 

botanical diversity was the primary reason that portions of the wilderness were also 

designated as Forest Service Management Areas, split between the southern Sugar Creek 
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Research Natural Area (RNA) and the northern Duck Lake Botanical Area (Sawyer and 

Thornburgh 1971, Keeler-Wolf 1984). 

Field Sampling 

To characterize contemporary tree mortality and determine potential drivers, field 

plots were established in the summer of 2015 as part of a previous study documenting 

recent tree mortality in the Russian Wilderness (DeSiervo et al. 2018). Plot locations 

were originally determined based on a resampling project of a 1969 dataset to document 

the unique vegetation types within the wilderness area (Sawyer and Thornburgh 1974). 

The 2015 dataset consisted of 142 fixed-radius plots with radii of 11.37 m (0.04 ha). Plots 

were geolocated and differentially corrected using a Trimble GPS (Juno 3B, Trimble 

Navigation, Ltd., Sunnyvale, California, USA). Within each plot, information was 

recorded on species, status (live, unhealthy, and dead), and presence of all identifiable 

forest insects and pathogens for each canopy tree, defined as any tree ≥7.6 cm diameter at 

breast height (dbh) and ≥1.37 m tall. The designation of “unhealthy” was assigned to 

trees with substantial physical damage (either mechanically or biotically generated) and 

poor or very poor crown vigor. Only plots that were within the four main forest types 

were included (see below), for a total of 116 plots (Table 1). Species with less than 60 

individuals were removed from the dataset to ensure more accurate comparison between 

species. Tree measurements were summarized by live, unhealthy, and dead basal area 

(BA) in units of m2 for each species and within each plot. 
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Remote Sensing 

Because my study focused primarily on conifer tree mortality and disturbance, the 

study area was divided into dominant forest cover types using the Classification and 

Assessment with Landsat of Visible Ecological Groupings (CALVEG) system. CALVEG 

uses Landsat spectral signatures to determine vegetation types across the state of 

California (Parker and Matyas 1979). To simplify comparison among forest types, the 

original CALVEG classifications were reduced from nine to four dominant overstory 

groupings: subalpine conifer, red fir, mixed conifer, and white fir. The groupings were 

made by manually assessing CALVEG’s original vegetation descriptions and combining 

forest types that had similar understory and overstory species composition and elevation 

ranges. For example, the subalpine conifer forest type is a combination of the subalpine 

conifer and mountain hemlock cover types. Combined categories were also compared to 

field-measured species composition and cover class to ensure that new categories were 

accurately represented (Figure 2). 

Landsat TM, ETM+ and OLI 8 images were selected within the growing season 

(June-August) between the years of 1986 and 2014. I chose 2014 as the cutoff year 

because of a wildfire that burned through a portion of the study area in late 2014. Images 

were processed using the LandTrendr algorithms which are described in detail in 

Kennedy et al. (2010). Briefly, multiple georectified Landsat images were selected and 

aggregated for each year of the time series. Radiometric normalization was done using 

the multivariate alteration detection and calibration (MADCAL) algorithm described by 
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Canty et al. (2004) to remove the effects of atmospheric scattering. Radiometrically 

corrected Landsat images were then used to calculate the three tasseled-cap (TC) bands 

of brightness (TCB), greenness (TCG) and wetness (TCW) using the formula defined by 

Crist and Cicone (1984). Only TCW was used for the analysis given its sensitivity to 

detecting vegetation vigor (Skakun et al. 2003, Meddens et al. 2013). Once the Landsat 

image stack was normalized and TC indices calculated, the LandTrendr temporal 

segmentation algorithm was fitted to each image. This fitting process smooths the usually 

noisy year-to-year trajectory of pixels throughout the time series to allow for more 

accurate classification of disturbed and undisturbed pixels. Finally, the entire image stack 

was clipped using the four CALVEG forest types. 

To assess the relative change of TCW values throughout the time series, ∆TCW 

images were calculated by differencing each sequential LandTrendr image in the image 

stack. Any pixel showing a decrease in TCW value was classified as experiencing canopy 

decline. To reduce commission errors due to left-over atmospheric scattering or 

background noise, a cutoff value was set at a 25-unit decrease. Meigs et al. (2011) used a 

cutoff value of 50 units using the Normalized Burn Ratio (NBR) for similar purposes 

when studying western spruce budworm and mountain pine beetle. Given the high 

diversity of conifer taxa in the Russian Wilderness, I expected decline values to be 

generally lower than that of other studies, hence my use of a lower canopy decline cutoff. 

To better characterize the magnitude of decline, I classified all pixels that experienced 

decline into the highest 25% of values and lowest 75%. Finally, the proportion of the 
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study area experiencing canopy decline was calculated for each of the 28 years by 

dividing the number of declined pixels in that year by the total number of pixels. 

Climate 

Climate data was gathered from the Parameter-elevation Regression on 

Independent Slopes Model (PRISM, Daly et al. 2002) on a 2 km grid. PRISM 

interpolates climate data from a combination of instrumental records and topographic 

characteristics such as slope, aspect, elevation, and rain shadows. Since four PRISM cells 

overlapped the study area, the average was taken of the two cells that contained the 

majority of the study area. Climate variables were generated for each year in the time 

series and included: maximum growing season temperature (Jun-Aug), minimum winter 

temperature (Dec-Feb), total water year precipitation (Oct-Sept), and minimum and 

maximum growing season vapor pressure deficit. Vapor pressure deficit is used as a 

measure of drought severity (Seager et al. 2015, Restaino et al. 2016) and represents the 

difference between the amount of moisture in the air and how much moisture can be held 

in the air once saturated. Most climate variables were obtained for the growing season 

(Jun-Aug) because it represents the highest vegetation vigor of any given year and 

coincides with the Landsat image acquisition dates. Minimum winter temperature was 

chosen as it is known to affect the reproduction of certain bark beetle species (Bentz et al. 

2010). Increased winter temperatures can shorten the overwintering phase of the bark 

beetles’ life cycle and push their emergence date forward, increasing the potential for 

population outbreak (Christiansen et al. 1987, Bentz et al. 2010). Pearson product-
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moment correlation coefficients were generated to assess the relationship of each climate 

variable with the proportion of the study area experiencing decline for the combined 

images and separately for each forest type, adjusted for multiple comparisons using a 

Bonferroni correction. All analyses were performed in R version 3.3.3 (R Core 

Development Team 2017). 

Random Forest 

Random forest modeling was used to assess the effect of topographic and stand 

structure variables on forest decline using the Random Forest package (Liaw and Wiener 

2002) for R (R Development Core Team 2017). Random forest is a non-parametric 

statistical method for classification and regression. The algorithm has been shown to be 

an effective tool for predicting ecological attributes from remotely sensed and 

explanatory variables (Prasad et al. 2006, Cutler et al. 2007, Dillon et al. 2011). Random 

forest iteratively and randomly samples the dataset to produce a large number of 

classifications, represented by decision trees, from which a final classification is chosen, 

representing the mode of all created decision trees. This final classification is weighed 

based on its prediction strength and error rate, with the lowest error rates selected as the 

strongest classifiers. Some benefits of using random forest over other statistical methods 

include its’ ability to find relationships among continuous, non-normal variables and 

ranking of explanatory variables based on their classification importance. 

The response variable used in the model was a differenced TCW image between 

the years of 2011 and 2014, a period that represents the greatest decrease in TCW values 
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across the time series. Topographic explanatory variables used in the random forest 

model included elevation, slope, transformed aspect (Beers et al. 1966), Heat Load Index 

(HLI, Jenness 2006) and Topographic Position Index (TPI, Jenness 2006). HLI is a 

measure of solar radiation in a given area and is based on aspect, slope, and coordinate 

position, with zero representing the coolest slopes and two representing the hottest slopes. 

TPI is a measure of slope position on a landscape, with lower values indicating valleys or 

ravines and higher values indicating ridges and hilltops. A 500 m neighborhood was 

ultimately determined to be the most accurate given the relatively small study area.  

Structural attributes included in the model were tree canopy cover class, stand structure, 

and vegetation type taken from the CALVEG dataset. Canopy cover is divided into three 

classes: sparse (10-30%), moderate (30-60%), and dense canopy cover (60-100%). Stand 

structure consists of five size classes: saplings (1-4.9 in. Quadratic Mean Diameter 

[QMD, 2.5-12.5 cm]), poles (5-9.9 in. QMD [12.7-25.1 cm]), small (10-19.9 in. QMD 

[25.4-50.6 cm]), medium (20-29.9 in. QMD [50.8-76 cm]), and large (30+ in. QMD [76.2 

cm]). Correlations between explanatory variables were tested using Pearson correlation 

tests. A random sample of 5000 pixels was selected from the dataset, representing ~12% 

of the data. Smaller sample sizes produced highly variable random forest results when 

run consecutively. Default settings were applied from the random forest package: the 

number of variables tried at each split equaled the number of predictor variables divided 

by three, 500 trees were grown, and the minimum size of terminal nodes was five. Runs 

with a higher number of trees yielded similar results. 
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To assess the relative influence of individual explanatory variables on forest 

disturbance, variable importance rankings were calculated for each variable. Random 

forest calculates variable importance by randomly permuting the values of each 

explanatory variable and calculating the change in overall model performance, expressed 

as a change in average squared prediction error. Scores are assigned to each variable, 

ranked in order of largest to smallest percent increase in the model’s mean squared error 

(MSE). To produce stable ranking of explanatory variables, random forest was run ten 

consecutive times and the average score for each variable was used to assign importance. 

Partial dependency plots were generated for each variable to further evaluate the 

interaction between disturbance, topography, and structural attributes. These plots 

separately show the relationship between the individual explanatory variables and canopy 

decline while holding all other variables in the model at their average (Cutler et al. 2007). 

They effectively show the model’s “dependence” on each variable as it relates to the 

overall predictive accuracy of the model.
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RESULTS 

Plot Data 

A total of 3,446 canopy trees were measured across 116 plots (Figure 1). The 

most abundant species sampled was white fir, followed by Shasta red fir and mountain 

hemlock. Across all taxa, the proportion of dead individuals was 17%. Mortality varied 

by species, with the highest proportions of mortality occurring in subalpine fir (Abies 

lasiocarpa, 35.3%), Shasta red fir (28.6%), and lodgepole pine (22%). The total 

proportion of all species designated as unhealthy was 7.2%, with the highest proportions 

occurring in subalpine fir (19.1%) and Shasta red fir (16.2%). Engelmann spruce (Picea 

engelmannii), Brewer spruce (Picea breweriana), and Douglas-fir (Pseudotsuga 

menziesii) had the lowest proportions of mortality (7.8%, 9.5%, and 10.7% respectively), 

and lodgepole pine, ponderosa pine, and white fir had the lowest proportions of unhealthy 

trees (0.8%, 1.6%, and 2.2%). 

Bark beetle activity was found on 13.1% of all sampled trees, with high variation 

amongst species. Presence of bark beetle activity was highest among Shasta red fir 

(34.7%) and whitebark pine (21.3%), with nearly all galleries present on Shasta red fir 

identified as fir engraver beetle. For Shasta red fir, bark beetle activity was highest in the 

largest diameter trees (over 20 cm dbh). Fir engraver beetle galleries were identified on 

several dead subalpine fir and white fir individuals. Most of the bark beetle activity on 

whitebark pine occurred on old dead snags and were therefore difficult to identify to 
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species, however Ips spp. galleries were identified on a few individuals. Mountain pine 

beetle galleries were detected on some lodgepole pine snags as well as western pine 

beetle (Dendroctonus brevicomis) galleries on a few live ponderosa pine. Dwarf mistletoe 

was found on 14.4% of sampled trees with high variation amongst host species. Mistletoe 

is a hemiparasitic plant that can damage host trees when infestation is severe. Mistletoe 

was most abundant for ponderosa pine (24.6%), though 87% of infected trees came from 

a single plot. Mountain hemlock and Shasta red fir had high levels of infestation (21.7% 

and 20.4%, respectively), widely distributed across plots. Dwarf mistletoe was detected 

on all sizes classes of Shasta red fir; however infestation was most common among 

smaller diameter trees (<20 cm dbh). 

LandTrendr Analysis 

The proportion of the study area that experienced canopy decline varied 

considerably across the time series (Figure 3). The greatest proportions occurred in 2013 

with 14.2% of the area experiencing decline, followed by 2014 with 14.1%. Of that area, 

32% showed high levels of canopy decline in 2013, followed by and 28% in 2014, 

representing the greatest 25% of decline within each year. In contrast, all other years had 

between 1% and 5% of the area showing decline, with an average decline of 3%. A 

moderate pulse of canopy decline occurred between the years of 2000-2003, ranging 

from 4.1-4.6%. All forest types generally matched what I observed for the overall study 

area, with the highest levels of mortality being found in the last two years of the time 

series (Figure 4). The highest proportion of decline occurred in the red fir forest type, 
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with 16.6% of the area experiencing decline in 2013 and 17.3% in 2014. Subalpine 

conifer had the second highest proportions at 15.2% and 13.6% across same years. Both 

mixed conifer and white fir forest types had lower levels of decline in the last two years 

of the time series relative to other forest types (8.4-6.6% and 9.5-10.7% respectively). On 

average, 3.5% of the study area experienced decline across the entire time period. Of that, 

25% was classified as high levels of decline. 

Climate Analyses 

 I observed no significant correlations between all climate variables and the 

estimated proportion of forest decline (Table 2). Maximum summer temperature had the 

strongest positive correlation coefficients across all climate variables and were highest 

with the subalpine conifer and mixed conifer forest types. Although minimum and 

maximum vapor pressure deficit had relatively stronger positive correlation coefficients 

among the same forest types, none were significant. Surprisingly, precipitation had the 

weakest correlation coefficients with little to no change across forest types. Minimum 

winter temperature also had weak correlations with forest decline, results that are 

contrary to a previous climate analysis done in this region showing positive correlations 

with tree mortality (DeSiervo et al. 2018). 

Random Forest Analysis 

Random forest modeling explained 18.8% of the variance in canopy decline 

between 2011 and 2014. Importance values were consistent across all ten model 
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iterations and ranked elevation, slope and TPI as the three most important variables in the 

models (Figure 5). Elevation had a 51.6% increased MSE, followed by slope at 43.4% 

and TPI at 33.6% MSE. Vegetation type, aspect and HLI ranked consistently low in 

variable importance, adding a percent increase MSE of 25.0% and 27.1%, respectively. 

Canopy cover and stand structure contributed between 30-33% increases in MSE. Partial 

dependency plots showed the specific influence of individual topographic variables on 

canopy decline to vary considerably (Figure 6). Greater canopy decline occurred at 

higher elevations, with a sharp increase around 1,950 m and leveling off around 2,200 m. 

For slope, greater canopy decline occurred between 40-50°. Canopy decline varied across 

topographic sites (TPI), with relatively stable values up until around 150, where decline 

sharply increases. An increase in canopy decline occurred at southwestern aspects, with a 

gradual decrease towards more northeastern slopes. Surprisingly, HLI showed greater 

canopy decline at both warmer and cooler sites. Canopy cover and stand structure varied 

considerably in their effects on canopy decline. Large and medium-sized stands showed 

the largest increases in canopy decline, with all other categories falling below the 25-unit 

disturbance cutoff. Greater increases in canopy decline were also observed in denser 

forests (60–100% canopy cover) relative to the other cover classes. 
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DISCUSSION 

This study provides evidence for recent and pronounced increases in forest 

decline in one of the North America’s most diverse forested ecosystems. By employing 

annualized LandTrendr algorithms to my study area across a 28-year time period, I found 

that levels of forest decline were five times greater in the last two years of the time series 

(2013-2014) than in the previous twenty-six years. Forest decline was not uniformly 

distributed across the Russian Wilderness landscape but differed among topographic 

settings and stand structural conditions. The highest levels of canopy decline were found 

at higher elevations in dense red fir and subalpine conifer forests with old-growth forest 

attributes (i.e., large-diameter trees), suggesting that these forests may be particularly 

vulnerable to future disturbances. My study supports the growing body of literature 

showing increase in tree mortality and forest decline across California and the Pacific 

Northwest (van Mantgem et al. 2009, Cohen et al. 2010). Many remote sensing studies 

occur at very broad spatial scales, covering entire ecoregions and multiple states 

(Meddens et al. 2013, Meigs et al. 2015, Cohen et al. 2016). My study, by contrast, 

focused on a much smaller and more diverse landscape, enabling greater focus on more 

nuanced differences in the effects of forest decline on stand structure, topography and 

forest type. 

The increased levels of forest decline I observed using remote sensing data are 

supported by field-measured observations, particularly in red fir forests. Shasta red fir 

exhibited one of the highest amounts of both dead and unhealthy trees from the sampled 



20 

 

  

plot data (Figure 2). When assessed separately, forest types varied in the mortality they 

experienced. Shasta red fir had consistently high levels of mortality, even when found in 

other forest types and particularly within the subalpine and mixed conifer forest types 

(Figure 2). These results indicate that much of the disturbance being detected by 

LandTrendr is occurring in Shasta red fir forest types, both within Shasta red fir-

dominated forests and in mixed forest types. The partial dependency plots also support 

this conclusion, showing forest decline dramatically increasing around 1,950 m. This is 

consistent with the typical elevation range of the red fir forest type, which in the Russian 

Wilderness averages around 1,960 m.  

These findings agree with recent studies that focus specifically on red fir 

mortality, and provide strong evidence of increasing red fir mortality in California. 

Mortenson et al. (2015) examined rates of red fir mortality based on re-measured trees in 

Forest Inventory and Analysis (FIA) plots across all of California between the years of 

2000-2010 and found an annual mortality rate of 1.8%, generally coinciding with the 

disturbance rates I measured over that same time period (Figure 3). Dwarf mistletoe was 

the most significant contributor to mortality which also supports the plot-based 

measurements I made, as well as previous analyses examining causal mortality agents 

(DeSiervo et al. 2018). That recent rates of decline are nearly five times greater than both 

my own measurements of mortality and those of Mortenson et al. (2015) is serious cause 

for concern for the health of Shasta red fir in this region. While my study focused 

primarily on mortality in major forest types, the plot data showed an unexpectedly high 

proportion of subalpine fir mortality (35%) which raises particular concern for this 
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species at the most southern extent of its range. Including the Russian Wilderness, 

subalpine fir is found in only eight separate locations in California (Kauffmann 2012). 

Although exact causes of mortality are difficult to discern with my small sample size, 

evidence of fir engraver beetle as well as balsam woolly adelgid (Adelges piceae) were 

commonly found on dead and unhealthy individuals, highlighting the vulnerability of 

subalpine fir to pests in this area and a threat to regional forest biodiversity. 

Implementation of monitoring in other portions of the species’ southern distribution may 

be warranted to determine the health of subalpine fir populations outside the Russian 

Wilderness. 

Compared with the results of other remote sensing studies that used similar 

indices, the magnitude of disturbance I found in the Russian Wilderness is relatively low. 

My measured values of decline using the TCW index showed annual decreases ranging 

from 25-200, compared to fire disturbance studies using the NBR index which see 

typically see differences in the 600-800 range for high severity fire (Miller et al. 2009). 

Fires naturally cause greater disturbance both in the amount of area effected and its 

severity and is therefore much more sensitive to remote sensing indices. Other remote 

sensing studies observing the effects of bark beetle outbreaks often involve larger 

outbreaks in more homogenous forest types, making detection via satellite imagery easier 

(Aukema et al. 2006, Verbesset et al. 2009, Dennison et al. 2010). By contrast, in highly 

mixed conifer forests like those found in the Russian Wilderness that are being affected 

by fir engraver beetle, tree mortality occurs in a more fine-grained, patchy mosaic of 

decline. The distribution of ∆ TCW values between 2011 and 2014 exemplifies this fine-
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grained decline pattern (Figure 7), with most of the disturbance occurring in small 

patches alongside several larger clusters. 

I found no significant relationships between the levels of forest decline and my 

modelled climate variables. These findings are contrary to the climate analysis done by 

DeSiervo et al. (2018) which found greater Shasta red fir mortality in plots with higher 

minimum temperatures. The differences may be associated with the scale of these 

analyses; DeSiervo et al. (2018) used plot-specific measurements of climate, whereas I 

used averaged climate data for the entire study area. This smaller scale may resolve 

differences in climatic conditions that I was unable to detect at a coarser, landscape-level 

scale. Small-scale climate variability may play an important role in how climate change 

effects certain species, however the identification of climate refugia is difficult and has 

largely been descriptive (Morelli et al. 2016). Further research may be warranted in 

identifying small-scale changes in climate across heterogeneous landscapes like the 

Russian Wilderness.  

Precipitation also showed little relationship with forest decline, a result that was 

consistent with the DeSiervo et al. (2018) analysis. These findings are contrary to much 

of the literature regarding forest mortality in California and the Pacific Northwest that 

predict increased levels of mortality driven by drought (van Mantgem and Stephenson 

2007, Allen et al. 2015). While much of California has experienced record-setting 

droughts between 2011 and 2015, Rapacciuolo et al. (2014) demonstrated that 

precipitation patterns across the region are geographically variable, with some areas of 

the Klamath showing increases in precipitation while others show little to no change. The 
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simplicity of my climate analysis may also be contributing to a lack of significant 

relationships between forest decline and climate. Because the study area has only two 

years with large disturbance values (2013-2014), a correlation test may not be able to 

adequately assess significant relationships (see Figure 8). These results further exemplify 

the complexity of the interactions between climate and forest disturbance and warrant 

further research. 

Fire suppression may be partially responsible for some of the recent conifer 

mortality occurring in my study area. Land managers have been actively suppressing 

wildfires in conifer forests of California and the Pacific Northwest for over a century, 

leading to massive fuel accumulation and increases in stand density (McKelvey et al. 

1996, Gruell 2001, DiMario et al. 2018). Prior to active fire exclusion, forests in the 

Klamath Mountains region were characterized by a mixed-severity fire regime, with a 

high frequency of low to moderate severity fires in mixed conifer forests (Skinner et al. 

2006, Safford et al. 2011). Prior to late summer of 2014, this region of the Klamath had 

not experienced a wildfire in over 100 years, with low- and mid- elevation vegetation 

types missing the most fire cycles (Safford and Van de Water 2014). Increased stand 

density from fire suppression has been shown to cause mortality through higher 

competition among trees (Guarín and Taylor 2005, Maloney 2011, Millar et al. 2012), 

findings that are supported by my random forest results that show higher disturbance 

values among denser forests (Figure 6). These denser stands can also increase the spread 

of pests and pathogens. Furthermore, the interaction of increased pest and pathogen 
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spread coupled with increased stand competition may be some of the leading causes of 

the mortality observed in the Russian Wilderness. 

When analyzing stand structure attributes, the greatest decreases in canopy 

decline I observed occurred in the large and medium size classes, as well as in the largest 

canopy cover class (60-100%, Figure 6). These observations indicate that mortality is 

occurring in dense, old-growth stands where pests and pathogens have an easier time 

spreading between hosts. Field measurements also supported this observation, where the 

proportion of Shasta red fir with signs of bark beetles was greater in larger size classes 

(>20 cm dbh, DeSiervo et al. 2018). These findings are consistent with recent research 

highlighting the vulnerability of old-growth stands to climate change and pests (Battles et 

al. 2008, Allen et al. 2015). A study conducted by van Mantgem et al. (2009) documented 

a steady increase in background mortality rates of old-growth forests driven primarily by 

regional warming and water deficits from the mid-1950s to late 2000s. The elevated rates 

of decline I observed are consistent with those found by van Mantgem et al. (2009), 

particularly the moderate increase in mortality rates from 2000-2005 ranging from a 3-

6% increase. While these background rates of mortality are consistent between the two 

studies, van Mantgem et al.’s (2009) study did not assess the extreme drought California 

experienced in 2011 and my observed levels of forest decline increased in 2013 and 

2014. It should also be noted that van Mantgem et al. (2009) had different methods of 

data collections and overall objectives than my study, making direct comparison of 

results difficult. Regardless, this dramatic increase in forest decline we document raises 

concern for the health of conifer forests in the Russian Wilderness.  
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This study provides valuable insight into a recent mortality event in a highly 

diverse conifer forest of northern California. The use of remote sensing data provided a 

broader context for what might have been demonstrated using only field-collected data. 

Remote sensing analyses allow researchers to gain a broader understanding, both 

temporally and spatially, of forest decline trends. My study highlights trends of forest 

decline in high elevations species, specifically Shasta red fir and subalpine fir, and 

highlights the need for more research and monitoring to be conducted regarding the 

casual agents driving this mortality. A more comprehensive study of the interactions 

between climate and forest disturbance may expose some potential correlations not found 

in my analysis. Long-term monitoring may also allow a better link between field-derived 

measurements and remote sensing data and would allow stronger confidence as to the 

drivers of tree mortality in the Russian Wilderness. This work contributes to the growing 

body of evidence indicating increased levels of mortality among forests of western North 

America, and the roles climate, pest and pathogens, and topography play in driving and 

shaping this mortality across a diverse and heterogeneous landscape. 
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Table 1. Summary data on forest types for the Russian Wilderness, CA. Plots were taken 

in the summer of 2015. Number of pixels refers to the coverage of the Landsat dataset. 

Elevation was calculated using a 30 m DEM. 

 

Forest Type # Plots # Pixels Elevation (m) Total area (m2) 

Mixed Conifer 12 4,604 1539-2326 138,120 

White Fir 23 7,068 1480-2243 212,040 

Red Fir 45 20,048 1561-2313 601,440 

Subalpine Conifer 36 10,642 1703-2482 319,260 
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Table 2. Pearson product-moment correlation coefficients describing the relationship 

between climate variables and the proportion of area experiencing decline within each 

forest type. Correlations were adjusted for multiple comparisons using a Bonferroni 

correction (n=28). All analyses were performed in R version 3.3.3. 

 

Climate Variable 
White fir 

Mixed 

conifer 

Subalpine 

conifer 

Red 

fir 
Combined 

Minimum winter temperature -0.03 0.12 0.16 0.09 0.10 

Maximum summer temperature 0.27 0.36 0.40 0.33 0.35 

Minimum vapor pressure deficit 0.20 0.43 0.37 0.31 0.19 

Maximum vapor pressure deficit 0.10 0.27 0.24 0.18 0.33 

Total water year precipitation -0.11 0.07 0.00 0.00 -0.01 
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Figure 1. Map of the study area in the Russian Wilderness, CA, located within the south-

eastern extent of the Klamath Region (shown on locator map). Plot data was collected in 

summer of 2015. Vegetation type data is from the 2014 CALVEG dataset (Parker and 

Matyas 1979). 
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Figure 2. Comparison of basal area (BA) among four vegetation types in the Russian 

Wilderness based on 116 field-measured plots. Vegetation types were derived from 

combined CALVEG forest classes (see text for details). Plots were taken in summer of 

2015. 
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Figure 3. Proportion of area experiencing canopy decline for each year of the LandTrendr 

time series for combined forest types. Disturbance values were based on a 25-unit or 

greater decrease in tasseled cap wetness (TCW) between each year. Disturbance values 

were highest in the last two years of the time series. 
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Figure 4. Proportion of area disturbed for each year of the LandTrendr time series for 

each forest type. Note the elevated levels of disturbance in the red fir and subalpine 

conifer forest types. 



32 

 

  

 

Figure 5. Plot of random forest variable importance, where %IncMSE is the percentage 

increase in mean squared error of each explanatory variable in the random forest model. 
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Figure 6. Partial dependency plots for each explanatory variable included in the random 

forest model. Plots indicate the dependence of the model on each variable after holding 

all other variables at their average. The dotted line represents the TCW disturbance cutoff 

at a 25 unit-change. Distribution of pixel values shown as grey fill behind graphs. 
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Figure 7. Map of the Russian Wilderness, CA depicting canopy decline using tasseled 

cap wetness between 2011 and 2014. Gaps indicate non-forested areas. 
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Figure 8. Comparison of climate variables across the time series. Size of dots indicate 

proportion of canopy loss for that year. 
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