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ABSTRACT 

THE INFLUENCE OF MICROCLIMATE AND LOCAL ADAPTATION FOR A 

CLIMATE-SENSITIVE SPECIES (APLODONTIA RUFA) 

 

Jennie Jones Scherbinski 

 

Climate change models and analyses predict a disproportionate impact on 

climatically sensitive species such as the mountain beaver (Aplodontia rufa). Mountain 

beavers have physiological constraints that limit their distribution to cool, moist climates. 

While mountain beavers have persisted through past periods of climate change, 

increasing temperature since the last glacial maximum is believed to have had a strong 

influence in reducing their range. This is particularly true for the Point Arena subspecies 

(A. r. nigra, “PAMB”), found towards the southwestern edge of their range on the coast 

of California. Here, I examined the climatic niche of mountain beavers at four scales: 

range-wide; by clade; PAMB rangewide; and PAMB microclimates to test whether 

PAMB exhibit different climatic requirements than other subspecies. 

I examined the climatic space occupied by mountain beavers at four scales using 

the machine learning method MaxEnt and occurrence points from museum records, 

previous surveys conducted by USFS, and personal survey data. First, I modeled the 

distribution of mountain beaver range-wide and the distributions of the five individual 

genetic clades (Coastal, Californica, Olympica, Pacifica, and Rufa). To examine the 

microclimate use of PAMB, I developed fine-scale climate surfaces using temperatures 



 

iii 

 

recorded from dataloggers and topographic variables calculated from LiDAR data. These 

layers were incorporated with PAMB occurrence data to model distribution. Finally, I 

examined pairwise differences in microhabitat use between burrows and available space. 

At all scales high temperatures were a limiting factor in distribution. Despite a 

low level of niche overlap at broad scales, mountain beavers appear to display some level 

of niche conservatism. PAMB does seem to exist in a warmer climate than other 

mountain beavers; however, they apparently persist by selecting the coolest places within 

that range. This suggests that niche overlap between the Coastal clade and all other clades 

may be higher than what is detected at the coarser scale. Further research is needed to 

understand the mechanisms limiting this distribution, but it may be that mountain beavers 

in marginal habitat are more adaptable to changes in climate. 
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INTRODUCTION 

Understanding the limits to species distributions is a fundamental question in ecology, 

made all the more urgent by anthropogenic climate change (Elith et al. 2006). Most 

broadly, as global climate warms, species are expected to track the climatic conditions 

within which they are currently found, either upslope or towards the poles (Walther et al. 

2002). This pattern has already been documented at broad scales in a wide array of 

species and ecosystems, and particularly evident in alpine and arctic species (Hughes 

2000, Parmesan and Yohe 2003). However, recent, more fine-scale studies have 

complicated the relationship between a species’ occurrence and its climatic limits (e.g., 

Moritz et al. 2008, Miller et al. 2018). Such work highlights the need to identify the 

specific mechanisms limiting species’ distributions, especially at the trailing edge of their 

range, and particularly for species with characteristics that increase their sensitivity to 

climate change, such as those with physiological limitations or limited dispersal abilities 

(Ray et al. 2016, Case et al. 2015). 

As the only living species from the once diverse family Aplodontiidae, the mountain 

beaver (Aplodontia rufa) has endured through historic periods of climate change. Due to 

high water requirements and a low heat tolerance, these small, fossorial rodents are 

currently limited to areas with cool, humid climates in California and the Pacific 

Northwest (Figure 1, Nungesser and Pfeiffer 1965, Kinney 1971, Johnson 1971). Despite 

their ability to persist morphologically unchanged since the Miocene, five of the seven 

subspecies are considered species of concern or endangered in all or part of their range 



2 

 

  

due to current climate change and habitat loss (USFWS 1998, Environment Canada 2015, 

CADFW 2017). These imperiled populations (A. r. californica, A. r. humboldtiana, A. r. 

olympica, A. r. nigra, and A. r. phaea) represent the northern, southern, and eastern most 

edges of the mountain beaver range and likely exist at the species’ climatic limits (Figure 

1).  

While the full extent of their historical range is unknown, fossil records suggest the 

mountain beaver range has contracted significantly since the late Pleistocene, likely 

tracking cooler climates and potentially leading to speciation (Wake 2006, Blois et al. 

2010, Piaggio et al. 2013). Genetic work indicates that the seven subspecies can be 

further grouped into five distinct clades. The Point Arena mountain beaver (A. r. nigra, 

PAMB), Point Reyes mountain beaver (A. r. phaea), and Humboldt mountain beaver (A. 

r. humboldtiana) form a closely-related California coastal clade, while the remaining four 

subspecies (A. r. olympica, A. r. rufa, A. r. californica, A. r. pacifica) remain in separate 

clades (Piaggio et al. 2013, Figure 1). 

Isolated, range-edge populations such as the California coastal clade may exist in 

climate refugia (Wake 2006, Blois et al. 2010). The subspecies of the California coastal 

clade may have developed local adaptations that allow them to occupy habitats, such as 

coastal scrub and coastal dunes, which are notably different from the primary habitat – 

forest understory – occupied by most mountain beavers (Zielinski and Mazurek 2006). 

Understanding whether these clades have retained their historical niche (niche 

conservatism) or adapted to local climates may provide valuable insight into how they 
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have responded to climate change in the past and how they may respond in the future 

(Wiens et al. 2010, Pyron et al. 2015). 

 

Figure 1. Mountain beaver subspecies distribution map adapted from Piaggio et al. 2013. 

Areas where genetic sampling occurred are represented as “Subspecies Known”. 

Subspecies for other areas was defined by a previous subspecies range map (Hall 

1981). Points were acquired from Global Biodiversity Information Facility, personal 

surveys, and a previous study (Zielinski et al. 2015). 
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Response to previous climate change is particularly important to understand for 

climatically sensitive species such as the mountain beaver. The mountain beaver has a 

low capacity for urine concentration and water conservation that requires them to 

consume approximately 1/3 of their body weight in water daily, which may come from 

freestanding water or vegetation (Nungesser and Pfeiffer 1965). Ambient temperatures 

above 29⁰ C cause the mountain beaver to enter hyperthermia, and exposure to 

temperatures between 32⁰-35⁰ C is fatal (Johnson 1971). Burrows likely mitigate impacts 

of ambient temperature. However since most foraging occurs above ground, activity may 

be limited to cooler periods of the day in warmer climates (Ingles 1959). 

One member of the California coastal clade, the federally endangered PAMB, has a 

small, disjunct distribution of ~235 km2 along the Mendocino Coast in California making 

it an ideal candidate for understanding limits to species distributions (Zielinski et al. 

2015, Figure 1). This subspecies inhabits inland forests, which provide increased cover 

and lower ambient temperatures at the ground level. They are also found in coastal scrub, 

where ambient ground temperatures are generally higher due to increased sun exposure, 

though fog may alleviate some of the impacts of decreased cover (Figure 2b, Torregrosa 

et al. 2016). PAMB is further genetically subdivided into three populations: two 

populations found exclusively inland and one population found on the coast and inland 

(Zielinski et al. 2013). It is unclear why PAMB are restricted to coastal Mendocino 

County when seemingly suitable climate and habitat exists both to the north and south of 

their current distribution. Once isolated, PAMB may have developed local adaptations 

allowing them to persist in hotter, drier conditions. Alternatively, PAMB on the coast 
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may select microclimates that meet the typical needs of the species, a behavior that 

coarse-scale models would not reveal. 

 

Figure 2. Elevation and orthophotos for the PAMB range overlaid with dataloggers 

deployed for fine-scale analysis. (A) The full datalogger deployment grid for boosted 

regression tree analysis. (B) Subset of dataloggers used for paired points analysis. 
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Species distributions models (SDMs) have increasingly been used to identify current 

geographic range, especially for rare species, and to compare niches among species (Elith 

et al. 2006, Warren et al. 2008). SDMs relate presence points to spatially explicit 

predictor variables using a variety of statistical approaches to predict a species’ 

distribution (Elith et al. 2006). While they are generally effective at broad scales, SDMs 

are often unable to accurately assess fine scale details of distribution (Pearson and 

Dawson 2003, Guisan and Thuiller 2005). This is likely a result of the spatial mismatch 

between readily available predictor variables and the scale at which most species 

experience their environment and may be especially important to consider for species 

with limited mobility (Pearson and Dawson 2003, Guisan and Thuiller 2005, Potter et al. 

2013). 

Recent advances in downscaling climate data has allowed for the creation of fine 

resolution environmental predictors that better match the spatial scales at which animals 

are experiencing climate. LiDAR combined with microclimate dataloggers have 

successfully been used to create fine scale temperature models that better correspond to 

the scale at which a species experiences the environment (Frey et al. 2016, George et al. 

2015). Incorporating climate variables at an appropriate scale will improve predictive 

ability and provide insight into direct mechanisms by which mountain beavers may 

respond to climate change. However, due to the amount of data involved in fine scale 

models, they are generally not feasible for range-wide modeling. 

In this study, I attempted to understand range restrictions of the PAMB by modeling 

mountain beaver distribution at 3 levels: species, clade, and PAMB. If the climatic niche 
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of PAMB were conserved, I expected that fine-scale PAMB models would match the 

climatic limits of the species as a whole. Conversely, if the genetically isolated PAMB 

had adapted to the hotter, drier conditions within which it’s found, it would exhibit 

different responses to climatic predictors. Models were further tested to explain the 

disjunct distribution among the three subspecies forming the California clade. First, I 

created an SDM for the species as a whole. Next, I created SDMs for each of the five 

clades of mountain beaver and compared their ecological niches. If mountain beaver 

subspecies exhibited niche conservatism, I expected to find more overlap of the 

ecological niches of species that have contiguous distributions and the more closely 

related clades. Additionally, I developed fine scale climate models of the warm season in 

the PAMB range. I surveyed for PAMB throughout their range and combined this 

occurrence data with existing points from a previous study with the newly created climate 

layers to predict distribution within the range. I predicted that high temperatures would be 

the limiting factor for PAMB distribution. Finally, I compared climatic variables at 

burrow sites and paired available sites. I hypothesized that coastal PAMB and 

inland PAMB have selected habitats with similar microclimates, allowing them to persist 

in these seemingly distinct habitats. Based on this hypothesis, I predicted that paired non-

use sites would have higher temperatures, and lower humidity.  

 



8 

 

  

METHODS 

Study Area 

The range of PAMB is currently limited to 235 km2 area along the Mendocino 

County coast in California (Zielinski et al. 2015). The area is comprised of a variety of 

habitat types including coastal dunes, coastal scrub, riparian, and non-native grasslands 

along the coast, and forests and riparian areas inland (LANDFIRE 2017). Land use varies 

with approximately 25% of the range owned by timber companies, while the rest is 

divided among public land, ranches and dairy farms, and private parcels (ENPLAN 

2017). The weather is moderate with annual mean temperatures between 10-12⁰C (Fick 

and Hijmans 2017). Warmer temperatures are typically observed May-November 

(NOAA 2012). Summers have relatively high levels of fog and low-level clouds, 

particularly along the coast (Torregrosa et al. 2016). 

Coarse-Scale Models 

I examined the climatic niches of all subspecies of mountain beaver. First, I created 

niche space diagrams to visually compare the climates occupied by each subspecies 

compared with the species as a whole. Occurrence data for A. rufa were obtained from 

the Global Biodiversity Information Facility (GBIF 2017). Each occurrence was 

categorized by subspecies based on a distribution map adapted from Piaggio et al. 2013 

(Figure 1). Any occurrence records with location uncertainty greater than 2 km were 
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discarded from this analysis as they were considered too inaccurate to use with the ~1 

km2 resolution environmental predictor variables. I extracted mean annual temperature 

and mean annual precipitation from BioClim layers at each subspecies occurrence (Fick 

and Hijams 2017).   

Next, I created distribution models using the machine learning method Maxent for the 

entire species and for each clade separately (Phillips et al. 2018). Maxent uses random 

points as “background data” (also referred to as pseudo-absences), allowing for presence 

only species modeling (Phillips et al. 2006). Environmental predictors, such as climate, 

are extracted at presence and background points to estimate the distribution of a species 

(Phillips et al. 2017). Additional occurrence points from the United States Forest Service 

and personal surveys (see below) were also included for PAMB. Points were thinned 

using ‘geothin’ in package enmSdm at a distance of 2 km to address sampling bias 

(Aiello-Lammens et al. 2015, Smith 2018). 

Due to genetic similarity, the California Coastal Clade was grouped together for this 

analysis (Piaggio et al. 2013). The study area for each subspecies was defined as a 105 

km buffer around occurrence points for that subspecies. While this buffer may be larger 

than the area that is currently available for this species, it is sufficiently large to connect 

the three disjunct coastal California distributions and was selected to assess whether 

climatic variables between these subspecies may explain their genetic isolation (Barve et 

al. 2011). 

Ten climate variables were selected from BioClim as predictor variables (Table 1). 

Average summer fog was also used as a predictor variable for the coastal California 
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subspecies, but was not available for the range of the other subspecies (Torregrosa et al. 

2016). All possible combinations of these variables were used to create an initial 

candidate model set for each subspecies. Predictor variables within each study area were 

then evaluated for correlation using Pearson’s correlation. Any model that included 

variables with correlation above 0.5 were removed from the candidate model set 

(Dormann et al. 2013). 

Table 1. Predictor variables used to calculate subspecies models. *Average fog was only 

available for the California coastal range. 
Variable Description 

Bio1 Annual Mean Temperature 

Bio5 Maximum Temperature of Warmest Month 

Bio6 Minimum Temperature of Coldest Month 

Bio10 Mean Temperature of Warmest Quarter 

Bio11 Mean Temperature of Coldest Quarter 

Bio12 Annual Precipitation 

Bio13 Precipitation of Wettest Month 

Bio14 Precipitation of Driest Month 

Bio18 Precipitation of Warmest Quarter 

Bio19 Precipitation of Coldest Quarter 

Fog* Average Summer Fog 

 

Models were evaluated using AICc values and weights. Candidate models with 

ΔAICc less than or equal to 2 were considered top models, and their suitability rasters 

were evaluated for correlation (Burnham and Anderson 2004). If correlation was above 

0.9, the model with the fewest parameters was selected as the top model. To assess 

accuracy, I calculated the Continuous Boyce Index (CBI) using the “enmSdm” package 

in R (Hirzel et al. 2006). CBI values range between -1 and 1, with more positive values 

indicating a more accurate model. Occurrence points were divided to create a training and 

testing data set, 75% of the data was used to create the model and the remaining 25% 
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were used to test accuracy. I conducted this evaluation 10 times, randomly sampling each 

time to calculate an average CBI. To assess whether closely related subspecies occupied 

more similar climatic niches, I calculated niche overlap range-wide for californica, 

olympica, pacifica, and rufa. I used Warren’s I in the ‘ENMTools’ package in R (Warren 

et al. 2010). The top model for each clade was also projected into the Coastal California 

range and compared to the coastal clade. 

PAMB Surveys and Fine-Scale Models 

In the summer of 2017, I conducted surveys throughout PAMB range to determine 

patterns of occupancy and compare the climate at used locations versus those available to 

the population. Using ArcMap (Environmental Systems Research Institute, Inc., 

Redlands, CA) a points grid was placed over the range of PAMB, such that each point 

was 150 m from the nearest neighbor. From this grid, two subsets, one inland and one 

coastal, of 100 points were selected for PAMB surveys and datalogger deployment. Sites 

for the coastal grid were randomly selected in R (George et al. 2015). Sites were 

reselected if they were unsuitable for datalogger deployment (i.e. in a river or 

inaccessible due to topography or vegetation). Due to accessibility and a need to ensure 

that the full range of canopy cover, elevation, slope, and aspect were sampled, points for 

the inland grid were selected using a stratified approach (Fridley 2009, Frey et al. 2016). 

Inland points were along transects that were selected based on accessibility, presence of 

PAMB, and environmental variables. Histograms of elevation, slope, and aspect for the 
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PAMB range were compared to grid points to ensure the range of environmental 

variables was reflected by deployment sites. 

Four inland sites and four coastal sites were selected to study the relationship between 

microclimate at use and available sites (Figure 2b). Use sites were identified based on 

signs of mountain beaver activity. Individual mountain beavers construct a burrow 

system with multiple burrow entrances that are distinct and easily identified as mountain 

beaver constructs (Camp 1918, Feldhammer et. al 2003, Zielinski et al. 2015). These 

systems may overlap and form burrow area; however, mountain beavers are not social, 

and their clumped dispersion tends to be a function of suitable habitat (Feldhammer et al. 

2003). Use sites were defined as an individual burrow area separated from other burrows 

by at least 10 meters. Surveys radiated away from an identified burrow. If no additional 

burrows were found within a 10-meter distance, a GPS point was taken to designate a 

burrow area edge. Surveys continued around a burrow area until all edges were defined. 

Edges were also defined by topography (i.e. water features or cliff face), anthropogenic 

features, or vegetation edges. 

Microclimate data were collected using iButton® (Maxim Integrated, San Jose, CA, 

USA) temperature loggers for two different analyses: (1) a downscaled microclimate 

model of PAMB habitat, and (2) comparison of microclimate at use vs. available sites. 

Each datalogger was placed in a shield constructed from PVC and fiberglass screen that 

allowed for airflow while limiting the effect of direct solar radiation and precipitation. All 

dataloggers were deployed during the summer, checked once in late summer/early fall, 
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and collected in early winter. This deployment captured most of the typical warm season 

within the PAMB range (NOAA 2012). 

At each site, one datalogger was placed directly outside a central burrow entrance, 

and three dataloggers were deployed at available sites. Available sites were randomly 

selected from the points grid 100-450 m from the burrow area (Figure 2b). This buffer is 

based on the maximum reported distance between locations for PAMB, which was 101.8 

m (Zielinski and Mazurek 2006), and dispersal distances for other subspecies, which have 

been recorded from ~100 m (Arjo 2007) to over 450 m (Hacker 1991). Therefore, this 

distance should encompass areas that were potentially accessible to PAMB but not in use. 

Site selection was constrained by access and deployment points were reselected if the 

point fell within an area that would be uninhabitable or inaccessible for PAMB, such as 

roads, rivers, or solid rock. A 10-meter survey was conducted around available sites 

during the initial deployment and subsequent checks to confirm non-use. Soil moisture 

and temperature were recorded at use and non-use sites during initial deployment and 

subsequent data checks using 8” soil probes. 

To generate a climate model at a scale appropriate to mountain beaver microclimate 

selection, I used a combination of fine-scale topographic data and known climate data 

recorded on the dataloggers. Climate data from the dataloggers were projected into the 

surrounding landscape using relevant predictors from the topographic data. Specifically, a 

Digital Terrain Model (DTM), Digital Surface Model (DSM), and Canopy Height Model 

(CHM) were calculated using LiDAR data from NASA’s Northern San Andreas Fault 

Study (OpenTopography.org). Environmental predictor variables were calculated using 
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the DTM, DSM, and CHM at two spatial scales, 10 meters and 100 meters, to account for 

the impacts of these variables at a local and more widespread scale (Table 2). Distance to 

coast was calculated from a US shapefile at a 1-meter scale (GADM.org). Response 

variables, min, mean, and max temperature, were calculated for each datalogger during 

the 6-month deployment period. An additional response variable, upper critical 

temperature (“CTmax”), was calculated as the average number of times per day a data 

logger recorded temperatures above 32⁰C, which is the lower temperature limit that 

causes mortality in mountain beavers with prolonged exposure. The CTmax analysis was 

incorporated to provide another metric for maximum temperature and control for extreme 

temperatures. Boosted regression trees in R package ‘dismo’ was used to analyze the 

relationship between topographic data at the datalogger locations and climate data 

recorded on the datalogger; these climate models were then projected onto topographic 

data throughout PAMB range (Hijmans et al. 2017). 
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Table 2. Predictor variables and the scales used to calculate fine scale temperature models 

from the Digital Terrain Model (DTM), Digital Surface Model (DSM), and Canopy 

Height Model (CHM). 
Variable Spatial Scale Description 

Distance to coast 1m Euclidean distance from coast, proxy for fog 

Mean cover 10m/100m Mean percent cover from DTM and DSM 

SD cover 10m/100m Standard deviation of percent cover from DTM and DSM 

Mean eastness 10m/100m Mean sin (aspect *pi/180), between -1 and 1, DTM 

Mean elevation 10m/100m Mean elevation, DTM 

SD elevation 10m/100m Standard deviation of elevation, DTM 

Elevation range 10m/100m Range of elevation values, DTM 

Mean northness 10m/100m Mean cos(aspect*pi/180), between -1 and 1, DTM 

Mean slope 10m/100m Mean slope (%) from DTM 

SD slope 10m/100m Standard deviation of slope (%) from DTM 

Topo Index 10m/100m Difference in elevation between the point and mean elevation, 

indicating local low and high points, DTM 

Mean veg height 10m/100m Mean vegetation height, CHM 

SD veg height 10m/100m Standard deviation of vegetation height, CHM 

 

Boosted Regression Trees are able to identify nonlinear relationships and explore 

complex interactions and can be particularly useful for a large number of predictor 

variables (Elith et al. 2008). Models were fit using a tree complexity of 3‒5 and a bag 

fraction of 0.75 due to the small sample size. All models were initially run with a learning 

rate of 0.005 and decreased until at least 1000 trees were used to fit the model (Elith et al. 

2008). Models were evaluated using cross validation, and the top model was then 

simplified by dropping non-informative predictor variables using methods outline in Elith 

et al. (2008). As the purpose of simplification is to improve the performance of the 

model, when the simplified model did not outperform the unsimplified model, the 

unsimplified model was considered the top model (Elith et al. 2008). The models were 

also tested for correlation between predicted and observed values using 10-fold cross 
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validation. Low correlations between predicted and observed values indicates over-fitting 

of the model (Frey et al. 2016). 

I combined the occurrence data I collected for PAMB with points from a previous 

study of PAMB distribution with the fine-scale climate data to construct local distribution 

models throughout PAMB range using Maxent (Zielinski et al. 2015). The mean, 

maximum, minimum, and critical temperature layers were used as predictive variables. 

All possible combinations of these four variables were considered candidate models and 

variables with >0.5 correlation were not included in the same model. The top model was 

selected using AICc (Warren and Seifert 2011). Accuracy of this model was also assessed 

using the Continuous Boyce Index (CBI), following the methods used for the broad scale 

models (Hirzel et al. 2006). Additional presence points provided from a variety of 

sources and collated by USFWS were also used as an independent testing data set but 

were not used as training data due to uncertainty in accuracy of location data.  

Finally, I examined PAMB microclimate selection by comparing temperature and soil 

data at PAMB locations and nearby available locations. The mean, max, and minimum 

temperature from dataloggers at available points were averaged and compared to the use 

points using a paired t-test. Similarly, soil humidity and temperature were averaged at 

available sites and compared to readings from use sites. 
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RESULTS 

Coarse-Scale Models 

The niche space diagram showed that all the subspecies fell within a similar climatic 

niche (Figure 3). Californica occupied the driest and coldest niche, while pacifica 

occupied the wettest. The coastal clade inhabited a narrow niche on the hotter and drier 

end of the spectrum. Rufa and olympica appear to occupy a wider range of climatic 

conditions. 

A total of 332 mountain beaver occurrence points with a location accuracy less than 2 

km were available from GBIF, USFS, and personal surveys (Zielinski et al. 2015, GBIF 

2017). After thinning, 178 occurrence points were used for modeling with 51 for the 

coastal clade, 27 for californica, 52 for olympica, 20 for pacifica, and 28 for rufa. The 

species-wide top model included maximum temperature of warmest month, minimum 

temperature of coldest month, and precipitation of the warmest quarter (Table 3, Figure 

4). The mean CBI value for the range-wide model was 0.919 (Table 4). Maximum 

temperature had the greatest contribution to the model. Suitability for mountain beavers 

across their range peaked at a maximum temperature of the warmest month of 20⁰C with 

a steep drop in suitability at higher temperatures (Appendix A1).
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Figure 3. Mean annual temperature and annual precipitation at occurrence points for the five clades of mountain beaver. 

Smaller, gray points represent conditions at 1,000 random points within a 105 km buffer of all occurrence points. 
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Table 3. Top three suitability models for each clade of mountain beaver. 

Clade Predictors1 Beta LogLik K AICc ΔAICc Weight 

 Bio10 + Bio18 + Bio19 2.0 -212.99 3 433.03 0.00 0.38 

Californica Bio10 + Bio18 + Bio19 1.5 -212.03 4 433.88 0.85 0.25 

 Bio5 + Bio18 + Bio19 1.5 -212.48 4 434.77 1.74 0.16 

 Bio5 + Bio12 + Fog 1.0 -293.53 8 606.58 0.00 0.46 

Coastal Bio5 + Bio13 + Fog 1.0 -293.14 9 608.78 2.21 0.15 

 Bio5 + Bio11 + Bio13 + Fog 1.5 -287.38 13 610.86 4.29 0.05 

 Bio6 + Bio10 + Bio13 1.5 -390.64 15 825.82 0.00 0.54 

Olympica Bio6 + Bio10 + Bio13 2.0 -394.98 13 826.35 0.54 0.42 

 Bio6 + Bio13 1.5 -401.78 11 832.69 6.87 0.02 

 Bio1 + Bio19 0.5 -147.88 6 314.76 0.00 0.43 

Pacifica Bio6 + Bio10 + Bio13 1.0 -149.83 6 318.66 3.89 0.06 

 Bio11 + Bio19 2.0 -154.30 4 319.45 4.69 0.04 

 Bio5 + Bio11 + Bio14 1.5 -218.19 5 449.23 0.00 0.49 

Rufa Bio5 + Bio11 + Bio14 2.5 -220.10 5 453.06 3.83 0.07 

 Bio5 + Bio18 1.0 -223.20 3 453.45 4.22 0.06 

 Bio5 + Bio6 + Bio18 0.5 -1344.33 34 2773.65 0.00 0.90 

All Bio5 + Bio6 + Bio18 1.0 -1356.89 27 2778.07 4.42 0.10 

 Bio5 + Bio6 + Bio13 0.5 -1344.57 39 2790.25 16.60 0.00 
1Bio1 = Mean annual temperature, Bio5 = Maximum temperature of the warmest month, Bio6 = Minimum temperature of the coldest 
month, Bio10 = Mean temperature of the warmest quarter, Bio11 = Mean temperature of the coldest quarter, Bio12 = Annual 

precipitation, Bio13 = Precipitation of the wettest quarter, Bio14 = precipitation of the driest quarter, Bio18 = Precipitation of the 
warmest quarter, Bio19 = Precipitation of the coldest quarter, Fog = Mean summer fog 

 

Table 4. The top model for each clade of mountain beaver including which predictor 

variables were used, the beta or regularization parameter, and evaluation metrics (AUC 

and CBI).  

Clade Model1 Beta AUC CBI SD CBI 

Californica Bio10 + Bio18 + Bio19 2.0 0.906 0.774 0.221 

Coastal Bio5 + Bio12 + Fog 1.0 0.984 0.973 0.046 

Olympica Bio6 + Bio10 + Bio13 2.0 0.840 0.874 0.123 

Pacifica Bio1 + Bio19 0.5 0.905 0.830 0.236 

Rufa Bio5 + Bio11 + Bio14 1.5 0.822 0.920 0.104 

All Bio5 + Bio6 + Bio18 0.5 0.885 0.919 0.071 
1Bio1 = Mean annual temperature, Bio5 = Maximum temperature of the warmest month, Bio6 = Minimum temperature of the coldest 

month, Bio10 = Mean temperature of the warmest quarter, Bio11 = Mean temperature of the coldest quarter, Bio12 = Annual 
precipitation, Bio13 = Precipitation of the wettest quarter, Bio14 = precipitation of the driest quarter, Bio18 = Precipitation of the 
warmest quarter, Bio19 = Precipitation of the coldest quarter, Fog = Mean summer fog. 
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Figure 4. The range-wide model of climatic suitability for mountain beavers showed high 

suitability along the coast and limited suitability inland. 
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There was a definitive top model for the Coastal California Clade (“coastal”), A. r. 

pacifica (“pacifica”), and A. r. rufa (“rufa”). The predictors included in the best model for 

coastal were maximum temperature of the warmest month, annual precipitation and 

average summer fog (Table 3). Average summer fog had the highest percent contribution, 

but maximum temperature was shown to have the most useful information when used in 

isolation. Suitability peaked at 7 hours/day of fog, maximum temperature of the warmest 

month of 20⁰C, and annual precipitation around 900 mm (Appendix A2). Maximum 

temperature of the warmest month and annual precipitation both had sharp peaks, while 

suitability remained high for a range of fog values.  

The top model for pacifica included annual mean temperature and precipitation of 

coldest quarter (Table 3). While precipitation of the coldest quarter had greater 

contribution, mean temperature predicted a sharp decline in suitability at temperatures 

above 10.5⁰C (Appendix A3). Suitability gradually increased as precipitation rose until a 

plateau of suitability at 1400 mm.  

Predictors included in the top model for rufa were maximum temperature of warmest 

month, mean temperature of coldest quarter, and precipitation in the driest month (Table 

3). All variables had similar importance in the model with maximum temperature of the 

warmest month again having the most useful information when used in isolation. There 

was very low probability of presence below 10 mm precipitation in the driest month and 

a decline in probability of presence above a maximum temperature in the warmest month 

of 10⁰C (Appendix A4). Suitability increased below a mean temperature of the coldest 

quarter of -9.5⁰C, decreased to a low at 0⁰C and peaked at 9⁰C.  
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The two-other subspecies, A. r. californica (“californica”) and A. r. olympica 

(“olympica”), each had two models within 2 ΔAICc, but both used the same predictor 

variables with different beta parameters. The two top models for californica and olympica 

were highly correlated (0.98 and 0.99 respectively), so the model with the fewest 

parameters was selected for further analysis. The predictors included in the top model for 

californica were mean temperature of the warmest quarter and precipitation of the 

warmest and coldest quarter (Table 3). Mean temperature of warmest quarter had the 

highest contribution and importance, showing highest probability of presence below 5⁰C 

and steadily decreasing up to 20⁰C where probability of presence dropped to 0 (Appendix 

A5). Any precipitation in the warmest quarter decreased suitability, while increasing 

precipitation to 450mm or higher in the coldest quarter peaked suitability. 

The top model for olympica included minimum temperature of the coldest month, 

mean temperature of the warmest quarter, and precipitation of the wettest month. 

Minimum temperature of the coldest month had the highest contribution with probability 

of presence increasing sharply at temperatures above 0⁰C (Appendix A6). Suitability had 

a sharp peak at a mean temperature of the warmest quarter of 30⁰C and 130mm 

precipitation in the wettest month. CBI values varied between 0.774 for californica and 

0.973 for coastal (Table 4). 

Overall, the coastal clade had the least overlap in climatic suitability with the other 

clades, ranging between 0.083 for olympica and 0.231 for californica (Table 5, Figure 5). 

Pacifica had similarly low overlap with values ranging from 0.155 for californica (0.155), 
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to 0.254 for rufa. The three remaining clades had moderate niche overlap. The highest 

overlap was between californica and rufa (0.523). 

Table 5. Niche overlap for the five clades of mountain beaver. Overlap with the coastal 

clade was only calculated for the coastal range due to the lack of an available fog layer 

for inland areas, while all others were assessed for the entire range. Higher overlap 

suggests greater similarity of the model predictions. 

  Californica Olympica Pacifica Rufa 

Coastal 0.231 0.083 0.186 0.219 

Californica   0.414 0.155 0.523 

Olympica     0.223 0.437 

Pacifica       0.254 
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Figure 5. The top model for climatic suitability for each clade of mountain beaver projected into the coastal range for niche 

overlap comparison. Clades are in order of highest overlap with the coastal clade from left to right. Overlap was only 

compared with the coastal clade where a fog layer was available.
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PAMB Surveys and Fine-Scale Analysis 

I documented the occurrence of 20 PAMB burrow areas, eight of which were feasible 

to delineate the edges of the burrow area and were used for the paired points analysis. An 

additional 35 occurrences from USFS were used for a total of 55 PAMB occurrences for 

the suitability models. A total of 199 iButton data loggers were deployed during the 

summer of 2017 (Figure 2). Due to theft or loss, 27 data loggers were removed from the 

analysis. An additional four data loggers were placed later in the summer and excluded 

from the six-month microclimate modeling, leaving 168 locations for this analysis. 

Several of the data loggers recorded temperatures above a reasonable limit for the area, 

likely due to solar radiation and heat reflection from the soil. These were still included for 

analysis as they likely captured relative patterns of temperature if not absolute reliable 

values (Terando et al. 2017). 

Creation of fine-scale climate layers from the dataloggers and LiDAR data resulted in 

accurate models for mean, minimum, and CTmax (Table 6, Figure 6). Deviance for these 

three layers range from 0.023 (CTmax) to 2.240 (minimum). However, the maximum 

temperature model had high deviance. The cross-validation correlation values were 

moderate (ranging from 0.586 to 0.794) indicating that there was some agreement 

between training and testing data. 
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Table 6. Model settings (tree complexity, learning rate, and number of trees) and 

performance metrics for the top model for each temperature variable. Additionally, 

whether the top model was simplified by removing uninformative predictor variables. 

Variable Complex 
Learning 

Rate 

No. 

trees 
Deviance Dev SE CV corr CV SE Simplified 

Mean 5 0.005 1000 0.517 0.053 0.784 0.041 No 

Max 3 0.002 1300 33.258 2.206 0.64 0.034 No 

Min 5 0.002 1400 2.24 0.292 0.794 0.029 Yes 

CTmax 5 0.002 1300 0.023 0.004 0.586 0.101 Yes 
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Figure 6. Results of the boosted regression tree analysis for each temperature metric 

(Minimum, Mean, Maximum, and Critical Temperature). Critical temperature was 

defined as the average number of times per day a datalogger recorded temperatures above 

32⁰C.  
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The top model for PAMB distribution included mean temperature and CTmax (Table 

7, Figure 7). Mean temperature had a greater contribution (94.6%) than CTmax. Suitability 

decreased as mean temperature increased above 12.0⁰C and increased as daily readings 

above CTmax increased to 0.45 (Appendix A7). The model had an AUC of 0.876. The 

mean CBI value for the top model was 0.96 when the original data were divided into 

training and testing datasets. The CBI value was 1.0 when the additional USFWS 

provided points were used as the testing dataset. The top five models all included these 

two layers, and some also incorporated minimum temperature (Table 7). Maximum 

temperature was not included in any of the best-supported models. 

Table 7. Model selection table for PAMB microclimate suitability. 

Model Beta Mult AICc ΔAICc AICc Weight 

Mean + CTmax 3.0 895.29 0.00 0.65 

Mean + CTmax 2.0 897.70 2.41 0.19 

Mean + Min + CTmax 3.0 899.12 3.83 0.10 

Mean + CTmax 2.5 901.26 5.98 0.03 

Mean + Min + CTmax 2.0 901.59 6.30 0.03 
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Figure 7. Climatic suitability model for Point Arena mountain beaver. Training points 

were used to create and assess the accuracy of the model. Test points were used as an 

additional accuracy assessment but were not used to create the model due to unknown 

accuracy. 
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At the finest scale, mean air temperature was an average 1.00⁰C cooler at use sites 

than at available sites (t7=-2.59, P = 0.036). Maximum and minimum air temperature 

were not significantly different at use and available sites (t7 = -1.58, P = 0.159 and t7 = 0, 

P = 1, respectively). Due to equipment failure, each burrow area had between 1-3 

readings for soil temperature and humidity (Appendix B). Soil temperature was also 

cooler with use sites on average 1.42⁰C than at available sites (t18=-2.55, P = 0.020). Soil 

humidity varied across burrow areas with 3 burrow areas having higher humidity at use 

sites, and 4 with lower humidity at use sites (t20 = 0.21, P = 0.838). One burrow area in 

the coastal dunes had 0.0% humidity at all use and non-use sites. 
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DISCUSSION 

I examined the climatic limits to mountain beavers at four spatial scales: range-wide, 

clade, and I created a fine-scale distribution model for the PAMB and a paired-

microclimate analysis. At almost all scales, hot temperatures limited mountain beaver 

distribution. Overall, niche overlap between clades was low, however, the fine-scale 

models suggest that animals in different clades may select their niche at a finer scale and 

appear to have higher niche overlap than the coarser models indicated. Niche overlap was 

highest among clades that were genetically closest, indicating that this species has a 

tendency towards niche conservatism but has developed some local adaptations as well. 

As expected, models at all scales showed a trend towards lower suitability at higher 

temperatures. High temperatures were important in identifying suitable habitat for all the 

clades, with the exception of pacifica. Pacifica was the only model that did not 

incorporate either maximum temperature of the warmest month or mean temperature of 

the warmest quarter. The models that included these variables had a clear trend of 

suitable habitat at lower temperatures. The pacifica model incorporated annual mean 

temperature but did not appear to be selecting for the coldest temperatures, suggesting a 

lower temperature limit as well. As genetic evidence supports pacifica as a separate 

species rather than subspecies, pacifica may have developed local adaptations that limit 

its niche to a specific range of temperatures (Piaggio et al. 2013). On the other hand, the 

range of pacifica is geographically limited by rivers to a small area on the north coast of 
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Oregon. In other words, the lack of a signal for warm temperature in the pacifica model 

may be an artifact of available climates rather than true climatic limits. 

Pacifica and olympica are both geographically isolated by surrounding rivers, 

whereas the disjunct southern populations were likely separated by a changing climate 

(Blois et al. 2010, Piaggio et al. 2013). The lack of niche overlap between pacifica, 

olympica, and the southern clades may be a result of the coastal climates available to 

these northern populations. Additionally, these two clades diverged first, supporting the 

hypothesis that less related clades would have less niche overlap (Piaggio et al 2013). 

Even if mountain beavers have a tendency towards niche conservatism, these two clades 

would be the most likely to have distinct niches. The high level of overlap between rufa 

and californica also supports this hypothesis. 

Similarly, the coastal clade had highest overlap with its two closest related clades, 

rufa and californica, but overlap for the coastal clade with other subspecies was overall 

low. This may be a result of their limited range and therefore restricted climatic niche. 

Additionally, niche overlap for the coastal populations could only be compared within the 

coastal range where a fog layer was available. Comparing fine scale models reveals that 

PAMB and members of the coastal clade are selecting a similar climatic niche, but at a 

finer scale. The niche space diagram showed that while the coastal clade is occupying the 

hotter, drier portion of the mountain beaver habitat spectrum, it still falls within the 

general range of climate occupied by the species as a whole (Figure 3). The most 

southern coastal subspecies, phaea exists in areas with the highest mean temperature, but 

is likely selecting for cooler areas within its range. PAMB can be further divided into 
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three distinct genetic groupings, two of which only exist on the coast (Zielinski et al. 

2013). The third grouping primarily inhabits the inland habitats, which more closely 

resemble other mountain beaver habitat. It is possible that the coastal groupings may be 

more adapted to hotter, drier climates and therefore critical to preserve in the face of 

climate change. A study into the physiology of California coastal mountain beavers could 

provide valuable insight into whether this species has adapted to a hotter, drier climate or 

if the fog in those areas is enough to sustain them. 

The subtle differences in niche between clades are evidence for some local adaptation 

and, there are multiple mechanisms in which this adaptation can be realized. Behavioral 

adaptations, such as shifting foraging activities to cooler parts of the day, have been 

documented in other climatically-sensitive species and the activity patterns of mountain 

beavers have only been studied in californica (Smith 1974, Ingles 1959). Mountain 

beavers are active at various times throughout the day and night with increased activity 

and ranging at night (Ingles 1959). During summer months, mountain beavers shift to a 

more nocturnal lifestyle, potentially to avoid increased temperatures (Ingles 1959). This 

shift may be more conspicuous in populations living in areas with hotter temperatures 

and may occur seasonally or daily as weather conditions such as fog shift. Additionally, 

climatically-sensitive species have been shown to select habitat at a microclimatic scale 

(Wilkening et al. 2011, Shi et al. 2014, Varner and Dearing 2014). These microclimates 

may be particularly important at range margins such as the conditions experienced by 

PAMB (Ray et al. 2016). Both the fine scale SDM and paired points analysis suggest that 

PAMB are selecting for cooler microclimates within their range. Future studies on 
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differences in active periods between clades could provide insight into behavioral 

adaptations. Overall, this species appears to favor niche conservatism which likely lead to 

the isolation of the southern populations. 

The range-wide model over-predicted suitable climate for the coastal clade and 

under-predicted suitable climate for the inland populations. This may be due to a 

sampling bias along the coast. The entire northern California coast was identified as 

highly suitable for the species. Given the genetic isolation among the coastal subspecies, 

it is unlikely that these coastal areas are actually climatically suitable but unoccupied. 

Instead, this suggests that an additional facet of habitat or climate restricts the coastal 

subspecies to their respective distributions. Significantly, average summer fog cover 

contributed the most to the top model for this clade. The three California coastal 

populations exist in windward (N-NW facing) areas of the coast, areas that have 

increased fog cover (Torregrosa et al. 2015). The increased cover from fog may be the 

variable that allows this clade to persist in these warmer, climates, but not in the 

intervening areas. Similar to understanding the role of fog in limiting coastal redwood 

populations, understanding changing fog conditions into the future will be critical for 

projecting the impacts of climate change on these endangered subspecies (Dawson 1998).  

It is unclear whether fog is important for mediating hotter summer temperatures on 

the coast or providing additional free moisture in the system. Mountain beavers can meet 

their water intake requirements without access to free-flowing water, however this 

requires significant moisture intake from vegetation (Crocker et al. 2007). Fog may 

provide additional moisture to drier coastal vegetation. Previous research has shown that 
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PAMB select areas with increased density of free-flowing water (Zielinski et al. 2015). 

Coastal habitats- such as the Dune burrow area where soil moisture was 0.0% and free-

flowing water was not readily available- may be particularly reliant on moisture from fog. 

While there were no clear differences in soil moisture at burrow areas versus surrounding 

areas, soil humidity can vary greatly within a small area. Moisture is influence by soil 

type, which is itself likely a limiting factor for PAMB, as they require soil suitable for 

constructing burrows. Unfortunately, current digital soil layers were too coarse to 

incorporate into these models. Further research is needed to understand the interactions of 

soil moisture, fog, and free-flowing water on PAMB distribution. 

While this study focused on the impacts of abiotic limits to mountain beaver 

distribution, there are likely biotic variables that also influence this species’ distribution. 

Biotic variables are recognized as important factors in predicting distribution shifts in 

response to climate change, however there is debate over their relative importance at 

broad scales (Pearson and Dawson 2003, Wisz et al. 2013). Incorporating biotic factors, 

such as predation, competition, and dispersal abilities, into SDMs, particularly fine-scale 

SDMs, for mountain beavers may improve our understanding of how this species will 

respond to climate change (Wisz et al. 2013). 

With the certainty of continued climate change, ecosystem conservation and 

preservation will escalate the importance of understanding the niche of climatically 

sensitive species such as the mountain beaver, as they lack the ability to adapt to 

changing temperatures (Rappaculio et al. 2014). These species are particularly vulnerable 

to increasing temperature and the associated changes in precipitation. While the lack of 
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niche overlap suggests mountain beavers may have some ability to adapt to local 

conditions, this may be primarily focused on climatic limits such as the California coast. 

Subspecies like PAMB may exist on the climatic limit for mountain beavers, but they 

may also hold the key to their survival through climate change across the entirety of their 

range.
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APPENDIX A 

Appendix A. Responses curves, variable percent contribution and variable permutation 

importance for the mountain beaver species distribution models for (1) range-wide, (2) 

coastal, (3) pacifica, (4) rufa, (5) californica, (6) olympica, and (7) PAMB. 

 

 Appendix A1. Response curves and variable contributions for range-wide species 

distribution model. 

  

Variable Contribution Importance 

Max Temp 

Warmest Month 
45.2% 58.0% 

Min Temp 

Coldest Month 
43.8% 25.5% 

Precip Warmest 

Quarter 
11.0% 16.5% 
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Appendix A2. Responses curves and variable contributions for the coastal species 

distribution model. 

 

 

Variable Contribution Importance 

Average Fog 65.3% 17.4% 

Max Temp 

Warmest Month 
11.6% 68.6% 

Annual Precip 23.0% 14.0% 
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Appendix A3. Responses curves and variable contributions for the pacifica species 

distribution model. 

 

 

  

Variable Contribution Importance 

Mean Annual 

Temp 
22.2% 18.7% 

Precip Coldest 

Quarter 
77.8% 81.3% 
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Appendix A4. Responses curves and variable contributions for the rufa species 

distribution model. 

 

 

 

Variable Contribution Importance 

Max Temp 

Warmest Month 
14.4% 28.9% 

Mean Temp 

Coldest Quarter 
49.5% 30.4% 

Precip Driest 

Quarter 
36.1% 40.7% 
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Appendix A5. Responses curves and variable contributions for the californica species 

distribution model. 

 
 

 

Variable Contribution Importance 

Mean Temp 

Warmest Quarter 
61.2% 70.5% 

Precip Warmest 

Quarter 
9.2% 49.0% 

Precip Coldest 

Quarter 
29.6% 24.6% 
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Appendix A6. Responses curves and variable contributions for the olympica species 

distribution model. 

 
  

Variable Contribution Importance 

Min Temp 

Coldest Month 
64.6% 60.5% 

Mean Temp 

Warmest Quarter 
7.8% 19.3% 

Precip Wettest 

Quarter 
27.6% 20.2% 
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Appendix A7. Responses curves and variable contributions for PAMB species 

distribution model. 

 
  

Variable Contribution Importance 

Mean Temp 94.6% 84.1% 

Critical Temp 5.4% 15.9% 
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APPENDIX B 

Appendix B. Soil moisture and temperature readings for 8 burrow areas used in paired 

points analysis. Use values are an average from the use sites for that reading. The average 

difference between the use and available sites for each burrow area are highlighted in 

blue for colder or moister at use sites and red for warmer or drier at use sites. 

 

Location Area Reading  Temp   Humidity  
   Use Available Diff Use Available Diff 
  1 13.40 22.60 -9.20 9.90 3.60 6.30 
 Miner 2 14.70 20.35 -5.65 14.50 11.15 3.35 
  3 - - - - - - 
  Average   -7.43   4.83 
  1 14.70 14.37 0.33 8.20 4.17 4.03 
 Davis 2 13.60 14.25 -0.65 2.00 3.60 -1.60 
  3 11.60 10.90 0.70 13.40 11.33 2.07 

Coastal  Average   0.13   1.50 
  1 16.40 19.17 -2.77 0.00 0.00 0.00 
 Dune 2 14.70 16.85 -2.15 0.00 0.00 0.00 
  3 - - - - - - 
  Average   -2.46   0.00 
  1 15.50 16.47 -0.97 1.50 5.33 -3.83 

 AlderCoast 2 14.30 15.77 -1.47 0.00 2.13 -2.13 
  3 10.70 11.17 -0.47 11.10 13.53 -2.43 
  Average     -0.97     -2.80 

  1 14.90 13.90 1.00 0.00 7.97 -7.97 
 Moat 2 - - - 7.40 7.75 -0.35 
  3 - - - - - - 
  Average     1.00     -4.16 
  1 11.50 12.50 -1.00 0.00 0.87 -0.87 
 Alder 2 13.00 13.70 -0.70 5.30 8.53 -3.23 
  3 10.20 11.17 -0.97 - - - 

Inland  Average     -0.89     -2.05 
  1 12.50 13.30 -0.80 9.50 9.07 0.43 
 Owl 2 10.20 11.20 -1.00 8.70 9.77 -1.07 
  3 - - - 11.40 14.93 -3.53 
  Average     -0.90     -1.39 
  1 12.80 11.83 0.97 14.20 2.10 12.10 
 Mallo 2 12.80 12.67 0.13 3.00 0.23 2.77 
  3 9.40 11.65 -2.25 9.20 2.95 6.25 
  Average     -0.38     7.04 


