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ABSTRACT 

THE EFFECTS OF OCEAN ACIDIFICATION AND REDUCED OXYGEN ON THE 

BEHAVIOR AND PHYSIOLOGY OF JUVENILE ROCKFISH  

 

Corianna Hume Flannery 

 

As climate change progresses, the frequency and duration of upwelling events that 

bring low pH, low dissolved oxygen (DO) water to nearshore habitats are expected to 

increase. In addition, long-term global changes in ocean pH and DO are expected to 

occur within the next few decades to centuries. Locally, there have been documented 

reductions in near-shore pH along with the expansion of oxygen minimum zones within 

the California Current System. However, very few studies have investigated the potential 

interactive effect of these stressors on temperate reef fish. For this thesis, two sets of 

laboratory experiments were conducted to determine the independent and interactive 

effects of reduced pH and DO on the behavior and physiology of juvenile rockfish 

(Sebastes caurinus and Sebastes melanops). Behavioral studies examined fish boldness 

using an escape trial and brain lateralization by testing the consistency of individual 

fishes’ turning preference. Physiological studies measured critical swimming speed 

(Ucrit), ventilation rate, standard metabolic rate (SMR), maximum metabolic rate (MMR), 

critical oxygen tension (Pcrit), aerobic scope, and growth rate. Over the range of 

conditions examined, DO proved to have a much stronger effect on rockfish physiology 

than pH, suggesting that low-oxygen events may be more detrimental to individual 



 

iii 

fitness than ocean acidification. Significant effects of reduced DO on rockfish physiology 

include impaired swimming performance in S. caurinus and increased ventilation rate in 

S. melanops, but substantive responses in metabolic rates (e.g. SMR, MMR, aerobic 

scope, Pcrit) were not observed. Juveniles of both species appear to be behaviorally 

resilient to exposure to reduced pH and DO. Together, these experiments address 

important questions regarding how temperate reef fish will respond to both the 

independent and interactive effect of these oceanographic stressors. Finally, they set the 

framework for studying species-specific susceptibility to pH and DO stressors.   
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INTRODUCTION 

Since pre-industrial times, atmospheric carbon dioxide (CO2) levels have 

increased at an unprecedented rate, rising from 278 to over 400 ppm. The ocean acts as a 

major sink for CO2; it has already absorbed 30% of the total anthropogenic CO2 emitted 

since the Industrial Revolution (Sabine et al. 2004, Field et al. 2014). The rapid increase 

and absorption of CO2 into the ocean is causing fundamental changes in the chemistry of 

seawater, resulting in ocean surface water to become more acidic, a process known as 

ocean acidification (OA) (Caldeira & Wickett 2003). The pH of ocean surface water has 

already dropped by 0.1 pH unit since pre-industrial times, resulting in a 26% increase in 

acidity (Field et al. 2014), and under continued ‘business-as-usual’ increases in 

atmospheric CO2 concentrations, pH in surface waters is projected to decrease by an 

additional 0.3-0.4 pH units by 2100, making it more acidic than it has ever been in the 

past 400,000 years (Feely et al. 2004, Sabine et al. 2004, Caldeira & Wickett 2005).  

Increasing atmospheric CO2 concentrations are also expected to decrease 

dissolved oxygen (DO) concentrations in marine waters due to general warming of ocean 

surface water (Keeling et al. 2009, Shaffer et al. 2009, Helm et al. 2011, Long et al. 

2016). This warming will increase water-column stratification, thus reducing oxygen 

ventilation across the pycnocline (Keeling & Garcia 2002). Over the next hundred years, 

it is predicted that global oxygen inventory in the ocean will decrease by 1-7% and that 

oxygen-minimum zones will continue to expand (Keeling et al. 2009, Shaffer et al. 2009, 

Cocco et al. 2013). Within the North Pacific basin, a 2°C increase in the upper 200-m is 
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projected to occur from 1860-2100, with a concurrent decrease (18%) in dissolved 

oxygen by 2100. These changes will affect coastal ecosystems along the west coast of 

North America by changing the characteristics of source waters for coastal upwelling 

(Rykaczewski & Dunne 2010). 

As climate change progresses, declines in ocean pH and dissolved oxygen (DO) 

content are expected to occur in concert and have major consequences for marine 

organisms, yet little is known about how fish will respond to the interactive effect of 

these oceanographic stressors (Chan et al. 2008, Feely et al. 2008, Pörtner 2008). It has 

been previously assumed that temperate fish that evolved in seasonal upwelling systems 

are less susceptible to the effects of OA and hypoxia (DO < 2.0 mg/L) due to natural 

exposure to variability in pH and DO. In these systems, wind-driven currents naturally 

bring relatively corrosive, low oxygen water from the depths to nearshore habitats, and 

under intense upwelling, can temporarily expose coastal ecosystems to conditions that 

match the reduced pH and DO conditions projected in the future as a consequence of 

ongoing anthropogenic CO2 enrichment of the atmosphere (Feely et al. 2008, Booth et al. 

2012, Frieder et al. 2012, Gruber et al. 2012).  

In addition to global changes in ocean pH and DO, it is expected that ongoing 

climate change will intensify upwelling-favorable winds, however, the mechanism 

driving this change is still under active debate. One leading hypothesis is that global 

warming will cause an increase in land-sea temperature gradients, thus increasing 

upwelling favorable winds and thus upwelling intensity (Bakun 1990, Feely et al. 2008, 

Bakun et al. 2010, Bakun et al. 2015). An alternative mechanism for increased upwelling 
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intensity includes a poleward shift in major atmospheric high-pressure cells 

(Rykaczewski et al. 2015). Regardless of the mechanism, several studies have provided 

evidence that upwelling intensity has and will continue to increase in many regions 

(Bakun 1990, Mendelssohn & Schwing 2002, Varela 2014, Bakun et al. 2015, Garcia-

Reyes et al. 2015, Wang et al. 2015).  

Specific to the California Current System (CCS), several studies have shown a 

change in source water being upwelled over the past 40 years (Snyder et al. 2003, Hauri 

et al. 2009, Garcia-Reyes & Largier 2010). In 2008, The North American West Coast 

Carbon Cruise observed an increase in the extent of corrosive upwelled water being 

brought to nearshore habitats along the west coast of North America, finding acidified 

water all the way to the surface in northern California coastal waters (Feely et al. 2008). 

Model simulations corroborate estimates that OA has already caused a 0.1 pH unit 

decrease in the CCS water since pre-industrial times (Hauri et al. 2009), and predict that 

by 2050, nearshore surface waters of the CCS will continue to decrease to pH 7.75 

(Gruber et al. 2012).  

An increase in upwelling-driven hypoxic events in the CCS have also been 

observed, causing large declines in nearshore dissolved oxygen content (Grantham et al. 

2004, Bograd et al. 2008, Chan et al. 2008). Hydrographic data from the California 

Cooperative Oceanic Fisheries Investigations program (1984-2006) showed significant 

declines in oxygen and a shoaling of the hypoxic boundary within the Southern 

California Bight (SCB), consistent with hypothesized reductions in ocean ventilation due 

to increased warming and stratification (Bograd et al. 2008, Rykaczewski & Dunne 



4 

 

  

2010). Depleted oxygen conditions can have serious consequences for species 

distribution and home ranges. Off the coast of southern Oregon, home ranges of copper 

rockfish (Sebastes caurinus) were observed to decline by 33% during exposure to low 

oxygen waters (Rankin et al. 2013). In 2006, mass die offs and complete absence of fish 

off the coast of central Oregon (at least within a few meters of the seafloor) were 

documented during an unprecedented recording of anoxic (DO = 0 mg/L) conditions over 

the continental shelf (Chan et al. 2008). In the Southern California Bight (SCB), it is 

predicted that 55% of the habitat of cowcod (S. levis) (100-350 m depth range) will be 

affected by hypoxia within the next 20 years based on current trends in the shoaling of 

the hypoxic zone (McClatchie et al. 2010). 

Since ocean pH and DO levels are often correlated, coastal organisms will likely 

be exposed to simultaneous and possibly synergistic, antagonistic, or additive stresses 

from concurrent reductions in pH and DO (Pörtner 2005, Melzner et al. 2013). However, 

the physiological tolerance of fish to simultaneous low-oxygen and acidic events remains 

poorly understood due to a lack of multiple stressor studies. While there is growing 

research on the interactive effects of temperature and reduced pH or temperature and 

reduced DO on fish physiology (Munday et al. 2009, Nowiki et al. 2012, McBryan et al. 

2013), there is no published research, to date, that has investigated the interactive effect 

of reduced pH and DO on marine fish behavior or physiology.  

Numerous studies and meta-analyses have reported negative effects of OA on 

shell formation and growth of marine calcifying organisms (Orr et al. 2005, Hoegh-

Guldberg et al. 2007, Doney et al. 2009, Dupont et al. 2010, Kroeker et al. 2010). The 
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response of marine fish to changes in ocean pH remains unclear, as lab experiments have 

shown high variability in response across species (Wittmann & Pörtner 2003, Kroeker et 

al. 2013, Heuer & Grosell 2014). However, it does appear that fish may be more 

susceptible to OA than previously assumed: 72% of fish species tested responded 

negatively to pH levels projected for the year 2100 (Wittmann & Pörtner 2003). Previous 

research has focused on neurosensory and behavioral responses in early life stages of 

tropical fish, but research on temperate species or long-term exposures has been lacking 

(Heuer & Grosell 2014). In early life stages of tropical species, reduced pH levels have 

been shown to disrupt brain lateralization (Domenici et al. 2011, Nilsson et al. 2012, 

Welch et al. 2014), affect auditory responses (Simpson et al. 2011), impair learning 

(Ferrari et al. 2012, Chivers et al. 2013), and alter perception of olfactory cues and thus 

disrupt fishes’ ability to discriminate habitat, predators, prey, and other chemical cues 

(Munday et al. 2008, Dixson et al. 2010, Cripps et al. 2011, Nilsson et al. 2012, Welch et 

al. 2014). Recent research has shown reduced pH can also have a negative effect on the 

behavior of temperate fish species, such as longer escape times in stickleback 

(Gasterosteus aculeatus) (Jutfelt et al. 2013), increased anxiety in juvenile splitnose 

rockfish (Sebastes diploproa) (Hamilton et al. 2014), and reduced odor tracking ability in 

smooth dogfish (Mustelus canis) (Dixson et al. 2015).  

In addition, exposure to reduced pH can cause physiological disruptions in fish 

such as reduced swimming performance and aerobic scope in juvenile copper rockfish 

(Sebastes caurinus) (Hamilton et al. 2017), reduced survival and growth in early life 

history stages of inland silverside (Menidia beryllina) (Baumann et al. 2011), changes in 
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RNA/DNA rations of Atlantic herring larvae (Clupea harengus) (Franke & Clemmesen 

2011), negative effects on growth and metabolic rates of Senegalese sole larvae 

(Solea senegalensis) (Pimentel et al. 2015), and severe/lethal tissue damage in Atlantic 

cod larvae (Gadus morhua) (Frommel et al. 2012).  However, reduced pH exposure 

intensity and duration varies greatly across studies, making species comparisons difficult.  

Many of the observed alterations in fish behavior and physiology in response to 

reduced pH are thought to be caused by compensation from acid-base regulation.  

Exposure to reduced pH alters blood chemistry, and triggers an acid-base regulatory 

response to avoid acidosis by accumulating [HCO3
-] with compensatory reductions in 

[Cl-] to maintain pH (i.e. [H+]). While fish can do this efficiently, there are several 

potential downstream effects linked to changes in the response/effectiveness of 

neurotransmitter receptors, specifically the neural gamma-aminobutyric acid type A 

(GABAA) receptors, that govern chloride channels in neural and other cells and therefore 

affect the speed and strength of signal transmission in these cells (Nilsson et al. 2012). 

The general cost of coping with acid-base regulation can also effect several metabolic 

processes, with potential downstream effects on fish growth, reproduction, metabolic rate 

and swimming performance (Heuer & Grosell 2014). In some cases, OA has been 

demonstrated to increase standard metabolic rate (SMR), thereby reducing aerobic 

performance and overall animal fitness (Munday et al. 2009, Enzor et al. 2013). 

Acidification of the blood and respiratory pigments of tissues (from exposure to elevated 

pCO2) has also been hypothesized to limit effective oxygen uptake and delivery, thus 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=618
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=23259
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resulting in reduced maximum metabolic rate (MMR), which even further reduces an 

organisms aerobic scope (Munday et al. 2009, Heuer & Grosell 2014).  

While several species have shown negative responses to reduced pH, other 

species appear to be resilient to reduced pH levels. Reduced pH levels have shown no 

effect on the aerobic scope of three tropical fish species (Couturier et al. 2013), 

swimming performance or aerobic scope of juvenile Atlantic cod (Melzner et al. 2009), 

hatch size or larval growth of walleye pollock (Hurst et al. 2013), or the swimming 

ability and growth of cobia larvae (Bignami et al. 2013). Contrary to prediction, exposure 

to reduced pH have enhanced aerobic capacity in the spiny damsel fish (Rummer et al. 

2013) and increased otolith growth in white sea bass, cobia, and clownfish (Checkley et 

al. 2009, Munday et al. 2011, Bignami et al. 2013), which could have potential 

implications on auditory function (Simpson et al. 2011, Bignami et al. 2013). Even 

among species of similar life histories or ecologies, fish tolerance to reduced pH levels 

appear to be highly variable (Ferrari et al. 2011, Hamilton et al. 2017), proving that 

further research is needed.  

The effects of oxygen depletion on fishes are better understood than the impacts 

from OA. Decreased oxygen levels have been found to negatively impact fish growth, 

reproduction, escape response, and increase mortality rates (Chabot & Dutil 1999, 

Pichavant et al. 2000, Landry et al. 2007, Domenici et al. 2015). Decreased DO levels 

have been found to negatively impact food intake and growth rate of Atlantic cod and 

juvenile turbot (Chabot & Dutil 1999, Pichavant et al. 2000), reduced activity level of 

common sole (Via et al. 1998), and impaired escape performance in golden grey mullet 
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(Lefrancois et al. 2005).  The potential for OA to amplify or negate these responses 

warrants further research on the combined effect of reduced pH and DO on commercially 

valuable species.  

Research Objectives 

The objective of this study is to better understand the independent and interactive 

effects of reduced pH and DO on juvenile rockfish. In the CCS, rockfish are an abundant 

and diverse group of fish that inhabit a variety of ecological niches (Love et al. 2002).  

Rockfishes are a core component of the U.S. Pacific Coast fishery, with over 50 species 

managed by the Pacific Fisheries Management Council (Parker et al. 2000). Juvenile 

rockfish are a key prey source for many species of piscivorous fish (Merkel 1957, 

Petrovich 1970, Brodeur 1991), birds, and mammals (Mills et al. 2007).  Due to life 

histories marked by slow growth and late maturation, rockfishes are susceptible to 

overfishing (Parker et al. 2000, Berkeley 2004). Furthermore, reproductive success is 

highly variable and sensitive to environmental and climate variability (Field and Ralston 

2005, Ralston et al. 2013).  

Settlement from pelagic to benthic/demersal habitats marks a sharp life history 

transition during which juveniles are at increased risk of predation. Successful juvenile 

recruitment is critical for replenishment of local populations, yet this stage is considered 

one of the most understudied aspects of rockfish life history (Love et al. 2002). 

Impediment of individuals’ physiological or behavioral capacities during this transition 

period could greatly affect their survival probability, with consequences for overall 
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recruitment to adult stocks (Dixson et al. 2012, Lima & Dill 1990). By using an 

integrative approach to assess individuals’ responses to these stressors, this study aims to 

establish the groundwork for understanding how changes in ocean chemistry might affect 

temperate reef fish populations as atmospheric CO2 concentrations continue to rise, and 

thus to provide critical information for fisheries managers as they look towards an 

uncertain and unprecedented future (Feely et al. 2008, Gruber et al. 2012).  

Two sets of laboratory experiments were conducted to determine the independent 

and interactive effects of reduced pH and DO on the behavior and physiology of juvenile 

rockfish. The first experiment focused on the independent effects of reduced pH and DO 

on one species of rockfish. Four gradually reduced pH and DO levels were used to detect 

if changes in fish behavior and physiology increase with more extreme conditions and to 

detect if a physiological limit exists. pH treatment levels were based on current 

conditions and approximate global predictions for years ~2100, 2200, and 2300 (Caldeira 

& Wickett 2005). The second set of experiments aimed to investigate species-specific 

responses to the synergistic effects of pH and DO by exposing two species of rockfish 

with different early life history traits to independent and combined reduced pH and DO 

treatments. pH level was based on the global prediction for ~2200 (Caldeira & Wickett 

2005). Both sets of experiments implemented a similar suite of tests, including behavioral 

assessments of fish boldness using an escape chamber and brain asymmetry (turning 

preference) and physiological assessments based on critical swimming speed (Ucrit), 

ventilation rate, standard metabolic rate (SMR), maximum metabolic rate (MMR), 

aerobic scope, critical oxygen tension (Pcrit), and growth rate. Together, these 
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experiments address important questions regarding how temperate reef fish will respond 

to both the independent and interactive effect of these oceanographic stressors and the 

potential for species-specific susceptibility to pH and DO stressors.   

 

Study species 

The first set of experiments was conducted with copper rockfish (Sebastes 

caurinus), and the second set with both copper rockfish and black rockfish (Sebastes 

melanops). Black rockfish belong to the ‘structure schoolers’ or ‘water-column 

aggregators group’ that is characterized by an earlier parturition (Jan-Feb) and longer 

pelagic juvenile phase (4-6 months) (Love et al. 2002). They are often found in the lower 

third of the water column as recruits and juveniles (Carr 1991), and are one of the few 

rockfish species to utilize rocky intertidal tide pools as a nursery ground (Studebaker et 

al. 2011). As adults, they form mid-water schools, are associated with kelp or rock 

structures, and can occur to depths of over 350 m, although typically are found in 

shallower habitat (Lenarz et al. 1995, Love et al. 2002). Copper rockfish belong to the 

‘nearshore demersal’ or ‘canopy’ group that is characterized by a shorter pelagic juvenile 

phase (1-3 months) and settle at smaller sizes (<2.0 cm) (Love et al. 2002). Copper 

rockfish recruit to kelp canopy and solitary adults are typically found in relatively 

shallow benthic habitats (up to depths of 183 m) compared to black rockfish (Lenarz et 

al. 1995, Love et al. 2002). Due to contrasts in early life history traits and potential 

exposure to different environmental conditions throughout their life history, including 
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their larval and juvenile phases, these two species of rockfish might respond differently to 

pH and DO stressors.  

 

Hypotheses 

In this study, I tested several hypotheses focused on behavioral and physiological 

responses to exposure to reduced pH and reduced DO. 

H1: Exposure to reduced pH or reduced DO will affect behavioral patterns of 

juvenile rockfish, resulting in reduced boldness (longer escape times) and reduced bias in 

brain lateralization (decreased specialization). 

H2: Exposure to reduced pH or reduced DO will exert a negative effect on 

measures of physiological performance in juvenile rockfish, i.e., causing slower critical 

swimming speeds, greater ventilation rates, reduced aerobic performance, and slower 

growth rates.  

H3: Exposure to reduced pH and reduced DO will exert synergistic effects on fish 

boldness (longer escape times), brain lateralization bias, critical swimming speed, 

ventilation rate, aerobic performance, and growth rate. 

H4: Juvenile rockfish of species that settle in nearshore habitats at larger sizes and 

exhibit longer juvenile pelagic phases (e.g. black rockfish) are more resilient to the 

effects of reduced pH and reduced DO treatments than those that settle at smaller sizes 

and exhibit shorter juvenile pelagic phases (e.g. copper rockfish).  

These hypotheses will all be tested against relevant null hypotheses (H0) that 

exposure to reduced pH and DO has no effect on fish behavior or physiology.  
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MATERIALS AND METHODS 

Ethics Statement 

All collections and experiments conducted for this study conformed to the ethical 

guidelines of Humboldt State University Institutional Animal Care and Use Committee 

(permit #:13114.M.43-A) and the California Department of Fish and Wildlife (Scientific 

Collecting Permit #:13205).  

Collection of Fish   

Juvenile rockfish for laboratory trials were collected from coastal habitats in 

Trinidad Bay, CA (41.0593° N, 124.1431° W; Figure 1) using two SMURFs (Standard 

Monitoring Unit for the Recruitment of Fishes, Ammann 2004) deployed 1m below the 

surface on moored buoys. Free-divers retrieved SMURFs using BINCKE nets (Benthic 

Ichthyo-fauna Net for Coral/Kelp Environments, Anderson & Carr 1997), and brought 

them onboard a small zodiac, where fish were collected in buckets of seawater and 

quickly returned to land for processing (preliminary identification and measurement). 

Additional fish were captured by directly sweeping BINCKE nets through subsurface 

kelp canopy adjacent to SMURF sites. Collections took place between June-September in 

2015 and 2016. All fish retained for laboratory trials were transported immediately to the 

Humboldt State University Marine Lab, and acclimated to laboratory conditions in 
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holding tanks supplied with ambient seawater (~12°C, pH ~7.95, ~8.5 mg/L DO) and 

daily feedings of krill and mysid shrimp.  

 

Figure 1. SMURF locations in Trinidad Bay, CA indicated by circles and Humboldt State University 

Marine Lab indicated by star. Fish were also collected in subsurface kelp beds adjacent to the SMURF 

arrays using BINKE nets. 
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Fish Tagging 

Visible Implant Elastomer (VIE) Tags (Northwest Marine Technology) were used 

to identify fish and allow individual progress to be tracked through all experiments. 

Using a unique combination of body location and color, each fish was injected with a tag 

in 2 of 6 body locations (right or left: front, mid, or back; all dorsal) with 1 or 2 of four 

fluorescent colors (color could be repeated) (Figure 2). Fish were randomly assigned to a 

treatment tank after several weeks of acclimation to ambient laboratory conditions (pH 

~7.95, 8.5 mg/L DO).  

 

Figure 2. Example of fluorescent tags on juvenile rockfish in two body locations. 
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Experimental Infrastructure 

Experiments were conducted by rearing juvenile rockfish in 80 L treatment tanks 

each of which was supplied seawater at a rate of approximately 10 mL/s from one of 

several 270 L reservoirs. Seawater supply entered each experimental treatment tank near 

the bottom driving continuous overflow from a drain port near the top of the tank. 

Overflow from experimental tanks was aerated before return to the lab water supply for 

subsequent filtering, aeration and recirculation. Reservoirs were automatically resupplied 

from the recirculating seawater system of the Humboldt State University Marine Lab. 

Treatment conditions (pH and DO) were manipulated and continuously monitored 

in reservoir tanks (270 L), each of which supplied seawater to three 80 L treatment tanks, 

except for the control reservoir which supplied six treatment tanks during Year 1. Two 

treatment tanks from each reservoir were used for the experiments reported here; the third 

was used to house ‘reserve fish’ or for experiments not reported here. Each reservoir was 

fitted with two water pumps. One pump circulated water from the reservoir through 

manifolds from which a small fraction was diverted to treatment tanks and back to the 

reservoir. The other was oriented to drive vertical mixing within each cylinder to ensure 

water within the reservoir was well-mixed. Plumbing for supply and return to the 

manifolds was designed to allow continuous operation during temporary interruptions to 

seawater supply (e.g., during back-flushing of the lab’s sand filter) and to allow siphon-

driven supply to the experimental tanks in the event of interruption of power to the 

pumps. Water temperature was maintained at approximately 12°C by placing all 
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reservoirs in a temperature-regulated water bath controlled by an aquarium chiller 

(AquaEuro Systems).  

Experimental conditions in treatment tanks were established and maintained by 

manipulating pH or DO in reservoirs that supplied the designated treatment tanks. 

Reductions in pH were achieved by bubbling CO2 (industrial grade, Eureka Oxygen 

Supply) into the water to increase the amount of CO2 in solution and thus drive changes 

in seawater pH. For pH treatments, each reservoir was equipped with a pH sensor with an 

integrated temperature probe (WTW pH 3310, Loligo Systems) through which pH and 

temperature was monitored at 1 s intervals. pH was monitored, logged, and controlled 

using Loligo Systems CapCTRL software for Windows. If pH deviated by +/- 0.01 pH 

units from the desired set point, the computer sent open (close) commands to the pH 

regulator (DAQ-M controller, Loligo Systems), which would open (close) the solenoid 

valve to inject (or stop injecting) CO2 gas into the reservoir through an air diffuser. pH 

sensors were calibrated prior to installation and intermittently throughout the course of 

experiments using a three-point calibration (4, 7, 10 buffers). pH sensor offsets were 

accounted for in the CapCNTRL program.   

Reductions in DO were achieved by bubbling a mist of pure nitrogen gas (N2) 

(industrial grade, Eureka Oxygen Supply) into the water column of the reservoirs to strip 

oxygen out of aqueous solution. DO was monitored, logged, and controlled using the 

Loligo Systems WitroxCTRL software for Windows. For DO treatments, each reservoir 

contained a fiber optic mini sensor (Loligo Systems) connected to the DO regulator 

(Witrox 4, Loligo Systems). The Witrox 4 instrument included a temperature sensor, 
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which was placed into one of the reduced DO reservoirs and used as a temperature proxy 

for the other reduced DO reservoirs. Oxygen readings compensated for changes in 

temperature, salinity and barometric pressure. Salinity parameter were adjusted as needed 

to match salinity measured in the laboratory flow-through seawater system that supplied 

the reservoirs (31-34 ppt), and barometric pressure was set constant to 1013 hPa. If DO 

levels deviated by +/- 0.01 mg/L from the desired set point, the computer sent open 

(close) commands to the digital relay device regulator (DAQ-M, Loligo Systems), which 

would open (close) the solenoid valve to inject (stop injecting) N2 gas into the reservoir 

through an air diffuser. Oxygen sensors were calibrated prior to installment and 

intermittently throughout the course of experiments using a two-point calibration (0% air 

saturated water by bubbling N2 gas into distilled water and 100% air saturated water by 

bubbling ambient air into distilled water).  

Treatment tanks were fitted with lids and drain ports were installed to minimize 

head space and the potential for gas exchange with the atmosphere. Strip LEDs on a 

12h:12h light:dark cycle were used to maintain a consistent photoperiod throughout the 

experimental period. Tanks were covered in black plastic to minimize visual disturbance 

of fishes and to reduce disruption of photoperiod due to lab lighting. Tanks were also 

equipped with artificial habitat (wrapped up plastic fencing weighted to the bottom of the 

tank) to provide security and a sense of structure. Treatment tank conditions 

(temperature, DO and pH) were checked regularly using handheld pH (pHC101, Hach) 

and DO (LDO101, Hach) probes. Treatment tank flow rates were calibrated regularly to 

10 mL/s, which allowed a turnover rate of approximately 2.2 hours. Fish were fed 
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commercially available krill every day in Year 1 and every other day in Year 2. Tanks 

were cleaned regularly using handheld nets or by siphoning out water and debris. Any 

fish discovered to have died were immediately removed from tanks, catalogued, and 

archived in a -80 C freezer.  

Study Design: Year 1 

In Year 1, I investigated the independent effects of exposure to reduced pH and 

reduced DO on juvenile copper rockfish behavior and physiology. Juvenile rockfish 

(n=140) were reared under seven different treatment conditions: three reduced pH 

treatments (target pH of 7.8, 7.5, 7.3), three reduced DO treatments (target concentrations 

of 6.0, 4.0, 2.0 mg/L), and a control (DO ~8.5 mg/L, pH ~7.95) based on the 

characteristics of water drawn from the recirculating laboratory seawater supply (Figure 

3). Temperature was maintained at 12-13°C. Treatment conditions were replicated in two 

80 L treatment tanks drawing from the same 270 L reservoir (n=10 fish/tank, 20 

fish/treatment), resulting in a total of 14 treatment tanks. Behavioral trials (i.e. escape and 

brain lateralization) were completed for all fish. Physiology measurements (i.e. Ucrit, 

SMR, MMR, aerobic scope, and Pcrit) were conducted on a subset (n ~ 4) of copper 

rockfish from each treatment tank.  
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Figure 3. Year 1 laboratory experiment set-up. Each 270 L reservoir (grey cylinders) supplied three 80 L 

treatment tanks (blue squares). Two of the 80 L treatment tanks housed n=10 coppers. The third 80 L 

treatment tank in queue was used to house ‘reserve fish’ or for experiments not reported here. The control 

270 L reservoir supplied six 80 L treatment tanks. Four of the 80 L control treatment tanks each housed 

n=10 coppers, while the other two 80 L control treatment tanks were used for experiments not reported 

here.  

 

Study Design: Year 2 

In the second year of this study, I investigated species-specific response to the 

independent and combined effect of reduced pH and DO on the behavior and physiology 

of juvenile black and copper rockfish. I used a 2x2-crossed design based on two pH 

levels (control and reduced pH treatment) and two DO levels (control and reduced DO 

treatment) that included four different treatment conditions: control (~pH 7.95, 8.5 mg/L 

DO), reduced pH (pH 7.5, 8.5 mg/L DO), reduced DO (~pH 7.95, 4.0 mg/L DO), and 

reduced pH*reduced DO (pH 7.5, 4.0 mg/L DO) (Figure 4). Each treatment was 

replicated in two reservoirs (270 L), and each reservoir supplied three 80 L treatment 
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tanks (except for the control reservoir, which supplied six 80 L treatment tanks). Species 

were housed separately in replicate tanks for each treatment, one drawing water from 

each of the paired reservoirs for a given treatment (n=10 black rockfish/tank, n= 

20/treatment; n=10 copper rockfish/tank, n=20/treatment). The third 80 L treatment tank 

in queue was used to house ‘reserve fish’ or for experiments not reported here. The same 

trials conducted in Year 1 were repeated in Year 2, with the addition of a ventilation rate 

physiology trial.  

 

 

Figure 4. Year 2 laboratory experiment set-up. Each 270 L reservoir (grey cylinders) drained to three 80 L 

treatment tanks (blue squares). Copper and black rockfish were housed separately in treatment tanks 

(n=10/tank). The third 80 L treatment tank in queue was used to house ‘reserve fish’ or for experiments not 

reported here. The control 270 L reservoir supplied six 80 L treatment tanks. Two of the 80 L control 

treatment tanks each housed n=10 copper rockfish, two of the 80 L control treatment tanks each housed 

n=10 black rockfish, while the other two 80 L control treatment tanks were used for experiments not 

reported here. 
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Experimental Trials  

Fish selected for experimental trials were introduced to treatment tanks, and pH or 

DO was adjusted over the course of 24-48 hours to allow a gradual acclimation to 

experimental treatment conditions. Exposure to full-strength treatment conditions 

continued for at least two weeks prior to the onset of trials. Fish were maintained in 

experimental treatment conditions during all trials by using the same treatment conditions 

in the experimental trial tanks that fish had been reared in. Several body reflexes (body 

flex, orientation, mouth closure, and dorsal fin erection) were tested prior to treatment 

introduction to ensure individuals were in good health (Depestele et al. 2014). All fish in 

this study were used in behavioral trials. Physiological experiments were conducted for a 

selected subset of fish (identity confirmed by tag) (n=4-5/tank; n=8-10/treatment). Fish 

were selected for physiology trials to maintain similar size distributions across all 

treatments within a species. The order in which fish were tested in trials was selected 

randomly. Prior to all trials, fish were collected with a hand net, identified by tag with the 

assistance of a UV light, measured to the nearest mm, and weighed (after blotting the tip 

of the tail to remove excess water drops) to the nearest 0.001g. After each trial, fish were 

immediately returned to their treatment tanks. Individuals were allowed to recover for at 

least five days between all experimental trials.  
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Behavioral trials  

Escape response. Fish boldness was indexed by the amount of time it took a fish 

to escape from a chamber. Escape chambers were designed following Jutfelt et al. (2013) 

and Hamilton et al. (2017), and consisted of a white PVC cylinder (internal diameter = 10 

cm, height = 35 cm) with a 5 cm diameter escape hole cut into one side, 7 cm from the 

base. A slit 8 cm from the top of the PVC cylinder allowed for the insertion and removal 

of a black Plexiglas divider. The chamber was placed within a 20-gallon black aquarium 

filled with treatment water. All sides of the aquarium were covered in black Styrofoam to 

minimize subjects’ perception of the human observer. The observer stood out of view 

from the escape hole, and watched for the reflection of the fish exiting the chamber. A 

fish was considered to have escaped once its entire body had exited the escape chamber. 

In Year 2 trials, we included a “false bottom” in the escape chamber by placing a piece of 

white Styrofoam at the base of the escape hole to encourage fish to escape rather than to 

hide at the bottom of the escape chamber.  

Fish were starved approximately 24 hours prior to the escape trials to maintain 

consistency in starvation period. Fish were placed into the top of the chamber with the 

Plexiglas divider in place, and allowed 15 minutes to acclimate. After acclimation, the 

divider was removed and the amount of time it took the fish to find and escape through 

the hole in the side of the chamber was recorded. If a fish had not escaped by 30 minutes, 

the experiment was terminated. All fish in experimental and control treatment were 

tested. In Year 1, escape trials were conducted on copper rockfish 2-3 weeks after 

exposure to treatment (n=140, copper rockfish). In Year 2, escape trials were conducted 
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for 80 copper rockfish and 80 black rockfish. During Year 2, each individual was tested 

prior to being introduced to treatment conditions and again 2-3 weeks post-exposure to 

quantify changes in escape behavior post-exposure. 

 

Brain lateralization. Brain lateralization is the tendency for some functions to be 

more specialized in the left or right side of the brain (Rogers 2002). Lateralization has 

been well established in most vertebrates, including fish (Bisazza et al. 1998, Rogers 

2010). Left vs. right turning decisions were recorded to examine changes in brain 

lateralization using a detour test with a double T-maze after 3-4 weeks of exposure to 

treatment (protocols adapted from Domenici et al. 2011). The T-maze consisted of 

Plexiglas partitions 30 cm long X 10 cm wide X 10 cm high on each side of ~80 L tank, 

creating a 10 cm wide corridor down the middle. Fish were starved approximately 24 

hours prior to experiment. Fish were placed into the corridor of the maze and given a 3-

minute acclimation period. Following acclimation, the subject was coaxed towards the 

end of the maze using a plastic rod, and the direction it turned once it reached the end of 

the T-maze was recorded (a turn was designated as >45° change in orientation of their 

head in either direction). Each fish was tested 10 times, with an equal number of trials in 

each direction to account for potential effects of asymmetrical maze construction or 

subjects’ response to the presence of the experimenter.  

Relative lateralization index (LR), or population-level lateralization, measures 

whether the mean response across individuals in a group is left- or right-biased in turning 
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direction (Bisazza et al. 1997). The relative lateralization index is calculated using the 

following equation:  

LR = [[#Right Turns - # Left Turns] / [# Right Turns + # Left Turns]] * 100 

This index ranges from -100 to 100, where LR = -100 indicates all left-turns, LR = 

100 indicates all right-turns, and LR = 0 indicates equal turns in both directions. However, 

while a population sample might not be biased in either direction, individuals within that 

sample might themselves be left- or right-biased. Taking the absolute value of LR 

produces the absolute lateralization index (LA), which can be used to compare 

lateralization strength (irrespective of turning direction) across groups at the individual 

level. The LA index ranges from 0 (individual turned in equal proportions to left and 

right) to 100 (individual turned in same direction on all trials). Both LR and LA were 

calculated and reported in this study. 

 

Physiology trials  

All physiological responses, except for ventilation rate, were scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship to account for variability in temperature 

during experimental trials. The slope for temperature dependence of respiration (Q10) was 

based off several scorpaenid respiration studies (Boehlert et al. 1991, Yang et al. 1992, 

Kita et al. 1996, Vetter & Lynn 1997, Harvey 2005). Ventilation rate was not scaled for 

temperature because continuous temperature measurements were not recorded during 

ventilation trials.  
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Critical swimming speed (Ucrit). Swimming performance was quantified by 

estimating the critical swimming speed (Ucrit) for individual fish after 4-8 weeks of 

acclimation to treatment conditions. Ucrit is a standardized protocol that has been 

effectively used to estimate maximal swimming performance in fish (Brett 1964, Tierney 

2011). I used a 30 L swim tunnel (test section: 55x14x14 cm, footprint: 147x53 cm; 

Loligo) and a propeller attached to an external motor to control water velocity. The 

relationship between the analog output on the motor (rotations per second, Hz) and flow 

velocity in the swim tunnel (m/s) was quantified using a hand-held digital flow meter 

(flowtherm NT, Höntzsch); this relationship was applied to determine appropriate motor 

settings for scaling flow in the tunnel to individual’s body length (BL). 

Fish selected for trials were starved for approximately 24 hours prior to the trial. 

At the start of a trial, a fish was placed into the middle of the test section of the swim 

tunnel facing forward and given 15 minutes to acclimate at a flow speed of ½ BL/s. 

Following acclimation, the flow speed was increased by one body length per second 

every two minutes until the fish became fatigued (could no longer maintain swimming 

position for entire two minutes). If the fish rested against the back grate, the observer 

used a flashlight to motivate the fish to continue swimming. If the fish continued to rest, 

the observer stopped the timer and reversed the current to push the fish away from the 

rear grate, then re-established the original direction and strength of flow to encourage the 

fish to swim again. After the fish rested against the back grate for a third time, it was 

considered fatigued and the trial ended.  

Ucrit was calculated using the following equation:  
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𝑈𝑐𝑟𝑖𝑡 = 𝑈𝑖 + 𝑈 × (
𝑡

𝑡𝑖
) 

where Ui = highest velocity maintained during the trial, U = velocity increment (1 

BL/sec), t = time elapsed at fatigue velocity (in seconds), and ti = set time interval for 

each increment in velocity (120 s) (Fisher et al. 2000, Bellwood & Fisher 2001, Kashef et 

al. 2014). During both years, n=4-5/tank; n=8-10/treatment were tested.  

 

Ventilation rate. Ventilation experiments were only conducted during Year 2.  

Fish selected for trials were starved for approximately 24 hours prior to the trial. To 

measure ventilation rate, fish were assigned randomly to one of 10, 12x6x6 cm cell, 

ventilation chambers. Reservoirs of treatment water were used to provide a continuous 

supply to each chamber cell at approximately 5 mL/s. Two GoPro video cameras were 

mounted above the chambers so that all 10 chambers were visible in their field of view. A 

blind made from white waterproof paper was placed over the chamber to minimize 

disturbance to fish, and fish were allowed to acclimate for two hours. Following 

acclimation, the GoPro cameras were turned on remotely (using the GoPro iPhone app) to 

record for 30 minutes. Video was shot at a medium recording angle, 60 fps, and 1080i 

resolution. At the end of the experiment, fish were returned to their treatment tanks.  

Ventilation rate was quantified from recorded video. The number of operculum 

openings for each fish was counted during three separate one-minute time intervals 

during the 30-minute recording. Target time intervals included 05:00-06:00, 15:00-16:00, 

and 25:00-26:00. If operculum movements for an individual were not continuously 
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visible in the video frame during any of these time intervals, the window of observations 

was shifted to achieve a complete minute of observations (e.g. 5:15-6:15). Counts from 

the three one-minute periods were averaged as a measure of ventilation rate (number of 

operculum openings/minute).  

 

Standard metabolic rate (SMR). Standard metabolic rate is defined as the oxygen 

uptake rate of a post-absorptive (fasting), inactive organism and is considered the 

minimum metabolic rate required to sustain life (Fry 1971). SMR was measured using an 

automated intermittent-flow respirometry system, which is considered the preferred 

method for estimating oxygen consumption and aerobic scope for aquatic organisms 

(Svendsen et al. 2016). Fish were starved 48 hours prior to trials. The respirometry 

system consisted of four horizontal respirometry chambers (128, 358, or 650 mL) 

immersed in a common bath.  Each chamber was connected to a pair of pumps: one 

plumbed to allow the chamber to be flushed with water from the bath, and the other to 

recirculate water in the chamber in an isolated loop. Fiber optical oxygen sensors (Year 

1: dipping probe oxygen mini sensors, Loligo Systems; Year 2: flow-through oxygen 

mini sensors, Loligo Systems) sampled oxygen concentration in the recirculating loop 

every second, which is active during both flush and closed-loop conditions. All oxygen 

sensors were calibrated using a two-point calibration (0% air saturated water by bubbling 

N2 gas into distilled water and 100% air saturated water by bubbling O2 into distilled 

water). An oxygen sensor and feedback control that governs N2 bubbling were used to 

regulate DO in the bath. In Year 1, a WTW pH sensor and feedback control (CapCNTRL 
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program) coupled to a CO2 supply were used to control pH (described in Methods: 

Experimental Infrastructure). In Year 2, pH was controlled using an Apex 

AquaController System (Neptune Systems). The Apex pH sensor was calibrated using a 

two-point calibration (7 and 10 buffers), and included a separate temperature probe to 

compensate for changes in temperature.  

DO measurements and control of DO was automated using Loligo Systems 

AutoResp software coupled to the oxygen sensor and Witrox 1 instrument. AutoResp was 

set to continuously cycle through 300-second flush, 300-second wait, and 300-second 

measurement phases throughout the trial (at least 12 h overnight). The wait phase was 

reduced to 60 seconds during Year 2, to reduce exposure to severely depleted DO. The 

wait period allowed for sufficient recirculation within the respirometry chamber to 

stabilize the decline in oxygen concentration over time prior to data collection during the 

measurement phase.  

Water bath temperature was maintained at approximately 12°C by circulating bath 

water through a stainless-steel coil immersed in a separate ice-bath. Salinity settings (31-

34 ppt) were based on measurements of the laboratory water supply, and barometric 

pressure parameter was maintained at 1013 hPa in AutoResp for all trials. A pump was 

placed in the center of the bath to keep the ambient bath water well circulated. The bath 

was covered with a black plastic tarp for the duration of the trial to minimize disturbance 

to fish. A total of n=4 fish/tank; n=8 fish/treatment were tested for SMR trials. A 

schematic of the respirometry set-up and design is shown in Figure 5. 
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Figure 5. Respirometry design for SMR, MMR, and Pcrit experiments. Each respirometry chamber 

was connected to a flush and recirculating pump. The flush pump flushed water from the external 

bath through the respirometer and back into the ambient bath. The outlet hose of the flush pump 

was placed above the water surface to avoid siphon water from entering the respirometer when 

the flush pump was turned off. The recirculating pump flowed water through the respirometer and 

oxygen sensor unit. During Year 1, dipping probe oxygen sensors were used (Loligo Systems). 

During Year 2, flow-through mini sensors that were integrated into a t-shaped flow-through cell 

were used. The flow-through cell connected to the Oxy-4 sensor through a polymer optical fiber 

that consists of a 2mm inner diameter glass tube coated with oxygen sensor. Water bath oxygen 

level was manipulated and controlled by bubbling N2 gas directly into the bath. Water bath pH 

was manipulated by bubbling in CO2, controlled via CapCNTRL in Year 1 and Apex System in 

Year 2. Respirometry chamber oxygen sensors connected to the Oxy-4 instrument, a four-channel 

oxygen instrument for measuring changes in DO. The water bath oxygen sensor and temperature 

probe connected to the Witrox 1 instrument. An external ice-filled cooler with a cooling coil was 

used to maintain temperature in the respirometry cooler. Tubing was minimized to limit volume 

and measured for inclusion in volume estimates. 
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Calculating SMR. The rate of fish respiration was measured from the decline in 

oxygen concentration in the chamber during each 300-second measurement phase. 

Metabolic rates of fish were initially high due to handling stress, but were observed to 

stabilize after a few hours as fish acclimated to chambers. Since SMR trials lasted >12 

hours, >36 MO2 values were calculated per individual. Estimates of oxygen consumption 

during each measurement phase were retained for subsequent analysis if the relationship 

between oxygen concentration and time exhibited a strong goodness-of-fit (r2 > 0.9, 

confirmed by visual inspection of fit and residuals). MO2 was estimated for each 

measurement phase using the following equation:  

MO2[mgO2/kg*hr] = slope[mg O2/l*hr] * (Resp. volume[ml] / wet weight[g]) 

Estimates were subsequently adjusted (using Q10 = 2) for differences in 

temperature (from a standard temperature of 12°C) during the measurement, using the 

following equation: 

𝑅2 = 𝑅1𝑄10
(𝑇1−𝑇1)/10℃

 

where R2 = temperature adjusted MO2, R1 = estimated (unadjusted) MO2, Q10 = 2, T1 = 

temperature reading during MO2 measurement, T2 = 12°C. The mean of the five lowest 

(temperature-corrected) MO2 estimates was taken as the estimate of SMR.  

 

Maximum metabolic rate (MMR). Maximum metabolic rate (MMR) is the 

maximum rate at which an organism can consume oxygen from the environment (Fry 

1971). MMR was measured using the ‘chase’ method (Clark et al. 2013). Following a 48-

hour fast, fish were placed into the same swim flume used for Ucrit measurements, forced 
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to swim continuously for five minutes at one body length below their critical swimming 

speed (fish were chased with a stick if they attempted to rest), and immediately 

transferred into a respirometry chamber (see SMR methods). Oxygen consumption was 

measured over a single 300-second measurement period in respirometry chambers used 

for SMR. To minimize recovery from exercise, no flush period preceded measurement. 

Since the velocity for MMR trials was based on individual performance during Ucrit trials, 

fish that demonstrated high swimming capabilities in Ucrit trials were chased at higher 

velocities for MMR trials.  

 

Calculating maximum metabolic rate (MMR). Maximum metabolic rate (MMR) 

was calculated using the same equation used to calculate SMR (temperature corrected). 

Only one MO2 measurement was calculated per fish, since additional measurement loops 

would provide the fish too much time to rest post-exercise.  

  

Aerobic scope. Aerobic scope is the difference between minimum and maximum 

oxygen consumption rate, and is considered a metric of whole animal fitness (Fry 1971). 

Aerobic scope was calculated by taking the difference between MMR and SMR for each 

individual fish. 

 

Critical oxygen level (Pcrit). Critical oxygen level (Pcrit) is used as a measure of 

hypoxia tolerance, and is the oxygen level threshold below which a fish can no longer 

regulate oxygen uptake and oxygen uptake begins to decrease linearly with declines in 
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ambient pO2. Below this oxygen threshold, fish transition from aerobic to anaerobic 

respiration (Rogers et al. 2016). Pcrit was calculated using intermittent-flow respirometry 

with step-wise reductions in ambient DO. Pcrit was estimated the morning following the 

SMR trial (after fish had acclimated for >12 hours in respirometry chambers). For all 

fish, regardless of treatment level, DO was set to 70% O2 saturation for initiation of Pcrit 

measurement series and fish were allowed to acclimate for one hour. Beginning at 70% 

O2 saturation (~6.5 mg/L), three cycles of flush, wait, and measurement phases (same 

duration used in SMR) were completed. Then, oxygen saturation was stepped down by 

10% for another three cycles. This pattern was repeated until a set of trials at 40% O2 

saturation (~3.0 mg/L) was completed, at which point O2 saturation was reduced by 5% 

for each subsequent set of measurements until oxygen levels reached 10-15% O2 

saturation (~0.8-2.0 mg/L). Experiments ended once the decline in oxygen uptake was 

clearly resolved, i.e., a decline was observed over at least three levels of ambient pO2, 

which generally occurred by the time pO2 had been reduced to 15% O2 saturation (~2.0 

mg/L). At the end of the experiment, fish were immediately returned to treatment tanks 

and monitored for recovery. A total of n=4 fish/tank (n=8 fish/treatment) were tested for 

Pcrit trials. Temperature and pH during Pcrit trials was maintained using the same 

procedures used in SMR.  

After each SMR/Pcrit trial, the entire bath of water in the cooler was drained, the 

chambers, bath, and pumps were rinsed with filtered freshwater, which was subsequently 

drained before being refilled with seawater for the next SMR/Pcrit trial. After every third 

SMR/Pcrit trial, the entire system was thoroughly disinfected by soaking/circulating a 
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strong solution of bleach in freshwater, and rinsed several times prior to initiation of the 

next set of trials.   

 

Calculating critical oxygen saturation (Pcrit). Using the R package “segmented” 

(Muggeo 2008), piecewise linear regression was used to fit a broken-stick model relating 

metabolic rate to ambient oxygen concentrations (Rogers et al. 2016, Monterio et al. 

2013). The critical oxygen level (Pcrit) was determined as the intersection between the 

regression line fitted through MO2 estimates at oxygen concentrations above Pcrit and 

fitted least squares regression through data points that show a progressive decline in MO2 

(i.e., at oxygen concentrations below Pcrit). The oxygen level corresponding to the 

‘breakpoint’ was taken as the estimate of Pcrit. An example Pcrit estimation is shown in 

Figure 6. It is recognized that some uncertainty exists in the slope estimated for oxygen 

consumption rate used for metabolic measurements, as well as uncertainty in the 

measurement of dissolved oxygen in the chamber at the time those measurements were 

taken. Only those estimates with strong goodness of fit were chosen (r2 >0.9), thus it is 

assumed that uncertainty in the estimates of metabolic measurements has minimal 

influence on estimation of Pcrit.  
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Figure 6. Pcrit calculation example using R package “segmented”. Red dashed line is at the critical oxygen 

level; the intersection between the regression line fitted through MO2 estimates at oxygen concentrations 

above Pcrit and fitted least squares regression through data points that show a progressive decline in MO2. 

 

Somatic growth. Somatic growth rates were calculated by dividing change in total 

length and weight by the number of days in treatment (mm/day, g/day). For Year 1 fish, 

changes in somatic growth rate were measured for a subset of fish (n=6-10 

fish/treatment) prior to treatment initiation and prior to Ucrit trials (57-69 days after 

exposure to treatment). Year 1 copper rockfish somatic growth rate was also measured 

for all individuals that survived to the end of the experiment (223-276 days of exposure 

to treatment). For Year 2 fish, somatic growth rate (mm/day) was measured for a subset 

of individuals (n=8 fish/treatment) prior to treatment and prior to Ucrit trials (59-73 days 

after exposure to treatment). Since there were high mortalities and malnutrition issues 

towards the end of the experiment, somatic growth was not measured for fish that 

survived to the end of the experiment.  
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Statistical analysis  

Experimental design consisted of two tank replicates for each treatment condition 

(including control). Since responses of individuals within the same tank cannot be 

regarded as independent from each other, the issue of non-independence was resolved by 

using linear mixed effect models. By including a random effect for tank, any potential 

tank effect was accounted for by assuming a different baseline response for each tank. All 

statistical analysis was conducted using the statistical software language R (Version 

1.0.143, RStudio Team 2015) using packages “nlme” and “lmerTest” (Faraway 2006, 

Pinherio et al. 2014).  

Covariates in the linear mixed effect model included total length to account for 

variability in individual fish size, and tank-specific experimental conditions (pH, DO, and 

temperature) that were measured before or during each experiment to account for any 

deviation from the nominal (but slightly variable) conditions established in the treatment 

tanks. For analyses on SMR, MMR, aerobic scope, and Pcrit, fish wet weight was 

included as a covariate instead of total length. Tank-specific experimental conditions 

were sequentially removed using backwards selection if their influence proved 

insignificant (P > 0.05). Fish size was retained in all models, regardless of statistical 

significance. Outliers were included in all statistical analyses.  

For Year 1 results, linear mixed effect models were used to independently test the 

difference between control and treatment (reduced pH or reduced DO treatment) means 

on copper rockfish behavioral (e.g. escape, brain lateralization) and physiological (e.g. 

Ucrit, SMR, MMR, Pcrit, aerobic scope, somatic growth) responses, and included tank as a 



36 

 

  

random effect. For Year 2 results, linear mixed effect models with an interaction term 

were used to assess the effect of reduced DO, reduced pH, and the interaction between 

both stressors on juvenile copper and black rockfish behavioral (e.g. escape, brain 

lateralization) and physiological (e.g. Ucrit, ventilation, SMR, MMR, Pcrit, aerobic scope, 

somatic growth) responses, and included tank as a random effect. Model assumptions, 

such as homogeneity of variance and normally distributed residuals, were visually 

assessed using residuals vs. fitted and QQ plots. Additionally, Levene’s tests (using R 

package “leveneTest”) were conducted on all models to assess the homogeneity of 

variance assumption. Year 1 escape response was log-transformed to better fit model 

assumptions. In all other cases, log-transformation did not improve model fit, and thus 

response variables were kept on their original scale. The R package “multcomp” was 

used for making post-hoc Tukey comparisons on models that demonstrated a significant 

treatment effect (Hothorn et al. 2017).  

Log-likelihood ratios were used to test the significance of the random tank effect, 

by comparing the log-likelihood of the model with and without tank included as a random 

effect. Regardless of tank significance, it was retained in all models due to experimental 

design and provided useful information for future experiments (Faraway 2006). 

Statistical significance was evaluated at  = 0.05.   
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RESULTS 

Treatment Conditions 

Treatment conditions during both years were relatively stable and remained near 

the desired set points. Under normal operations, conditions in reservoirs would fluctuate 

over time due to less-than-instantaneous feedback in the control software, but this 

variability was attenuated by the limited rate of supply from reservoirs to treatment tanks 

and correspondingly slow dilution in the experimental tanks (Figure 7). Water in 

experimental tanks had a residence time of approximately 2.2 hours.  

 

Figure 7. Left panel: Example of reservoir-tank variability in dissolved oxygen (mg/L) conditions (over 

~10 hours). The thick line indicates expected dissolved oxygen conditions based on simple dilution model 

for flow-through treatment tanks based on 10 mL/s into an 80 L (80,000 mL) tank. Right panel: Example of 

reservoir-tank variability in pH conditions (over ~ 10 hours). The thick line indicates expected pH 

conditions based on simple dilution model for flow-through treatment tanks based on 10 mL/s into an 80 L 

(80,000 mL) tank.  

 



38 

 

  

On several occasions, disruptions to reservoir controls (e.g., disruption of USB 

communications between pH sensors and the master computer, uncontrolled computer 

shut downs, power outages) led to brief exposures to more extreme levels of pH or DO 

(due to excess CO2 or N2 bubbling, respectively) or allowed treatments to revert to 

control conditions. Departures from target conditions in the reservoirs were typically 

resolved within an hour or two, preventing extensive, long-term disruption of 

experimental conditions. In rare cases of more extreme (more stressful) conditions 

developing in the reservoirs, water supply to treatment tanks was restricted or shut down, 

and reservoirs were partially emptied and refilled to rapidly restore treatment conditions.  

Following more stressful events, fish were allowed ample time for recovery or re-

acclimated to treatment prior to trials. Treatment tank conditions were spot checked 

regularly; average conditions are listed in Tables 1-2.  
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Table 1. Mean treatment tank conditions (pH, DO, and temperature) and standard deviations for copper 

rockfish during the first experiment. Measurements were taken regularly from September 29, 2015 to July 

28, 2016 using a handheld pH and DO probe (PH101, LDO10; Hach).  

 

Treatment Tank ID pH DO Temperature 

Control 1 7.94 +/- 0.03 8.44 +/- 0.19 12.40 +/- 0.23 

 2 7.95 +/- 0.03 8.47 +/- 0.16 12.34 +/- 0.22 

pH 7.8 1 7.83 +/- 0.05 8.42 +/- 0.17 12.49 +/- 0.31 

 2 7.82 +/- 0.05 8.37 +/- 0.24 12.49 +/- 0.33 

pH 7.5 1 7.53 +/- 0.09 8.38 +/- 0.18 12.57 +/- 0.27 

 2 7.55 +/- 0.09 8.41 +/- 0.24 12.53 +/- 0.32 

pH 7.3 1 7.29 +/- 0.11 8.33 +/- 0.59 12.56 +/- 0.33 

 2 7.29 +/- 0.12 8.36 +/- 0.34 12.58 +/- 0.34 

DO 6.0 1 7.95 +/- 0.10 6.22 +/- 0.47 12.78 +/- 0.29 

 2 7.95 +/- 0.08 6.13 +/- 0.46 12.78 +/- 0.31 

DO 4.0 1 7.94 +/- 0.04 4.44 +/- 0.72 12.66 +/- 0.32 

 2 7.95 +/- 0.03 4.47 +/- 0.70 12.51 +/- 1.25 

DO 2.0 1 7.96 +/- 0.02 2.73 +/- 1.24 12.82 +/- 0.27 

 2 7.95 +/- 0.03 2.55 +/- 1.00 12.71 +/- 0.27 
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Table 2. Mean treatment tank conditions (pH, DO, and temperature) and standard deviations for copper and 

black rockfish. Measurements were taken regularly from October 11, 2016 to June 16, 2017 using a 

handheld pH and DO probe (PH101, LDO10; Hach). 

 

Treatment Species Tank 

ID 

pH DO Temperature 

Control Copper 1 7.94 +/- 0.03 8.65 +/- 0.19 12.10 +/- 0.41 

  2 7.93 +/- 0.03 8.60 +/- 0.17 12.13 +/- 0.43 

pH  1 7.51 +/- 0.08 8.58 +/- 0.19 12.35 +/- 0.46 

  2 7.51 +/- 0.06 8.53 +/- 0.25 12.57 +/- 0.54 

DO  1 7.93 +/- 0.03 4.14 +/- 0.17 12.51 +/- 0.50 

  2 7.91 +/- 0.04 4.33 +/- 0.26 12.59 +/- 0.50 

pH*DO  1 7.48 +/- 0.08 4.38 +/- 0.30 12.51 +/- 0.53 

  2 7.50 +/- 0.06 4.34 +/- 0.15 12.51 +/- 0.51 

Control Black 1 7.94 +/- 0.03 8.65 +/- 0.19 12.10 +/- 0.41 

  2 7.93 +/- 0.03 8.60 +/- 0.19 12.13 +/- 0.43 

pH  1 7.49 +/- 0.08 8.49 +/- 0.26 12.35 +/- 0.45 

  2 7.51 +/- 0.05 8.54 +/- 0.22 12.54 +/- 0.54 

DO  1 7.93 +/- 0.03 4.17 +/- 0.23 12.47 +/- 0.50 

  2 7.93 +/- 0.04 4.22 +/- 0.36 12.56 +/- 0.49 

pH*DO  1 7.50 +/- 0.06 4.48 +/- 0.34 12.45 +/- 0.53 

  2 7.50 +/- 0.06 4.28 +/- 0.25 12.52 +/- 0.53 
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Tank Effects  

A significant tank effect was not detected in any analysis of behavioral or 

physiological responses to reduced pH or DO. Thus, tank effects are not reported or 

discussed further in the results.   

Assessment of Homogeneity of Variance  

 Levene’s tests were conducted on all models in this analysis to assess the 

homogeneity of variance assumption. In all cases, the Levene’s test proved to be 

insignificant, suggesting that differences in variances across treatment groups is not 

significant. However, due to the low sample size used across trials, it is acknowledged 

that the power to detect a significant difference in variance across treatments is low.  

Fish Characteristics  

Fish size distributions remained consistent across treatment groups throughout the 

series of experimental trials (Appendices A-C). In most cases, an effect of fish size on 

behavioral or physiological response variables was not detected. Exceptions to this 

pattern were observed for brain lateralization in copper rockfish exposed to reduced DO 

(total length) and to various measures of oxygen consumption in fish exposed to reduced 

pH and DO (weight). Size effects, regardless of significance, are presented for all 

analyses.  
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Experimental Tank Seawater Conditions  

Seawater conditions (e.g. pH, DO, and temperature) were measured in 

experimental tanks (e.g. escape chamber, double T-maze, swim flume, ventilation 

chambers, respirometry chambers) prior or during each trial to account for any deviation 

from the treatment conditions fish had been acclimated to in their treatment tanks. In 

nearly all cases, an effect of experimental tank seawater conditions on behavioral or 

physiological response variables was not detected and is not reported in the results. An 

exception to this pattern was observed for temperature, which demonstrated a significant 

effect in the maximum metabolic rate of black rockfish exposed to reduced pH and DO, 

despite MMR for black rockfish being scaled to a standardized temperature using a Q10 

(=2) relationship (reviewed in greater detail below).  

Fish Health  

During Year 1, half of the copper rockfish (n=10) from the 2.0 DO treatment were 

removed after completing escape trials due to fish developing symptoms of gas bubble 

disease (e.g. individuals exhibiting subcutaneous gas embolisms, disoriented swimming), 

presumably caused by supersaturation of nitrogen in the seawater. Thus, in the first year, 

there was no replicate tank for the 2.0 DO treatment for brain lateralization or any of the 

physiology trials. Consequently, only half the number of intended brain lateralization and 

physiology trials were conducted for 2.0 DO treatment fish. Most (9/10) of the 

symptomatic individuals recovered, but were not reintroduced to treatment.   
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Serious fish health issues also started to emerge in Year 2 prior to respirometry 

trials; both copper and black rockfish across all treatments began to show signs of what 

was subsequently diagnosed as vitamin C deficiency at the onset of standard metabolic 

rate (SMR) trials. The main symptoms included growth reductions and spinal cord 

deformities. Fish were being fed ad-lib, but it was later discovered that a diet comprised 

solely of krill is deficient in vitamin C for long-term health, and symptoms can take up to 

6-months to manifest (personal communication with aquarist staff at Monterey Bay 

Aquarium). While only healthy individuals (i.e. those that did not display symptoms of 

vitamin C deficiency) were used in respirometry trials, it is possible that pH and DO 

effects on fish respirometry during Year 2 were confounded by declining fish health, 

even if fish were not yet showing symptoms. No results for fish from the reduced DO 

treatment (4.0 DO) are reported for respirometry trials due to a high number of fish 

within this treatment developing serious health issues.  

Year 1: Independent pH & DO Effects 

Behavioral trials   

Escape response. Across all treatments, individual variability in escape time was 

extremely high, and no significant effect of reduced DO or pH on escape time for copper 

rockfish was detected (Figure 8, Tables 3-4). However, there was a trend of shorter 

escape times in response to reduced DO, especially in the 2.0 DO treatment (although not 

statistically significant at  = 0.05, P = 0.059). Mean escape time in the 6.0, 4.0, and 2.0 

DO treatments decreased by 38%, 49%, and 53% respectively compared to the control 
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group. Mean escape times for rockfish exposed to various pH and DO levels are 

summarized in the Year 1: Comparisons Across Experimental Trials section. 

 

Figure 8. Left panel: Effect of reduced pH on escape time (log-transformed) in juvenile copper rockfish 

(n=19-20 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on escape time was 

detected in the linear mixed effect model (P > 0.05). Right panel: Effect of reduced DO on escape time 

(log-transformed) (n=19-20 fish/treatment) under ambient pH (~7.95). No significant effect of DO on 

escape time was detected in the linear mixed effect model (P > 0.05). The box spans the interquartile range, 

solid black segment shows the median value, black dot shows the mean value, and whiskers above and 

below the box show the lowest and highest datum still within 1.5 IQR of the lower and upper quartile.  

 

Table 3. Linear mixed model results for the fixed effects of reduced DO and length on escape time (log-

transformed) in juvenile copper rockfish. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate Standard Error DF t - value Pr (>|t|) 

DO 6.0 -0.451 0.411   4 -1.098  0.334 

DO 4.0 -0.814 0.410   4 -1.985 0.118 

DO 2.0 -1.064 0.407   4 -2.616 0.059 

Length 0.013 0.026 69 0.502  0.617 
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Table 4. Linear mixed model results for the fixed effects of reduced pH and length on escape time (log-

transformed) in juvenile copper rockfish. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 
 

Fixed Effects Estimate Standard Error DF t - value Pr (>|t|) 

pH 7.8 -0.871 0.427   4 -2.042  0.111 

pH 7.5 -0.594 0.418   4 -1.421  0.228 

pH 7.3 -0.097 0.416   4 -0.233  0.827 

Length 0.039 0.025 71 1.567  0.122 

 

 

Relative brain lateralization. Variability in relative brain lateralization amongst 

individuals was high in all treatments. There was no significant effect of reduced DO or 

pH on relative brain lateralization index (LR) in copper rockfish (Figure 9, Tables 5-6). 

Mean relative lateralization indices for rockfish exposed to various pH and DO levels are 

summarized in the Year 1: Comparisons Across Experimental Trials section. 
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Figure 9. Left panel: Independent effect of reduced pH on relative brain lateralization (LR) of juvenile 

copper rockfish (n=10-20 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on LR 

was detected in the linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced DO on 

LR (n=20 fish/treatment) under ambient pH (~7.95). No significant effect of DO on LR was detected in 

linear mixed effect model (P > 0.05). The box spans the interquartile range, solid black segment shows the 

median value, black dot shows the mean value, and whiskers above and below the box show the lowest and 

highest datum still within 1.5 IQR of the lower and upper quartile.  

 

Table 5. Linear mixed effect model results for the fixed effects of reduced DO and length on relative brain 

lateralization (LR) of juvenile copper rockfish. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 34.878  11.909   3 2.929   0.061 

DO 4.0 -0.424 11.816   3 -0.036   0.974 

DO 2.0 9.115 14.611   3 0.624   0.577 

Length  -1.431    0.760 62 -1.892  0.063 
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Table 6. Linear mixed effect model results for the fixed effects of reduced pH and length on relative brain 

lateralization (LR) of juvenile copper rockfish. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 -13.964   15.566   4 -0.897   0.420 

pH 7.5 -7.952   15.587   4 -0.510   0.637 

pH 7.3 7.036   15.566   4 0.452   0.675 

Length  -0.029   0.090 71 -0.039   0.969 

 

Absolute brain lateralization. Individual variability in absolute brain lateralization 

(LA) was high across all treatments. No significant effect of pH or DO on LA was 

detected (Figure 10, Tables 7-8). A significant effect of fish size (total length) on absolute 

lateralization was observed in fish exposed to various DO concentrations, however, this 

affect appears to be largely driven by one fish (Figure 11; model was rerun with outlier 

removed and results did not change). Mean absolute lateralization indices for rockfish 

exposed to various pH and DO levels are summarized in the Year 1: Comparisons Across 

Experimental Trials section. 
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Figure 10. Left panel: Independent effect of reduced pH on absolute brain lateralization (LA) of juvenile 

copper rockfish (n=10-20 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on LA 

was detected in the linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced DO on 

LA (n=20 fish/treatment) under ambient pH (~7.95). No significant effect of DO on LA was detected in the 

linear mixed effect model (P > 0.05). The box spans the interquartile range, solid black segment shows the 

median value, black dot shows the mean value, and whiskers above and below the box show the lowest and 

highest datum still within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open circles. 

 

Table 7. Linear mixed effect model results for the fixed effects of reduced DO and length on absolute brain 

lateralization (LA) of juvenile copper rockfish. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). Significant p-

values are marked in bold. 

 

Fixed effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 11.753 10.151 3 1.158  0.331 

DO 4.0 1.351 10.116 3 0.133  0.902 

DO 2.0 -11.367 12.442   3 -0.914  0.428 

Length  -0.877  0.431 62 -2.033  0.046 * 

 

 

  



49 

 

  

Table 8. Linear mixed effect model results for the fixed effects of reduced pH and length on absolute brain 

lateralization (LA) of juvenile copper rockfish. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 5.601 10.597   4 0.529   0.625 

pH 7.5 -2.526 10.610  4 -0.238  0.824 

pH 7.3 2.601 10.597   4 0.245   0.818 

Length  0.319 0.486 71 0.656 0.514 

 

 

Figure 11. Effect of copper rockfish size (total length) on absolute lateralization index (LA) across control 

and reduced DO treatments. Influential data point is encircled.  
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Physiology trials   

Critical swimming speed (Ucrit). Swimming performance of copper rockfish 

declined significantly in response to the 4.0 and 2.0 DO conditions (Figure 12, Table 9). 

Swimming performance exhibited a nearly linear decline over the range of DO conditions 

examined: suggesting that a drop in DO by ~30% translates approximately to a ~15% 

decline in swimming performance. Mean Ucrit scores in the 6.0, 4.0, and 2.0 DO 

treatments decreased by 15%, 28%, and 40% respectively compared to the control group. 

Swimming performance also declined in the pH 7.8, pH 7.5, and pH 7.3 treatments, but 

these effects did not differ significantly from control (Figure 12, Table 10). Mean Ucrit 

scores in the pH 7.8, 7.5, and 7.3 treatments decreased by 18%, 15%, and 20% 

respectively compared to the control group. These results suggest a consistent, step-wise 

drop in Ucrit in response to various pH levels, rather than a linear decline in Ucrit as 

demonstrated in response to DO. Variability in swimming performance was greatest 

amongst individuals within the control group. Mean Ucrit for rockfish exposed to various 

pH and DO levels are summarized in the Year 1: Comparisons Across Experimental 

Trials section. 
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Figure 12. Left panel: Independent effect of reduced pH on critical swimming speed (Ucrit) of juvenile 

copper rockfish (n=6-8 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on Ucrit 

was detected in the linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced DO on 

Ucrit (n=8-10 fish/treatment) under ambient pH (~7.95). Letters indicate Tukey post-hoc pairwise 

comparisons between control and reduced DO treatment means. Ucrit for copper rockfish was scaled to a 

standard temperature (12°C) using a Q10 (=2) relationship. The box spans the interquartile range, solid 

black segment shows the median value, black dot shows the mean value, and whiskers above and below the 

box show the lowest and highest datum still within 1.5 IQR of the lower and upper quartile. Outliers are 

indicated by open circles.  

 

Table 9. Linear mixed effect model results for the fixed effects of reduced DO and length on critical 

swimming speed (Ucrit) of juvenile copper rockfish. Ucrit for copper rockfish was scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). Significant p-

values are marked in bold. 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 -1.204 0.595 3 -2.026 0.136 

DO 4.0 -2.137 0.594 3 -3.594 0.037 * 

DO 2.0 -2.785 0.707 3 -3.938 0.029 * 

Length 0.050 0.040 23 1.243 0.226 
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Table 10. Linear mixed effect model results for the fixed effects of reduced pH and length on critical 

swimming speed (Ucrit) of juvenile copper rockfish. Ucrit for copper rockfish was scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 -1.407 0.563 4 -2.499 0.067  

pH 7.5 -0.999 0.570 4 -1.755 0.154 

pH 7.3 -1.398 0.566 4 -2.469 0.069  

Length  0.051 0.029 26 1.741 0.094 

 

Standard metabolic rate (SMR). Dissolved oxygen concentration remained 

relatively stable and near the desired set points throughout SMR trials (Figures 14-15). 

Temperature during SMR trials varied between ~10.5 - 12.5 ° (Figures 16-17).  pH 

conditions were spot checked prior to and after SMR trials, but were not continuously 

monitored. Standard metabolic rate (SMR), corrected for temperature, varied widely 

among individual copper rockfish. While SMR was also not significantly affected by 

reduced DO, mean SMR decreased in the 6.0, 4.0, and 2.0 DO treatments by 22%, 20%, 

and 22% respectively (Figure 13, Table 11). Reduced pH did not significantly affect 

SMR (Figure 13, Table 12). Mean SMR for rockfish exposed to various pH and DO 

levels are summarized in the Year 1: Comparisons Across Experimental Trials section. 
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Figure 13. Left panel: Independent effect of reduced pH on standard metabolic rate (SMR) of juvenile 

copper rockfish (n=5-8 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on SMR 

was detected in the linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced DO on 

SMR (n=4-8 fish/treatment) under ambient pH (~7.95). No significant effect of DO on SMR was detected 

in the linear mixed effect model (P > 0.05). SMR for copper rockfish was scaled to a standard temperature 

(12°C) using a Q10 (=2) relationship. The box spans the interquartile range, solid black segment shows the 

median value, black dot shows the mean value, and whiskers above and below the box show the lowest and 

highest datum still within 1.5 IQR of the lower and upper quartile.  

 

Table 11. Linear mixed effect model results for the fixed effects of reduced DO and weight on standard 

metabolic rate (SMR) of juvenile copper rockfish. SMR for copper rockfish was scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 -19.960   7.807 3 -2.557   0.083 

DO 4.0 -19.114   7.749 3 -2.467   0.090 

DO 2.0 -20.706   9.588  3 -2.159   0.120 

Weight  -1.018   0.799 22 -1.274   0.216 
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Table 12. Linear mixed effect model results for the fixed effects of reduced pH and weight on standard 

metabolic rate (SMR) of juvenile copper rockfish. SMR for copper rockfish was scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

PH 7.8 18.417   11.111  4 1.658  0.173 

PH 7.5 3.265   10.917  4 0.299   0.780 

PH 7.3 0.179  14.652 4 0.016   0.988 

Weight  -0.823 0.998 18 -0.825 0.420 

 

 

Figure 14. Average dissolved oxygen (DO) concentration for each phase (measurement period) recorded 

during Year 1 SMR trials for copper rockfish exposed to various DO treatments. Each record applies to up 

to 4 fish being tested simultaneously. 
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Figure 15. Average dissolved oxygen concentrations (DO) for each phase (measurement period) recorded 

during Year 1 SMR trials for copper rockfish exposed to various pH treatments. Each record applies to up 

to 4 fish being tested simultaneously. 

 

 

Figure 16. Average temperature (°C) for each phase (measurement period) recorded during Year 1 SMR 

trials for copper rockfish exposed to various DO treatments. Each record applies to up to 4 fish being tested 

simultaneously. 
Figure 17. A verage temperature (C) for each phase (measurement period) recorded during Year 1 SMR trials for copper roc kfish exposed to various DO treatments. Each record applies to up to 4  fish being tested s imultaneous ly  
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Figure 18. Average temperature (°C) for each phase (measurement period) recorded during Year 1 SMR 

trials for copper rockfish exposed to various pH treatments. Each record applies to up to 4 fish being tested 

simultaneously. 

 

Maximum metabolic rate (MMR). Individual variability in maximum metabolic 

rate (MMR) was high across all treatments for copper rockfish, and no significant effect 

of pH or DO on MMR was detected (Figure 19, Tables 13-14). However, the pattern of 

responses to MMR suggest the possibility that MMR might be reduced at very low DO 

(~2.0 mg/L). Mean MMR for rockfish exposed to various pH and DO levels are 

summarized in the Year 1: Comparisons Across Experimental Trials section. 
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Figure 19. Left panel: Independent effect of reduced pH on maximum metabolic rate (MMR) of juvenile 

copper rockfish (n=4-8 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on 

MMR was detected in the linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced 

DO on MMR (n=8-9 fish/treatment) under ambient pH (~7.95). No significant effect of pH on MMR was 

detected in the linear mixed effect model (P > 0.05). MMR for copper rockfish was scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship. The box spans the interquartile range, solid black 

segment shows the median value, black dot shows the mean value, and whiskers above and below the box 

show the lowest and highest datum still within 1.5 IQR of the lower and upper quartile. Outliers are 

indicated by open circles. 

 

Table 13. Linear mixed effect model results for the fixed effects of reduced DO and weight on maximum 

metabolic rate (MMR) of copper rockfish. MMR for copper rockfish was scaled to a standard temperature 

(12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their associated 

p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 -7.437   18.323 5 -0.406   0.702 

DO 4.0 -2.248  28.205 5 -0.124 0.907 

DO 2.0 -53.781 22.698 5 -2.369  0.064  

Weight -0.901 2.651 19 -0.340   0.738 
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Table 14. Linear mixed effect model results for the fixed effects of reduced pH and weight on maximum 

metabolic rate (MMR) of copper rockfish. MMR for copper rockfish was scaled to a standard temperature 

(12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their associated 

p-values for fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 2.278  18.572 9 -0.123   0.905 

pH 7.5 36.325  17.448 9 2.082   0.067 

pH 7.2 -1.215   17.043 9 -0.071   0.945 

Weight 1.446   3.186 20 0.454   0.655 

 

Aerobic scope. Aerobic scope of copper rockfish demonstrated highly individual 

variability and sample sizes were small. There was no significant effect of pH on aerobic 

scope of copper rockfish, and results demonstrated counter-intuitive and non-monotonic 

patterns (Figure 20, Tables 15-16). However, aerobic scope did demonstrate a 28% 

decline in response to the 2.0 DO treatment, but the effect was not statistically significant 

at  = 0.05 (P = 0.069). Mean aerobic scope for rockfish exposed to various pH and DO 

levels are summarized in the Year 1: Comparisons Across Experimental Trials section. 
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Figure 20. Left panel: Independent effect of reduced pH on aerobic scope of juvenile copper rockfish (n=4-

8 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on MMR was detected in the 

linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced DO on aerobic scope 

(n=5-7 fish/treatment) under ambient pH (~7.95). No significant effect of DO on MMR was detected in the 

linear mixed effect model (P > 0.05). The box spans the interquartile range, solid black segment shows the 

median value, black dot shows the mean value, and whiskers above and below the box show the lowest and 

highest datum still within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open circles. 

 

Table 15. Linear mixed effect model results for the fixed effects of reduced DO on aerobic scope of 

juvenile copper rockfish. The lme function automatically calculates t-tests and their associated p-values for 

fixed effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 3.008   14.580 4 0.206  0.847 

DO 4.0 6.490 15.079 4 0.430   0.689 

DO 2.0 -43.616   17.667   4 -2.469  0.069  

Weight 0.650 2.395 17 0.271 0.789 
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Table 16. Linear mixed effect model results for the fixed effects of reduced pH on aerobic scope of juvenile 

copper rockfish. The lme function automatically calculates t-tests and their associated p-values for fixed 

effects based on Restricted Maximum Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 -27.797 17.581   9 -1.581   0.148 

pH 7.5 24.991   16.189 9 1.544   0.157 

pH 7.3 4.965   16.591   9 0.299  0.772 

Weight -0.055 2.853 12 -0.019 0.985 

 

Critical oxygen level (Pcrit). Critical oxygen level (Pcrit) was not significantly 

affected by reduced pH or DO (Figure 21, Tables 17-18), but trends suggest a possible 

decline in response to both stressors. An effect of fish size (weight) on Pcrit was observed, 

reflecting a tendency for larger fish to exhibit higher Pcrit than smaller fish (Figures 22-

23). However, the pattern is not consistently observed across all treatments. Mean Pcrit for 

rockfish exposed to various pH and DO levels are summarized in the Year 1: 

Comparisons Across Experimental Trials section. 
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Figure 21. Left panel: Independent effect of reduced pH on critical oxygen level (Pcrit) of juvenile copper 

rockfish (n=4-8 fish/treatment) under ambient DO (~8.5 mg/L). No significant effect of pH on Pcrit was 

detected in the linear mixed effect model (P > 0.05). Right panel: Independent effect of reduced DO on Pcrit 

(n=7-9 fish/treatment) under ambient pH (~7.95). No significant effect of DO on Pcrit was detected in the 

linear mixed effect model (P > 0.05). Pcrit for copper rockfish was scaled to a standard temperature (12°C) 

using a Q10 (=2) relationship. The box spans the interquartile range, solid black segment shows the median 

value, black dot shows the mean value, and whiskers above and below the box show the lowest and highest 

datum still within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open circles. 

 

Table 17. Linear mixed effect model results for the fixed effects of reduced DO and weight on critical 

oxygen level (Pcrit) of juvenile copper rockfish. Pcrit for copper rockfish was scaled to a standard 

temperature (12°C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and their 

associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). Significant p-

values are marked in bold. 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 -0.685 0.346 2 -1.977 0.187 

DO 4.0 -0.324 0.351 2 -0.925   0.453 

DO 2.0 -0.705 0.403   2 -1.749   0.223 

Weight 0.070 0.023 19 2.932 0.009 * 
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Table 18. Linear mixed effect model results for the fixed effects of reduced DO and weight on critical 

oxygen level (Pcrit) of juvenile copper rockfish. Pcrit for copper rockfish was scaled to a standard 

temperature (12 °C) using a Q10 (=2) relationship. The lme function automatically calculates t-tests and 

their associated p-values for fixed effects based on Restricted Maximum Likelihood (REML). Significant 

p-values are marked in bold. 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 0.070 0.465  4 0.152  0.887 

pH 7.5 -0.300  0.450   4 -0.666   0.542 

pH 7.3 0.139  0.462  4 0.301   0.779 

Weight  0.075 0.034 24 2.214   0.037 * 

 

Figure 22. Effect of copper rockfish size (wet weight) on critical oxygen level (Pcrit) across control and 

reduced DO treatments. Fitted regression lines of Pcrit as a function of fish size for each treatment are 

displayed in color. Each point represents an individual fish. 
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Figure 23. Effect of copper rockfish size (wet weight) on critical oxygen level (Pcrit) across control and 

reduced pH treatments. Fitted regression lines of Pcrit as a function of fish size for each treatment are 

displayed in color. Each point represents an individual fish. 

 

Somatic growth. Somatic growth rate (mm/day & g/day), which was analyzed 

under two different time intervals (after 57-69 and 223-276 days of exposure to 

treatment), was not significantly affected by reduced pH or DO (Figures 24-25, Tables 

19-24). However, there is a suggestive trend of reduced somatic growth (both in terms of 

length and weight) after 57-69 days of exposure to the 2.0 DO treatment. Model results 

for the effect of 223-276 days of exposure to treatment on fish weight (g/day) are not 

included in results, but also proved to be not significant.  
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Figure 24. Left panel: Somatic growth rate (mm/day) for a subset of juvenile copper rockfish (n=6-10 

fish/treatment), measured prior to treatment initiation and prior to Ucrit trials (57-69 days in treatment). No 

significant effect of pH or DO on somatic growth rate (mm/day) was detected in the linear mixed effect 

models (P > 0.05). Right panel: Somatic growth rate (g/day) for a subset of juvenile copper rockfish (n=6-

10 fish/treatment), measured prior to treatment initiation and prior to Ucrit trials (57-69 days in treatment). 

No significant effect of pH or DO on somatic growth rate (g/day) was detected in the linear mixed effect 

models (P > 0.05). The box spans the interquartile range, solid black segment shows the median value, 

black dot shows the mean value, and whiskers above and below the box show the lowest and highest datum 

still within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open circles. 
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Figure 25. Left panel: Somatic growth rate (mm/day) for all juvenile copper rockfish that survived from 

treatment initiation until the end of the experiment (n=8-20 fish/treatment), measured prior to escape trials 

and prior to fish dissections (223-276 days in treatment). No significant effect of pH or DO on somatic 

growth rate (mm/day) was detected in the linear mixed effect models (P > 0.05). Right panel: Somatic 

growth rate (g/day) for all juvenile copper rockfish that survived from treatment initiation until the end of 

the experiment (n=8-20 fish/treatment), measured prior to escape trials and prior to fish dissections (223-

276 days in treatment). No significant effect of pH or DO on somatic growth rate (g/day) was detected in 

the linear mixed effect models (P > 0.05). The box spans the interquartile range, solid black segment shows 

the median value, black dot shows the mean value, and whiskers above and below the box show the lowest 

and highest datum still within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open 

circles. 
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Table 19. Linear mixed effect model results for the fixed effect of reduced DO on somatic growth rate 

(mm/day) of juvenile copper rockfish during the first 57-69 days in treatment. The lme function 

automatically calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum 

Likelihood (REML). 

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 0.018 0.026  4 0.691  0.527 

DO 4.0 -0.019 0.027   4 -0.687   0.530 

DO 2.0 -0.030 0.028   4 -1.064   0.347 

 

 
 
Table 20. Linear mixed effect model results for the fixed effect of reduced DO on somatic growth rate 

(g/day) of juvenile copper rockfish during the first 57-69 days in treatment. The lme function automatically 

calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum Likelihood 

(REML).   

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 0.004 0.007  4 0.584  0.591 

DO 4.0 0.003 0.007   4 0.394  0.714 

DO 2.0 -0.006 0.005 4 -0.806   0.465 
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Table 21. Linear mixed effect model results for the fixed effect of reduced pH on somatic fish growth 

(mm/day) of juvenile copper rockfish during the first 57-69 days in treatment. The lme function 

automatically calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum 

Likelihood (REML).   

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 -0.010 0.021  4 -0.483   0.654 

pH 7.5 -0.008 0.023   4 -0.330   0.758 

pH 7.3 0.011 0.023 4 0.481 0.655 

 

Table 22. Linear mixed effect model results for the fixed effect of reduced pH on somatic fish growth 

(g/day) of juvenile copper rockfish during the first 57-69 days in treatment. The lme function automatically 

calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum Likelihood 

(REML).   

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 -0.006 0.005  4 -0.135   0.899 

pH 7.5 0.006 0.005   4 1.266   0.274 

pH 7.3 0.004 0.005 4 0.959 0.392 

 

Table 23. Linear mixed effect model results for the fixed effect of reduced DO on somatic growth rate 

(mm/day) of juvenile copper rockfish after 223-276 days in treatment. The lme function automatically 

calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum Likelihood 

(REML).   

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

DO 6.0 -0.0009 0.004 3 -0.207   0.849 

DO 4.0 0.0002 0.005   3 0.056 0.959 

DO 2.0 -0.0080 0.006 3 -1.384 0.260 
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Table 24. Linear mixed effect model results for the fixed effect of reduced pH on somatic growth rate 

(mm/day) of juvenile copper rockfish after 223-276 days in treatment. The lme function automatically 

calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum Likelihood 

(REML).   

 

Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

pH 7.8 -0.0008 0.004 4 -0.192   0.857 

pH 7.5 0.0013 0.004   4 0.334 0.755 

pH 7.3 -0.0025 0.003 4 -0.638 0.558 

 

Year 1: Comparisons across experimental trials. Behavioral responses (escape 

time, relative lateralization, absolute lateralization) and physiological responses 

(swimming performance (Ucrit), standard metabolic rate (SMR), maximum, metabolic 

rate (MMR), aerobic scope, critical oxygen level (Pcrit), and somatic growth (mm/day) 

during the first 57-69 days in treatment) for copper rockfish across all treatments are 

summarized in Table 25 & Table 26. Overall, copper rockfish exhibited greater changes 

in physiological performances in response to reduced DO than reduced pH. Behavioral 

responses were variable across all treatments and not significantly affected by either 

stressor. Fish from the control treatment exhibited the highest swimming performance 

and highest critical oxygen level (Pcrit). Fish from the 2.0 DO treatment exhibited the 

worst swimming performance, lowest SMR, lowest MMR, and lowest aerobic scope.  
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Table 25. Mean escape time (seconds), relative brain lateralization (LR), absolute brain lateralization (La), 

associated standard error and sample size (N) for all copper rockfish exposed to Year 1 treatment 

conditions. 

Treatment Escape Time (s) Relative 

Lateralization (LR) 

Absolute 

Lateralization (LA) 

Control 371.4 +/- 77.9 

N = 20 

-7 +/- 8.62 

N = 20 

31 +/- 5.1 

N = 20 

DO 6.0 229.7 +/- 59.6 

N = 20 

25 +/- 9.1 

N = 20 

41 +/- 5.1 

N = 20 

DO 4.0 189.1 +/- 53.5 

N = 19 

-8 +/- 8.5 

N = 20 

32 +/- 4.7 

N = 20 

DO 2.0 173.8 +/- 61.7 

N = 19 

6 +/- 9.9 

N = 10 

22 +/- 7.0 

N = 10 

pH 7.8 203.1 +/- 58.4 

N = 20 

-21 +/- 9.2 

N = 10 

37 +/- 6.0 

N = 20 

pH 7.5 298.8 +/- 79.6 

N = 20 

-15 +/- 8.1 

N = 20 

29 +/- 5.7 

N = 20 

pH 7.3 425.3 +/- 90.4 

N = 20 

0 +/- 10.5  

N = 20 

34 +/- 7.0 

N = 20 
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Table 26. Mean swimming performance (Ucrit), standard metabolic rate (SMR), maximum, metabolic rate 

(MMR), aerobic scope, critical oxygen level (Pcrit), and somatic growth (mm/day during the first 57-69 

days in treatment), associated standard errors and sample size (N) across all copper rockfish exposed to 

Year 1 treatment conditions. 

 

Treatment Ucrit  SMR MMR Aerobic Scope Pcrit Somatic 

growth 

Control 7.43 +/- 

0.32 

N = 8 

80.97 +/- 

4.45 

N = 8 

228.44 +/- 

15.06 

N = 9 

153.10 +/- 

13.22 

N = 7 

1.84 +/- 

0.18 

N = 7 

0.18 +/- 

0.02 

N = 7 

DO 6.0 6.31 +/- 

.11 

N = 9 

62.82 +/- 

2.29 

N = 8 

219.86 +/- 

10.90 

N = 8 

157.04 +/- 

11.56 

N = 8 

1.11 +/- 

0.04 

N = 8 

0.17 +/- 

0.01 

N = 10 

DO 4.0 5.34 +/- 

.24 

N = 8 

64.91 +/- 

3.86 

N = 10 

224.57 +/- 

8.56 

N = 8 

160.27 +/- 

6.20 

N = 7 

1.37 +/- 

0.14 

N = 7 

0.18 +/- 

0.01 

N = 7 

DO 2.0 4.58 +/- 

0.30 

N = 6 

62.78 +/- 

8.69 

N = 4 

173.33 +/- 

11.11 

N = 4 

110.55 +/- 

4.88 

N = 4 

1.14 +/- 

0.17  

N = 4 

0.19 +/- 

0.01 

N = 7 

pH 7.8 6.01 +/- 

.19 

N = 10 

102.74 +/- 

5.02 

N = 6 

227.62 +/- 

9.37 

N = 8 

126.32 +/- 

7.54 

N = 6 

1.68 +/- 

0.19  

N = 8 

0.20 +/- 

0.01 

N = 8 

pH 7.5 6.51 +/- 

.15 

N = 8 

86.05 +/- 

5.82 

N = 7 

263.65 +/- 

5.21 

N = 8 

179.05 +/- 

9.29 

N = 7 

1.42 +/- 

0.08  

N = 11 

0.16 +/- 

0.03 

N = 7 

pH 7.3 6.08 +/- 

.13 

N = 9 

83.54 +/- 

3.83 

N = 6 

225.82 +/- 

14.01 

N = 9 

159.00 +/- 

13.44 

N = 6  

1.83 +/- 

0.31 

N = 7 

0.15 +/- 

0.01 

N = 6 
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Year 2: Species-Specific Independent and Combined pH & DO Effects 

Behavioral trials  

Escape response. Individual variability in escape response was extremely high in 

escape response of black rockfish, ranging from nearly instantaneous to effectively zero 

(i.e., no escape within 30 minutes). Overall, copper rockfish demonstrated faster and 

more consistent escape responses compared to black rockfish. Changes in individuals’ 

escape times for copper and black rockfish were not significantly affected by independent 

or simultaneous exposure to reduced pH and DO (Figure 26, Table 27). Mean changes in 

escape time for copper and black rockfish exposed to reduced pH and DO are 

summarized in the Year 2: Comparisons Across Experimental Trials section. 

 

Figure 26. Left panel: Independent and combined effect of reduced pH and DO on changes in escape time 

(seconds) for juvenile copper rockfish (n=11-15 fish/treatment). No significant effect of pH, DO, or 

simultaneous exposure to both stressors on copper rockfish escape response was detected in the linear 

mixed effect model (P > 0.05). Right panel: Independent and combined effect of reduced pH and DO on 

changes in escape time (seconds) for juvenile black rockfish (n=17-19 fish/treatment). No significant effect 

of pH, DO, or simultaneous exposure to both stressors on black rockfish escape response was detected in 

the linear mixed effect model (P > 0.05). The box spans the interquartile range, solid black segment shows 

the median value, black dot shows the mean value, and whiskers above and below the box show the lowest 

and highest datum still within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open 

circles. 
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Table 27. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (length) on changes in escape time (seconds) for juvenile copper and black rockfish. The 

lme function automatically calculates t-tests and their associated p-values for fixed effects based on 

Restricted Maximum Likelihood (REML).   

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 -10.698   230.956   4 -0.046   0.963 

 DO 4.0 -272.124  220.694  4 -1.233   0.285 

 pH 7.5 * DO 4.0 -298.838   224.643 4 -1.330   0.254 

 Length 5.609    18.879 43 0.297   0.768 

Black  pH 7.5 380.845   308.227 4 1.236   0.284 

 DO 4.0 263.561  316.488  4 0.833    0.452 

 pH 7.5 * DO 4.0 -415.039   441.934   4 -0.939   0.401 

 Length 21.238    16.724 63 1.270   0.209 

 

Relative brain lateralization. Individual variability in relative brain lateralization 

(LR) was high across all treatments for both species. LR in copper rockfish was 

significantly affected by exposure to reduced DO, suggesting a shift from left to right in 

turning preference (Figure 27, Table 28). A significant interaction between pH and DO 

on copper rockfish relative lateralization (LR) was also detected (Table 28). This 

interaction was not consistent with a synergistic effect, but rather was consistent with an 

antagonistic effect, as fish exposed simultaneously to both stressors exhibited a reduced 

preference for turning right relative to those exposed to only one stressor (Figure 27). 

There was no independent effect of reduced pH on LR in copper rockfish. There was no 
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significant effect of pH, DO, or simultaneous exposure to both stressors on LR in black 

rockfish (Figure 27, Table 28). Mean relative brain lateralization (LR) for copper and 

black rockfish exposed to reduced pH and DO are summarized in the Year 2: 

Comparisons Across Experimental Trials section. 

 

Figure 27. Left panel: Independent and combined effect of reduced pH and DO on relative brain 

lateralization (LR) of juvenile copper rockfish (n=20 fish/treatment). Letters indicate Tukey post-hoc 

pairwise comparisons between copper rockfish treatment means. Right panel: Independent and combined 

effect of reduced pH and DO on relative brain lateralization (LR) of juvenile black rockfish (n=20 

fish/treatment). No significant effect of pH, DO, or simultaneous exposure to both stressors on black 

rockfish LR was detected in the linear mixed effect model (P > 0.05). The box spans the interquartile range, 

solid black segment shows the median value, black dot shows the mean value, and whiskers above and 

below the box show the lowest and highest datum still within 1.5 IQR of the lower and upper quartile. 

Outliers are indicated by open circles. 
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Table 28. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (length) on relative brain lateralization of juvenile copper and black rockfish. The lme 

function automatically calculates t-tests and their associated p-values for fixed effects based on Restricted 

Maximum Likelihood (REML).   

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 29.150   11.690   4 2.494   0.067 

 DO 4.0 41.421  11.415   4 3.629   0.022 * 

 pH 7.5 * DO 4.0 -54.644   1.139 4 -3.247   0.032 * 

 Length 0.729    16.828   71 0.640   0.524 

Black  pH 7.5 10.990   11.174   4 0.984   0.381 

 DO 4.0 14.038   11.192   4 1.254   0.278 

 pH 7.5 * DO 4.0 -28.968   15.810   4 -1.832   0.141 

 Length 0.040    0.702 71 0.056   0.955 

 

Absolute brain lateralization. Individual variability in absolute brain lateralization 

(LA) was high across all treatments for both species. Neither species demonstrated a 

significant change in absolute lateralization in response to pH, DO, or simultaneous 

exposure to pH and DO (Figure 28, Table 29).  
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Figure 28. Left panel: Independent and combined effect of reduced pH and DO on absolute brain 

lateralization (LA) of juvenile copper rockfish (n=20 fish/treatment). No significant effect of pH, DO, or 

simultaneous exposure to both stressors on copper rockfish LA was detected in the linear mixed effect 

model (P > 0.05). Right panel: Independent and combined effect of reduced pH and DO on absolute brain 

lateralization (LA) of juvenile black rockfish (n=20 fish/treatment). No significant effect of pH, DO, or 

simultaneous exposure to both stressors on black rockfish LA was detected in the linear mixed effect model 

(P > 0.05). The box spans the interquartile range, solid black segment shows the median value, black dot 

shows the mean value, and whiskers above and below the box show the lowest and highest datum still 

within 1.5 IQR of the lower and upper quartile. Outliers are indicated by open circles. 
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Table 29. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (length) on absolute brain lateralization of juvenile copper and black rockfish. Estimates 

represent the estimated offset from the control and the associated standard error. The lme function 

automatically calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum 

Likelihood (REML).   

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 -7.028 9.022 4 -0.779 0.480 

 DO 4.0 -8.696  8.868  4 -0.981 0.382 

 pH 7.5 * DO 4.0 9.657 12.926   4 0.747   0.497 

 Length 0.669 0.750 71 0.891 0.376 

Black  pH 7.5 0.950 7.149  4 0.132   0.901 

 DO 4.0 -5.811 7.161  4 -0.811 0.463 

 pH 7.5 * DO 4.0 -2.841 10.115 4 -0.281   0.793 

 Length 0.199 10.115 71 0.443 0.659 

 

Physiology trials  

Critical swimming speed (Ucrit). Critical swimming speed (Ucrit) of copper 

rockfish declined significantly under reduced DO conditions, and also declined (non-

significantly) under reduced pH (P = 0.057) and under simultaneous exposure to both 

stressors (P = 0.206) (Figure 29, Table 30). Swimming performance in copper rockfish 

decreased in the reduced pH, reduced DO, and combined treatment by 11%, 16%, and 

19% respectively compared to control. Similarly, Ucrit of black rockfish also declined 

following exposure to reduced DO (but the effect was not significant at  = 0.05; P = 

0.056), reduced pH, and simultaneous exposure to both stressors (Figure 29, Table 30). 



77 

 

  

Ucrit in black rockfish declined in the reduced pH, reduced DO, and combined treatment 

by 12%, 18%, and 20% respectively compared to control. Mean Ucrit scores of copper and 

black rockfish across all treatments are summarized in the Year 2: Comparisons Across 

Experimental Trials section. 

 

Figure 29. Left panel: Independent and combined effect of reduced pH and DO on critical swimming speed 

(Ucrit) of juvenile copper rockfish (n=8 fish/treatment). A significant effect of reduced DO was detected (P 

= 0.018), while pH and simultaneous exposure to both stressors was not significant in the linear mixed 

effect model (P > 0.05). Right panel: Independent and combined effect of reduced pH and DO on Ucrit of 

juvenile black rockfish (n=8 fish/treatment). No significant effect of pH, DO, or simultaneous exposure to 

both stressors on copper rockfish Ucrit was detected in the linear mixed effect model (P > 0.05). Ucrit for 

both species was scaled to a standard temperature (12°C) using a Q10 (=2) relationship. The box spans the 

interquartile range, solid black segment shows the median value, black dot shows the mean value, and 

whiskers above and below the box show the lowest and highest datum still within 1.5 IQR of the lower and 

upper quartile. Outliers are indicated by open circles. 
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Table 30. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (length) on critical swimming speed (Ucrit) of juvenile copper and black rockfish. Ucrit for 

both species was scaled to a standard temperature (12°C) using a Q10 (=2) relationship. The lme function 

automatically calculates t-tests and their associated p-values for fixed effects based on Restricted Maximum 

Likelihood (REML). Significant p-values are marked in bold.  

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 -0.798 0.301   4  -2.655   0.057 

 DO 4.0 -1.093 0.294   4 -3.711   0.021 * 

 pH 7.5 * DO 4.0 0.648 0.430   4 1.507   0.206 

 Length -0.028 0.042 23 -0.668   0.511 

Black  pH 7.5 -0.821 0.470   4 -1.746   0.156 

 DO 4.0 -1.248 0.469   4 -2.663   0.056 

 pH 7.5 * DO 4.0 0.712 0.664  4 1.072   0.344 

 Length -0.020 0.0344 23 -0.591   0.560 

 

Ventilation rate. There was no significant effect of pH, DO, or an interaction 

between the two stressors on copper rockfish ventilation rate (Figure 30, Table 31). For 

copper rockfish, mean ventilation rate increased in the reduced pH, reduced DO, and 

combined treatment by 11%, 16%, and 17%, respectively, above the ventilation rate of 

fish under control conditions. However, ventilation rate of black rockfish was 

significantly increased by the reduced DO treatment (Figure 30, Table 31). There was no 

significant effect of pH on black rockfish ventilation rate, and the interaction between DO 

and pH was also not significant. Mean ventilation rate increased in the reduced pH, 
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reduced DO, and combined treatment by 18%, 46%, and 44% respectively, above the 

ventilation rate of black rockfish under control conditions. Mean ventilation rates for both 

species across all treatments are listed in the Year 2: Comparisons Across Experimental 

Trials section. 

 

Figure 30. Left panel: Independent and combined effect of reduced pH and DO on ventilation rate 

(operculum openings per minute) of juvenile copper rockfish (n=9-10 fish/treatment). No significant effect 

of pH, DO, or simultaneous exposure to both stressors on copper rockfish ventilation rate was detected in 

the linear mixed effect model (P > 0.05). Right panel: Independent and combined effect of reduced pH and 

DO on ventilation rate (operculum openings per minute) of juvenile black rockfish (n=9-10 fish/treatment). 

A significant effect of reduced DO on black rockfish ventilation rate was detected (P = 0.004), while pH 

and simultaneous exposure to both stressors was not significant in the linear mixed effect model (P > 0.05). 

The box spans the interquartile range, solid black segment shows the median value, black dot shows the 

mean value, and whiskers above and below the box show the lowest and highest datum still within 1.5 IQR 

of the lower and upper quartile. Outliers are indicated by open circles. 
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Table 31. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (length) on ventilation rate (operculum openings per minute) of juvenile copper and black 

rockfish. The lme function automatically calculates t-tests and their associated p-values for fixed effects 

based on Restricted Maximum Likelihood (REML). Significant p-values are marked in bold. 

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 8.492   4.629  4 1.835   0.141 

 DO 4.0 6.761   4.652   4 1.453   0.220 

 pH 7.5 * DO 4.0 -9.912   6.461   4 -1.534  0.200 

 Length 0.646 0.400 30 1.612 0.117 

Black  pH 7.5 8.584   5.228   4 1.642   0.176 

 DO 4.0 31.908   5.236   4 6.094  0.004 * 

 pH 7.5 * DO 4.0 -12.245   7.374   4 -1.660   0.172 

 Length -0.430 0.270 30 -1.590 0.122 

 

Standard metabolic rate (SMR). Average DO concentrations measured throughout 

SMR trials for copper and black rockfish demonstrate that DO concentration remained 

stable and near the desired set point (Figures 32-33). However, temperature conditions 

differed substantially across trials, ranging between 10-14°C across SMR trials (Figures 

34-35).  pH conditions were spot checked prior and after SMR trials, but were not 

continuously monitored. There was no significant effect of pH, DO, or an interaction 

between the two stressors on standard metabolic rate (corrected for temperature) in 

copper rockfish (Figure 31, Table 32). While statistically insignificant, SMR in black 
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rockfish demonstrated a 3% and 10% decline in the reduced pH and combined treatment 

(Figure 31, Table 32). Due to poor health and elevated mortality of black rockfish in the 

low DO treatment, results for SMR, MMR, or aerobic scope for black rockfish in 

response to the independent effect of reduced DO are not reported.  Mean SMR for both 

species across all treatments are summarized in the Year 2: Comparisons Across 

Experimental Trials section. 

 

 

Figure 31. Left panel: Independent and combined effect of reduced pH and DO on standard metabolic rate 

(SMR) of juvenile copper rockfish (n=5-8 fish/treatment). No significant effect of pH, DO, or simultaneous 

exposure to both stressors on copper rockfish SMR was detected in the linear mixed effect model (P > 

0.05). Right panel: Independent and combined effect of reduced pH and DO on SMR of juvenile black 

rockfish (n=2-5 fish/treatment). No significant effect of pH or simultaneous exposure to both stressors on 

black rockfish SMR was detected in the linear mixed effect model (P > 0.05). SMR for both species was 

scaled to a standard temperature (12°C) using a Q10 (=2) relationship.  The box spans the interquartile 

range, solid black segment shows the median value, black dot shows the mean value, and whiskers above 

and below the box show the lowest and highest datum still within 1.5 IQR of the lower and upper quartile. 

Outliers are indicated by open circles. 
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Table 32. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (weight) on standard metabolic rate (SMR) of juvenile copper and black rockfish. SMR 

for both species was scaled to a standard temperature (12 °C) using a Q10 (=2) relationship. The lme 

function automatically calculates t-tests and their associated p-values for fixed effects based on Restricted 

Maximum Likelihood (REML).   

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 -7.386 12.372   3 -0.597   0.593 

 DO 4.0 -7.782   9.897   3 -0.786   0.489 

 pH 7.5 * DO 4.0 5.994 14.933   3 0.401   0.715 

 Weight -4.336   3.043  -1.425   0.176 

Black  pH 7.5 -5.557 12.668   3 -0.439   0.691 

 pH 7.5 * DO 4.0 -8.772 12.992   3 -0.675   0.548 

 Weight  -2.723   2.422   9 -1.124   0.290 

 

 

Figure 32. Average dissolved oxygen concentrations for each phase (measurement period) recorded during 

Year 2 SMR trials on copper rockfish. Each record applies to up to 4 fish being tested simultaneously. 
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Figure 33. Average dissolved oxygen concentrations for each phase (measurement period) recorded during 

Year 2 SMR trials on black rockfish. Each record applies to up to 4 fish being tested simultaneously. 

 

 

 

Figure 34. Average temperature concentrations for each phase (measurement period) recorded during Year 

2 SMR trials on copper rockfish. Each record applies to up to 4 fish being tested simultaneously. 
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Figure 35. Average temperature concentrations for each phase (measurement period) recorded during Year 

2 SMR trials on black rockfish. Each record applies to up to 4 fish being tested simultaneously. 

 

Maximum metabolic rate (MMR). There was no significant effect of pH, DO, or 

an interaction between the two stressors on MMR in copper rockfish (Figure 36, Table 

33). An effect of copper rockfish size (weight) on MMR was observed, reflecting a 

tendency for larger fish to exhibit increased MMR compared to smaller fish (P = 0.039, 

Figure 37). There was no significant effect of pH on black rockfish MMR and 

simultaneous exposure to reduced DO and pH was also not significant (Figure 36, Table 

33). However, black rockfish did demonstrate a 37% decline in MMR in the combined 

treatment compared to control. Additionally, there was a significant effect of temperature 

on black rockfish MMR (P = 0.038). Mean MMR for both species across all treatments 

are summarized in the Year 2: Comparisons Across Experimental Trials section. 
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Figure 36. Left panel: Independent and combined effect of reduced pH and DO on maximum metabolic rate 

(MMR) of juvenile copper rockfish (n=4-6 fish/treatment). No significant effect of pH, DO, or 

simultaneous exposure to both stressors on copper rockfish MMR was detected in the linear mixed effect 

model (P > 0.05). Right panel: Independent and combined effect of reduced pH and DO on MMR of 

juvenile black rockfish (n=4-5 fish/treatment). No significant effect of pH or simultaneous exposure to both 

stressors on black rockfish MMR was detected in the linear mixed effect model (P > 0.05). MMR for both 

species was scaled to a standard temperature (12 °C) using a Q10 (=2) relationship. The box spans the 

interquartile range, solid black segment shows the median value, black dot shows the mean value, and 

whiskers above and below the box show the lowest and highest datum still within 1.5 IQR of the lower and 

upper quartile. Outliers are indicated by open circles. 
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Table 33. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO and fish size (weight) on maximum metabolic rate (MMR)) on juvenile copper and black rockfish. 

MMR for both species was scaled to a standard temperature (12°C) using a Q10 (=2) relationship. The lme 

function automatically calculates t-tests and their associated p-values for fixed effects based on Restricted 

Maximum Likelihood (REML).  Significant p-value are marked in bold.  

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 20.031  30.710  4 0.652 0.550 

 DO 4.0 -43.218   29.361  4 -1.472   0.215 

 pH 7.5 * DO 4.0 16.150  43.563  4 0.371   0.730 

 Weight 20.456 8.992 14 2.275 0.039 * 

Black  pH 7.5 63.194   35.758  3 1.768   0.175 

 pH 7.5 * DO 4.0 -55.054 39.652   3 -1.388   0.259 

 Weight  1.495 4.737 5 0.316 0.765 

 Temperature -224.210 79.999 5 -2.803 0.038 * 

 

 

Figure 37. Effect of copper rockfish size (wet weight) on maximum metabolic rate (MMR) across the 

control, reduced DO, reduced pH, and combined (pH*DO) treatment. 
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Aerobic scope. Individual variability in aerobic scope was high and sample sizes 

were extremely limited. Since there are results from only one copper rockfish in the 

reduced pH treatment, the independent effect of pH was not included in the linear mixed 

effect model analysis. There was no significant effect of the reduced DO or combined 

treatment on copper rockfish aerobic scope (Figure 38, Table 34). There was no 

significant effect of pH or the combined treatment on black rockfish aerobic scope 

(Figure 38, Table 34). However, black rockfish demonstrated a 69% in aerobic scope in 

the combined treatment. Aerobic scope for both species across all treatments are 

summarized in the Year 2: Comparisons Across Experimental Trials section. 

 

Figure 38. Left panel: Independent and combined effect of reduced pH and DO aerobic scope of juvenile 

copper rockfish (n=1-7 fish/treatment). No significant effect of DO or simultaneous exposure to both 

stressors on copper rockfish aerobic scope was detected in the linear mixed effect model (P > 0.05). Right 

panel: Independent and combined effect of reduced pH and DO on aerobic scope of juvenile black rockfish 

(n=4 fish/treatment). No significant effect of pH or simultaneous exposure to both stressors on black 

rockfish MMR was detected in the linear mixed effect model (P > 0.05). Aerobic scope for both species 

was scaled to a standard temperature (12°C) using a temperature coefficient (Q10) = 2. The box spans the 

interquartile range, solid black segment shows the median value, black dot shows the mean value, and 

whiskers above and below the box show the lowest and highest datum still within 1.5 IQR of the lower and 

upper quartile. Outliers are indicated by open circles. 
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Table 34. Linear mixed effect model results for the fixed effects of reduced pH, simultaneous exposure to 

reduced pH and DO, and fish size (weight) on the aerobic scope of juvenile black rockfish. Aerobic scope 

for both species was scaled to a standard temperature (12°C) using a temperature coefficient (Q10) = 2.  The 

lme function automatically calculates t-tests and their associated p-values for fixed effects based on 

Restricted Maximum  

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper DO 4.0 -50.386  37.976   2 -1.327   0.316 

 pH 7.5 * DO 4.0 3.013   41.953   2 0.072   0.949 

 Weight  40.712   14.985 8 2.717   0.026 * 

Black  pH 7.5 9.189   52.334   2 0.176  0.877 

 pH 7.5 * DO 4.0 -56.121   65.475   2 -0.857 0.482 

 Weight  -7.802 8.269 6 -0.944 0.382 

 

Critical oxygen tension (Pcrit). There are no results to report for black and copper 

rockfish Pcrit due to declining fish health over the course of experimental trials.    

 

Somatic growth. Somatic growth rate was analyzed for a subset of individuals 

(n=8 fish/treatment) during the first 59-73 days in treatment. Somatic growth was not 

significantly affected by reduced pH, DO, or the interaction between the two stressors 

(Figure 39, Table 35). Growth rate was slower in black rockfish compared to copper 

rockfish. Growth rate was also slower in Year 2 copper rockfish compared to Year 1 

copper rockfish.   
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Figure 39. Left panel: Somatic growth rate (mm/day) for a subset of copper rockfish (n=8 fish/treatment), 

measured prior to treatment initiation and prior to Ucrit trials (66-73 days in treatment). The box spans the 

interquartile range, solid black segment shows the median value, and whiskers above and below the box 

show the minimum and maximum values. Right panel: Somatic growth rate (mm/day) for a subset of black 

rockfish (n=8 fish/treatment), measured prior to treatment initiation and prior to Ucrit trials (59-73 days in 

treatment). The box spans the interquartile range, solid black segment shows the median value, and 

whiskers above and below the box show the minimum and maximum values.  
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Table 35. Linear mixed effect model results for the independent and interactive effects of reduced pH and 

DO on somatic growth (mm/day) for juvenile copper and black rockfish for the first 59-73 days in 

treatments. The lme function automatically calculates t-tests and their associated p-values for fixed effects 

based on Restricted Maximum Likelihood (REML).   

 

Species Fixed Effects Estimate  Standard Error DF t-value Pr (>|t|) 

Copper pH 7.5 0.005 0.009   4 0.523   0.629 

 DO 4.0 0.003 0.009   4 0.324   0.763 

 pH 7.5 * DO 4.0 -0.001 0.009   4 -0.134   0.890 

Black  pH 7.5 -0.014 0.009 4 -1.586   0.188 

 DO 4.0 -0.003 0.009 4 -0.385   0.720 

 pH 7.5 * DO 4.0 0.003 0.009 4 0.377   0.725 

 

Year 2: Comparisons across experimental trials. Due to poor health and elevated 

mortality of rockfish as experiments progressed, the same subset of fish were not tested 

across all of the physiology trials. Thus, it was not possible to report individual progress 

across all trials. Overall, results from these experiments suggest that reduced DO had a 

stronger effect than pH on rockfish behavior and physiology, and dominated the effect of 

concurrent exposure to DO and pH stressors. Copper and black rockfish exposed to 

control conditions exhibited the greatest swimming capabilities and lowest ventilation 

rate. In addition, both species exposed to both reduced pH and DO concurrently 

demonstrated the worst swimming capabilities and lowest SMR. Ventilation rate of black 

rockfish significantly increased in response to reduced DO ventilation rate of copper 

rockfish remained unchanged. Copper and black rockfish behavioral responses (e.g. 
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change in escape time, relative lateralization, absolute lateralization) and physiological 

responses (e.g. swimming performance (Ucrit), ventilation rate, standard metabolic rate 

(SMR), maximum, metabolic rate (MMR), aerobic scope, somatic growth (mm/day) 

during the first 59-73 days in treatment) across all treatments are listed in Tables 36-39. 
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Table 36. Mean escape time (seconds), relative brain lateralization (LR), absolute brain lateralization (LA), 

associated standard errors and sample size (N) for copper rockfish exposed to reduced pH, reduced DO, 

and simultaneous exposure to both stressors.    

 
Treatment △ Escape Time (s) Relative Lateralization (LR) Absolute Lateralization (LA) 

Control 137.92 +/- 38.3 

N = 13 

-26 +/- 38.4 

N = 20 

36 +/- 8.0 

N = 20 

pH 140.55 +/- 42.4 

N = 11 

1 +/- 35.2 

N = 20 

27 +/- 6.0 

N = 20 

DO -130.00 +/- 34.7 

N = 14 

14 +/- 30.5 

N = 20 

26 +/- 5.8 

N = 20 

pH*DO -123.93 +/- 32.0 

N = 15 

-10 +/- 36.4 

N = 20 

30 +/- 6.7 

N = 20 
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Table 37. Mean escape time (seconds), relative brain lateralization (LR), absolute brain lateralization (LA), 

associated standard errors and sample size (N) for black rockfish exposed to reduced pH, reduced DO, and 

simultaneous exposure to both stressors.    

 

Treatment △ Escape Time (s) Relative Lateralization (LR) Absolute Lateralization (LA) 

Control -296.06 +/- 69.8 

N = 18 

1 +/- 39.19 

N = 20 

31 +/- 6.9 

N = 20 

pH 63.74 +/- 14.6 

N = 19 

12 +/- 37.5 

N = 20 

32 +/- 7.2 

N = 20 

DO -27.71 +/- 6.7 

N = 17 

15 +/- 31.0 

N = 20 

25 +/- 5.6 

N = 20 

pH*DO -109.17 +/- 25.7 

N = 18 

-3 +/- 32.0 

N = 20 

23 +/- 5.1 

N = 20 
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Table 38. Mean swimming performance (Ucrit), ventilation rate (BPM), standard metabolic rate (SMR), 

maximum metabolic rate (MMR), aerobic scope, somatic growth rate (mm/day during the first 66-73 days 

in treatment), associated standard errors, and sample size (N) for copper rockfish exposed to reduced pH, 

reduced DO, and simultaneous exposure to both stressors.    

 

Treatment Ucrit  Ventilation  

rate  

SMR MMR Aerobic 

 scope 

Somatic  

growth (mm/day) 

Control 6.66  

+/- 0.17 

N = 8 

37.87  

+/- 9.24 

N = 10 

74.23  

+/- 8.14 

N = 4 

178.64  

+/- 27.30 

N = 6 

123.31  

+/- 61.62 

N = 3 

0.059  

+/- 0.004 

N = 8 

pH 5.92  

+/- 0.12 

N = 8 

 

46.44  

+/- 13.49 

N = 9 

64.30  

+/- 7.76 

N = 3 

178.68  

+/- 13.07 

N = 6 

116.14  

+/- NA 

N = 1 

0.064  

+/- 0.007 

N = 8 

DO 5.60  

+/- 0.08 

N = 8 

 

46.50  

+/- 8.44 

N = 10 

68.25  

+/- 6.87 

N = 8 

152.74  

+/- 25.30 

N = 7 

85.50  

+/- 24.20 

N = 7 

0.062  

+/- 0.008 

N = 8 

pH*DO 5.42  

+/- 0.15 

N = 8 

45.47  

+/- 9.71 

N = 10 

67.27  

+/- 5.11 

N = 7 

176.55  

+/- 22.05 

N = 4 

114.29  

+/- 19.31 

N = 4 

0.057  

+/- 0.008 

N = 8 
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Table 39. Mean swimming performance (Ucrit), ventilation rate (BPM), standard metabolic rate (SMR), 

maximum metabolic rate (MMR), aerobic scope, somatic growth rate (mm/day during the first 59-73 days 

in treatment), associated standard errors, and sample size (N) for black rockfish exposed to reduced pH, 

reduced DO, and simultaneous exposure to both stressors.   

 

Treatment Ucrit  Ventilation 

rate  

SMR MMR Aerobic 

scope 

Somatic growth 

(mm/day) 

Control 7.06  

+/-  0.22 

N = 8 

36.74  

+/-  9.00  

N = 9 

81.48  

+/- 6.87 

N = 5 

201.76  

+/- 19.84 

N = 5 

120.28  

+/- 19.59 

N = 5 

0.041 

+/- 0.005 

N = 8 

pH 6.21  

+/- 0.10 

N = 8 

45.03  

+/-  5.76  

N = 10 

79.04  

+/- 4.15 

N = 6 

210.29  

+/-  

24.87 

N = 5 

131.29  

+/- 25.47 

N = 5 

0.027  

+/-0.007 

N = 8 

DO 5.80  

+/- 0.15 

N = 8 

68.10  

+/-  14.46  

N = 10 

NA NA NA 0.038  

+/- 0.005 

N = 8 

pH*DO 5.64  

+/- 0.20 

N = 8 

65.90  

+/-  14.51  

N = 10 

73.52  

+/- 

10.05 

N = 5 

127.45  

+/-  

22.93 

N = 3 

37.06  

+/- 28.11 

N = 2 

0.045  

+/- 0.005 

N = 8 
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DISCUSSION 

This study is part of an investigation to better understand how long-term climate-

driven changes in ocean pH and DO might impact the behavior and physiology of 

juvenile rockfish. The results of this study demonstrate that juvenile rockfish exhibit a 

variety of responses when exposed to reduced DO or pH, with behavioral trials generally 

providing little evidence of impact, in contrast to the more substantive responses resolved 

in several of the physiological measures of performance. Each of these sets of 

experiments are considered in greater detail below.  

Behavioral Responses  

Brain lateralization  

Year 2 copper rockfish exhibited a significant population-level shift from right to 

left turning preference in response to reduced DO. The left-turn bias shown in the detour 

test suggests preferential right eye use (Bisazza et al. 1997). As hypothesized in Rogers 

(2010), exposure to DO stressor might cause a shift in rockfish information processing 

from the left to right brain hemisphere. Although studies on the effects of DO on brain 

lateralization are lacking, severe hypoxic conditions have been found to cause an increase 

in the frequency of staghorn sculpin individuals to a left-turning bias (Lucon-Xiccato et 

al. 2014), which matches my findings. Furthermore, there is evidence that exposure to 

hypoxic conditions can cause physiological disruptions in the teleost brain, such as 

upregulation of enzymes that can prevent protein synthesis in the brain and result in 
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oxidative damage to brain cells (Rahman & Thomas 2015). Copper rockfish also 

exhibited a (non-significant) tendency towards left-turning in response to reduced pH, yet 

counterintuitively, copper rockfish demonstrated a tendency to turn towards the right, 

though with diminished consistency, when exposed to both stressors simultaneously. 

Interestingly, this pattern was also suggested (non-significantly) in results from 

lateralization trials for black rockfish. Recognizing the need for caution in any 

interpretation of non-significant results, these counterintuitive, yet repeated patterns raise 

interesting questions around the possibility that interaction between pH and DO somehow 

counters any independent effects of pH and DO on relative brain lateralization.  

Both species displayed extremely high individual variability in absolute 

lateralization. While individual variation in the strength of brain lateralization is not 

surprising – it is a common observation across many species (Vallortigara & Rogers 

2005) – it was expected that exposure to reduced pH or DO would weaken lateralization 

(reduce specialization) since several studies have demonstrated such an effect (Domenici 

et al. 2011, Jutfelt et al. 2013, Domenici et al. 2014, Lucon-Xiccato et al. 2014, Welch et 

al. 2014). Behavioral abnormalities in fish exposed to reduced pH, such as loss of 

behavioral lateralization and inappropriate olfactory preferences, have been effectively 

reversed by treatment with an antagonist of the GABAA receptor, strengthening the 

hypothesis that exposure to reduced pH may cause depolarization of the GABAA 

neurotransmitter receptor (Nilsson et al. 2012, Hamilton et al. 2014). While this study did 

not test for pH-induced changes in GABAA receptors, my results suggest that rockfish 
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might effectively compensate for exposure to reduced pH through alternate mechanisms 

that minimize any effect on ion concentration gradients across neuronal membranes.  

 

Escape response 

During both years, rockfish exhibited high individual variability in escape 

response; some fish never escaped (spent >30 minutes in the chamber), while others 

escaped in a matter of seconds. Previous studies have demonstrated that exposure to 

reduced pH causes longer escapes times in stickleback (Jutfelt et al. 2011), as well as 

increased anxiety (preference for dark vs. light zones) in juvenile rockfish (Hamilton et 

al. 2014). Thus, longer escape times (reduced boldness) were expected in response to 

reduced pH and DO. However, rockfish in this study did not express significant changes 

in escape time (boldness) in response to either stressor. In fact, results demonstrate an 

unexpected trend of shorter escape times in Year 1 copper rockfish in response to reduced 

DO, where average escape time was 53% faster in 2.0 DO fish compared to control fish. 

This pattern is consistent with a behavioral response of fish seeking to escape hypoxic 

conditions. An initial increase in swimming activity in response to hypoxia has been 

observed in several species, presumably as an avoidance reaction to hypoxic waters 

(Domenici et al. 2013). Hypoxia tolerance in rockfish appears to vary across species, and 

is likely a function of the environment in which species have adapted to live in. Hypoxic 

conditions off the Oregon coast negatively affected copper rockfish movement, reducing 

their home ranges >30%, while quillback rockfish foray behavior remained unchanged 

(Rankin et al. 2013).  Additionally, groundfish surveys within the CCS have 
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demonstrated that spotted ratfish and petrale sole exhibited sensitivity to low oxygen 

availability, while greenstriped rockfish and Dover sole distributions were unaffected 

(Keller et al. 2015). Alternatively, rockfish in this study that did not display an escape 

behavior (remained in the chamber >30 minutes) may have been seeking shelter rather 

than seeking better available water conditions. Alternate escape response methods (e.g. 

escape response to predator stimulus) should be utilized to better understand the effect of 

DO and pH on juvenile rockfish escape behavior.  

Physiological Responses  

Critical swimming speed (Ucrit) 

My results suggest that exposure to reduced DO has a more consistent, and 

possibly stronger influence on swimming performance in juvenile rockfishes than does 

exposure to reduced pH. These results, however, also suggest that the effect of exposure 

to reduced pH, while weaker, is fairly consistent, and that experiments capable of 

measuring responses for a larger sample size will have a strong likelihood of detecting 

and quantifying these effects. Furthermore, while the interaction terms were not 

significant, reduced swimming performance in the combined stressor treatments is 

consistent with an additive effect of pH and DO on swimming performance, and warrants 

further study.  

There are no published studies to date that have investigated the interactive effect 

of pH and DO on Ucrit, and studies on the independent effect of reduced pH on fish 

swimming physiology have shown inconsistent results. Studies focused on newly settled 
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tropical clownfish (Munday et al. 2009), subtropical cobia larvae (Bignami et al. 2013), 

and juvenile Atlantic cod (Melzner et al. 2009) have all demonstrated insensitivity in Ucrit 

to reduced pH. However, other research has demonstrated a negative effect of elevated 

reduced pH on swimming endurance in dolphinfish larvae (Coryphaena hippurus) 

(Pimentel et al. 2014), and on species-specific Ucrit in juvenile rockfish (Hamilton et al. 

2017). While copper and black rockfish in this study both showed reductions in 

swimming performance in response to reduced pH, the effect was not statistically 

significant at  = 0.05. However, the observed reductions in swimming performance in 

response to pH demonstrate that rockfish physiology may be more vulnerable to OA than 

previously assumed. Acidification of the blood and respiratory tissue pigments can 

reduce oxygen uptake and delivery (known as “limiting stress”), which could have 

negative effects on swimming performance. Also, the cost of coping with ATP-hungry 

acid-base regulation can cause shifts in energy allocation (Heuer & Grosell 2014). 

Hypercapnia exposure has consistently been found to cause shifts in metabolic pathways 

in polar, temperate, and tropical fish species, with several reported changes in the 

metabolic profile of muscle tissue, which has been interpreted as a shift from aerobic to 

anaerobic metabolism in these tissues (Michaelidis et al. 2007, Strobel et al. 2012, 

Strobel et al. 2013a, Strobel et al. 2013b, Tseng et al. 2013). Changes in metabolic 

enzyme activity and regulatory genes in juvenile rockfish muscle tissue exposed to 

chronic pH 7.3 have also been demonstrated (Hamilton et al. 2017). Such changes in 

metabolic pathways can have profound effects on an individual’s energy budget and 

allocation (Heuer & Grosell 2014). Muscle tissue samples were taken in this study for 
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gene expression analysis, but the effect of hypercapnia on rockfish muscle tissue, from 

this study, remain unknown.  

The insignificant pH and DO interaction suggests that reductions in rockfish 

swimming capability under combined exposure to low DO and low pH was dominated by 

the effects of low DO. The negative effects of oxygen depletion on swimming 

performance of freshwater and marine fish have been well documented using the Ucrit 

protocol (Domenici et al. 2013, Dahlberg et al. 1968, Jones et al. 1971, Jourdan-Pineau et 

al. 2010, Fu et al. 2011, Herbert & Steffensen 2005, Brady et al. 2009, Zhang et al. 2010). 

However, acclimation period and treatment level vary greatly across studies, making it 

difficult to draw general conclusions about adaptation potential or physiological limits. 

The observed reductions in swimming capacity in response to reduced DO are assumed 

to be a consequence of limiting oxygen supply to the slow-twitch red muscles that enable 

prolonged swimming (Domenici et al. 2013). Results from this study demonstrate that 

long-term exposure to DO levels of 4.0 mg/L or less may be detrimental to rockfish 

swimming performance, suggesting that rockfish have limited ability to adapt to reduced 

DO environments. Preliminary results from a short-term exposure experiment (results not 

shown) suggest that these effects may manifest over relatively short time scales (1-4 

hours) and increase over the course of long-term exposure. Any decline in juvenile 

rockfish swimming performance, if it manifests in natural systems as climate change 

progresses, has several obvious implications, including inability to escape predation, 

successfully forage, swim against currents, and settle to desirable habitats, which could 

have cascading effects on trophic interactions and population reproductive success.    
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Ventilation rate  

 Ventilation rate trials were only conducted in Year 2, and demonstrated species-

specific ventilatory response to DO. Contrary to expectation, copper rockfish did not 

exhibit changes in ventilation rate in response to pH, DO, or the interaction between the 

two stressors. Black rockfish ventilation rate was also not effected by pH but was 

significantly higher in the reduced DO treatment (46% increase). Black rockfish 

ventilation rate was elevated in the combined treatment, but the interaction was 

insignificant, suggesting that the observed hyperventilation was largely (or entirely) in 

response to reduced DO. It is common for fish to adjust ventilation rates in response to 

reduced pO2 levels (Gilmour 2001). Hyperventilation in response to reduced DO has 

been observed in the common sole (Cannas et al. 2012), dogfish (Metcalfe & Butler 

1984, Perry & Gilmour 1996), starry flounder (Watters & Smith 1977), juvenile southern 

flounder (Taylor & Miller 2001), Atlantic cod (Kinkead et al. 1991), and numerous 

freshwater species (Gilmour 2001). However, a few species (red grouper and black sea 

bream) have demonstrated a reduction in operculum movement during hypoxia (Wu & 

Woo 1984), and others have demonstrated initial increase in ventilation rate followed by 

a decline in ventilation frequency as DO levels continue to decline (Tallqvist et al. 1999, 

McKenzie et al. 2002, Maxime et al. 1995).  

 The observed increase in black rockfish ventilation rate in response to low ? DO 

can have severe consequences for individual survival. First, an increased energy 

allocation to ventilation will likely cause a decline in other activities, such as searching 

for food or habitat, thus potentially affecting fish growth and survival. Hyperventilation 
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can also increase vulnerability to predation due to increased visibility to predators and 

reduced energy allocation for escape responses, potentially forcing fish to hide rather 

than flee from predation (Kramer 1987, Domenici et al. 2013). The species-specific 

differences in ventilation rate suggest that black and copper rockfish may utilize different 

physiological mechanisms to cope with long-term reduced oxygen stress. Black rockfish 

are more active than copper rockfish; they are often found swimming in schools in the 

mid-water column while copper rockfish are generally found resting on the bottom (Love 

et al. 2012). Thus, black rockfish likely have higher metabolic demands and greater 

sensitivity to conditions that affect their oxygen uptake. Additionally, due to their more 

mobile behavior, black rockfish may be more likely to escape unfavorable water 

conditions than copper rockfish. Also, copper rockfish may utilize increased ventilation 

strategies that were not measured in this study, such as an increase in ventilation volume 

(expansion of oral-branchial cavities), which is considered more energy efficient than 

changes in ventilation rate (Perry et al. 2009). Additionally, some species can ameliorate 

the negative effects of oxygen depletion on performance through gill remodeling (Nilsson 

2007, Wu & Woo 1985) or increasing blood hemoglobin concentration (Wood & 

Johansen 1972; Randall 1982; Val et al. 1995). To investigate whether either species 

copes with long-term oxygen depletion via these mechanisms, gill and hematocrit 

samples were taken from all individuals at the end of the experiment and sent to CSU 

Monterey Bay for analysis. Since these samples have not been analyzed, conclusions 

regarding gill remodeling or increased hematocrit concentration are to be determined.  
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Respiratory adjustments in response to reduced pH are sparse compared to the 

amount of research focused on the effects of reduced O2 (Gilmour 2001). While many 

studies on marine and freshwater fish have found a similar hypervenilatory response to 

reduced pH as low O2 (Perry & Gilmour 1996, McKendry 2001, Borch et al. 1993, 

Graham et al. 1990), many fish species have demonstrated no ventilation response to 

changes in seawater pH (McKendry 2001, Croecker & Cech 1998). It is presumed to be 

more cost effective for fish to utilize metabolic processes for acid-base regulation rather 

than respiratory adjustments. Thus, it appears juvenile rockfish may rely on the former to 

cope with reduced pH conditions.  

 

Standard metabolic rate (SMR)  

Interpretation of the respirometry trials from Year 2 requires special caution, due 

to challenges in condition maintenance and husbandry, also discussed in greater detail 

below and in the Results: Fish Health section. Standard metabolic rate (SMR) of copper 

rockfish in Year 1 was negatively correlated with DO, with ~20% reductions in the 6.0, 

4.0 and 2.0 DO fish. However, SMR in Year 2 copper rockfish exposed to reduced DO 

was hardly reduced from control. Effects of pH on copper and black rockfish are not 

significant and unclear. Furthermore, it was expected that fish simultaneously exposed to 

reduced pH and DO would demonstrate the lowest SMR, but SMR in the combined 

treatment for both species was only slightly reduced from control. 

A general assumption that the cost of coping with reduced pH (acid-base 

regulation, osmoregulatory, and cardiorespiratory adjustments) adds loading stress 
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(contributes to the base cost of maintenance), thus increasing fish SMR (Heuer & Grosell 

2014), has not been consistently borne out by research. Indeed, only a few studies have 

shown an increase in SMR in response to reduced pH (Enzor et al. 2013, Munday et al. 

2009), and many others have shown no effect (Couturier et al. 2013, Munday et al. 2009, 

Strobel et al. 2012), or have reported a decrease in SMR (Rummer et al. 2013). If there is 

an effect of pH on rockfish SMR, it does not appear to be a strong effect and will require 

much larger sample sizes to detect.  

Marine fish cope with reduced oxygen availability in several ways, such as by 

increasing respiration (ventilation) rate, the number of red blood cells, or the oxygen 

binding capacity of hemoglobin, or by decreasing metabolism, with the latter being 

considered the most energetically efficient method. Metabolic depression can prolong 

survival in hypoxic environments by reducing ATP use, and has been observed in a 

variety of species (Wu 2002). This study was unable to examine species-specific 

differences in SMR in response to reduced DO (due to high mortality of nutritionally 

stressed black rockfish prior to and during our respirometry trials, see below). However, 

since juvenile black rockfish are considered more active than copper rockfish, and more 

active species are expected to have higher metabolic rates, the hypothesis that black 

rockfish would exhibit higher SMR in response to reduced DO than copper rockfish 

warrants further study.  

While only healthy individuals (i.e. those that did not display symptoms of 

vitamin C deficiency) were used in respirometry trials, it is possible that efforts to 

quantify pH and DO effects on fish respirometry were compromised by declining fish 
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health. In addition, although estimates of oxygen consumption were corrected for the 

effects of temperature prior to estimating SMR, these calculations are based on the 

assumption that Q10 = 2, rather than a factor estimated specifically for oxygen 

consumption in juvenile rockfishes. Absent improved control of experimental 

temperature, an independent or a priori estimate of Q10 for juvenile rockfish should be 

developed to support future studies of metabolic response in these species. We did 

examine the analyses using a smaller Q10 factor (Q10 =1.6), and the results qualitatively 

were insensitive and conclusions remained unchanged. Moreover, the level of variability 

observed between individuals suggests that a greater number of replicate tanks and 

individual fish will be required to definitively resolve any metabolic responses to reduced 

pH and reduced DO in these species.  

 

Maximum Metabolic Rate (MMR) 

 Acidification of the blood by hypercapnia exposure is thought to limit the ability 

of fish to uptake and deliver oxygen (known as “limiting stress”), thus reducing MMR 

(review: Heuer & Grosell 2014). However, results from this study suggest that rockfish 

may be resistant to changes in MMR, even after long-term exposure to greatly reduced 

pH. A survey of previous studies yields mixed reports on the effects of OA on MMR, 

ranging from reduced (Munday et al. 2009) to increased (Couturier et al. 2013, Rummer 

et al. 2002) MMR and includes cases where no change in MMR was detected (Peterson 

& Gamperl 2010). However, it is generally expected that MMR in fish will decline in 

response to reduced pO2 (Fry 1971, Claireaux et al., 2000, McBryan et al. 2013, Norin & 
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Clark 2016). A decline in MMR was exhibited by copper rockfish in Year 1 in response 

to DO, but that decline was not significant at  = 0.05 (p = 0.06), suggesting that this 

species might be able to maintain MMR over long-term exposures to pO2 as low as 2.0 

mg/L.  Black rockfish should be tested over a broader range of (reduced) DO levels to 

determine whether MMR is further reduced at more extreme DO levels. Furthermore, 

interpreting estimates of MMR for black rockfish is confounded by changes in fish health 

during these trials; most individuals struggled to maintain swimming position during the 

5-minute chase period, suggesting that black rockfish swimming capabilities had greatly 

declined since the Ucrit trial.  

 There are several different methods for measuring MMR. While swim tunnel 

respirometry is the preferred method for species that readily maintain active swimming, 

the chase method is an optimal method for species that do not normally engage in 

prolonged, active swimming, and seemed appropriate for juvenile rockfish. Methods used 

in this study are consistent with recommendations for chase time of 3-5 minutes that 

leave fish nonresponsive and exhausted (Clark et al. 2013). Studies have shown that 

chase-method MMR can take several minutes or even hours to manifest (Clark et al. 

2013), such as a reported delay of 6-8 hours in adult coho salmon (Clark et al. 2012). 

This does not appear to be the case in rockfish: repeated measurements of oxygen 

consumption made for a subset of individuals always indicated that oxygen consumption 

was greatest during the period immediately following the chase.  
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Aerobic scope 

The hypothesis that limited oxygen supply would negatively impact fish aerobic 

scope has been supported by several studies (Farrell & Richards 2009), but estimates of 

aerobic scope from this study do not strongly corroborate this conclusion. While aerobic 

scope decreased by 28% in Year 1 copper rockfish exposed to 2.0 DO, it was not 

significantly at  = 0.05 (P = 0.07). Due to the large discrepancies in the literature on the 

effect of pH on SMR and MMR, it is not surprising that there are conflicting reports on 

how reduced pH impacts fish aerobic scope. Evidence of an increase (Couturier et al. 

2013, Rummer et al. 2013), decrease (Munday et al. 2009), and no apparent change in 

aerobic scope in response to reduced pH (Melzner et al. 2009) have all been reported. 

Since rockfish in this study exposed to reduced pH did not demonstrate changes in SMR 

or MMR, it is also not surprising that no response in aerobic scope was detected. These 

results are inconsistent with an earlier study that found exposure to reduced pH caused a 

decline in aerobic scope of juvenile copper rockfish (Hamilton et al. 2017). While my 

study used similar treatments and exposure durations as Hamilton et al. (2017), 

differences in MMR protocols might explain differences in reported aerobic scope. 

Hamilton et al. (2017) used oxygen consumption rates of fish swimming at its maximal 

rate (obtained from Ucrit trials) in a swim tunnel respirometer over a 20-minute interval. 

In my study, fish were chased for 5-minues at a speed one body length below their 

maximal rate.  

Aerobic scope is considered to be a measure of ‘whole-animal’ fitness and an 

important control or correlate on fish growth, reproduction, and swimming performance 
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(Fry 1971, Clark et al. 2013).  Further work to estimate this parameter in juvenile 

rockfish and how it responds to reduced pH and DO is needed to verify how rockfish 

metabolic rate and energy allocation will be impacted by changes in ocean pH and DO, 

especially considering the contrast in results reported here and in Hamilton et al (2017).   

 

Critical oxygen level (Pcrit) 

The decline in Pcrit of copper rockfish in response to reduced DO, although 

insignificant, suggests that long-term acclimation to reduced DO might enhance hypoxia 

tolerance in this species. These results are corroborated by reports in the literature that 

have also demonstrated decreased Pcrit following acclimation under hypoxic stress (Fu et 

al. 2011, Dan et al. 2014, Routley et al. 2013, Rogers et al. 2016). However, there are 

also cases where no change in Pcrit was observed after long-term exposure to reduced DO, 

such as in juvenile snapper (Cook et al. 2013) and post-smolt Atlantic salmon (Remen et 

al. 2013). There are conflicting reports on the effects of pH on Pcrit; some studies have 

reported no effect (Cochran & Burnett 1996) while others have reported an increase in 

Pcrit (Cruz-Neto & Steffenssen 1997, Rogers et al. 2015, Rogers et al. 2016). It is 

hypothesized that increased Pcrit in fish exposed to reduced pH conditions is caused by 

reduced oxygen transport capacity due to respiratory acidosis (Heuer & Grosell 2014). In 

contrast to this expectation, no effect of pH on Pcrit of juvenile copper rockfish was 

detected in this study. Results from this study suggest that copper rockfish might be able 

to regulate acid-base balances efficiently without compensatory reductions in oxygen 

transport capacity.  
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Most research on Pcrit has focused on the effect of temperature, with a general 

finding that increased temperatures elevate Pcrit (Rogers et al. 2016). We did not examine 

temperature sensitivity of Pcrit, and instead corrected for assumed effects of temperature 

to reduce the chance that variability in temperature would confound our ability to resolve 

responses to our treatments. However, with expected increases in ocean surface 

temperature due to ongoing climate change, Pcrit response in juvenile rockfish under 

future ocean temperature conditions should be investigated. It is also important to note 

that Pcrit in this study was reported for SMR (since Pcrit was conducted post-SMR trials), 

and is thus likely higher than would be Pcrit reported for routine metabolic rate (RMR). 

Since Pcrit reported for RMR is considered more ecologically relevant (Rogers et al. 

2016), future studies should compare rockfish Pcrit for SMR and RMR. In addition, a 

significant size effect on copper rockfish Pcrit was detected, and is particularly evident in 

the control treatment fish, where larger fish demonstrated higher Pcrit. This finding is 

contradictory to previous research that has reported a negative relationship between 

increasing body mass and Pcrit (Rogers et al. 2016, Perna & Fernandes 1996, Sloman et 

al. 2006).  

 

Somatic growth rate  

Results from this study do not strongly corroborate previous findings of reduced 

growth in early life stages of juvenile fish in response to reduced pH and hypoxic 

conditions (Baumann et al. 2012, Chabot & Dutil 1999). While no significant effect of 

exposure to reduced pH or reduced DO on somatic growth rates of copper and black 
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rockfish was detected, there is a suggestive trend of reduced somatic growth (both in 

length and mass) in copper rockfish over approximately two months of exposure to 

reduced DO treatment in the first experiment. However, somatic growth in response to 

either stressor is potentially compromised by malnutrition issues in the second 

experiment. The effect of pH and DO stressors on juvenile rockfish growth requires 

further investigation. 



112 

 

  

SUMMARY 

As climate change progresses, the frequency and duration of upwelling events that 

bring low pH, low DO water to nearshore habitats are expected to increase (Bakun et al. 

2015, Rykaczewski & Dunne 2010). In addition, long-term global changes in ocean pH 

and DO are expected to occur within the next couple hundred years (Caldeira & Wickett 

2005, Kelling et al. 2009), with already documented reductions in near-shore pH and 

expansion of oxygen minimum zones within the CCS (Feely et al 2008, Chan et al. 

2008). However, very few studies have investigated the potential interactive effect of 

these stressors on temperate fish. The results of this study provide evidence that future 

levels of pH and DO expected from climate change might have negative effects on 

juvenile rockfish physiology, including swimming performance and ventilation rate. In 

contrast, juveniles of both species appear to be behaviorally resilient to changes in pH 

and DO, as no response was detected in absolute brain lateralization or escape response. 

However, a significant shift in relative lateralization in response to DO suggests potential 

consequences of exposure to stressors for juvenile rockfish brain function. Responses to 

reduced pH and to concurrently reduced pH and DO suggested patterns that, although not 

statistically significant, were shared across species. Further study with larger samples 

sizes will be required to evaluate these apparent patterns, and if they are corroborated, 

this presents an interesting challenge to understand the mechanisms that underpin 

independent and concurrent effects of reduced pH and reduced DO on individual- and 

population-level lateralization. Furthermore, whether responses measured in this study to 
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pH treatments are driven by elevation in [H+] or increase in pCO2 is a concern and 

warrants further investigation.  

It was expected that black rockfish would exhibit greater resilience to these 

oceanographic stressors than copper rockfish, due to potential differences in early life 

history exposure to pH and DO stressors. Juvenile black rockfish are one of the few 

rockfish species found to utilize tide pool habitats as nursery grounds, which indicates an 

increased resilience to low DO, low pH conditions since these habitats exhibit drastic 

fluctuations in both stressors. However, the most prominent difference between the 

species was in ventilation rate under stress, which provided evidence of greater tolerance 

in copper rockfish. However, differences in the effect of reduced DO on relative 

lateralization suggest that brain function in copper rockfish may be more susceptible than 

that of black rockfish to changes in water quality. Both species exhibited similar changes 

in swimming performance to both stressors and no significant changes in metabolic 

responses to pH. A lack of reliable measurements of metabolic responses in black 

rockfish to reduced DO due to declines in fish health prevents comparison between 

species. Hamilton et al. (2017) found significant changes in rockfish physiology and 

behavior in response to reductions in pH, with stark species-specific differences. Thus, 

the lack of species-specific behavioral and physiological responses to reduced pH 

detected in this study was surprising.  

Discrepancies between this study and others might be explained by differences in 

study region. Northern California is characterized as having stronger upwelling events 

than central California, and has been described as an ocean acidification ‘hotspot’ (Feely 
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et al. 2008). In fact, the extreme pH (pH 7.3) and DO (2.0 mg/L) conditions used in the 

first year of this study are already observed along the northern California coast during 

strong upwelling events. Since rockfish in this region evolved in an especially dynamic 

pH and DO environment, they might be better adapted to cope with reductions in pH than 

rockfish in regions further south or fishes in regions where upwelling is a much weaker 

factor (e.g. tropics, North Atlantic). However, evolutionary adaptations will likely have 

their limits, and due to the continued release of carbon dioxide into the atmosphere, there 

might be a tipping point at which rockfish can no longer adapt to changing ocean 

conditions. The role of transgenerational responses in rockfishes, in which maternal 

experience affects gene activity in offspring, to changes in DO and pH remains to be 

explored.  

 Some of the variability observed among individuals is no doubt due to genetic 

differences, as the fish collected from the field are almost certainly drawn from a mixed 

population of diverse parentage. Numerous studies have demonstrated that parental 

exposure to hypoxic or increased carbon dioxide conditions has epigenetic effects on fish 

morphology and physiology, and in several cases, mediates the impacts of these stressors 

on offspring (Ho & Burggren 2012, Miller et al. 2012, Murray et al. 2014). If this same 

effect is also true for rockfish, it would be expected that parental species that inhabit 

deeper water habitat characterized by more variable and reduced pH (e.g. black rockfish) 

will produce offspring better adapted for future changes in water conditions. Follow up 

studies might benefit from assessing responses within known sibling groups, although it 

is not clear that this is presently practical for juvenile stages of rockfishes. Alternatively, 
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combining larger sample sizes with detailed genetic assays--perhaps in concert with 

sampling along latitudinal population gradients-- might provide deeper insight to sources 

of variability in individual responses and the scope for adaptation by rockfishes to 

ongoing changes in ocean DO and pH.  Latitudinal comparisons across natural gradients 

of DO and pH might also provide some scope for evaluating transgenerational responses, 

that is, whether and how maternal exposure to low pH or DO affects the tolerance of 

offspring. 

Over the range of conditions examined, DO proved to have a stronger effect on 

rockfish physiology than pH, suggesting that hypoxic events may be more detrimental to 

future populations than ocean acidification. Declines in rockfish home ranges and mass 

fish mortalities have already been reported off the coast of Oregon in response to anoxic 

conditions (Rankin et al. 2013, Chan et al. 2008). However, Pcrit results from this study 

provide evidence that copper rockfish have the potential to increase their tolerance for 

hypoxic conditions after long-term exposure to reduced DO. Further research on the 

potential for alternative hypoxia-induced mechanisms, such as modifications to gill 

surface area and increased oxygen binding hemoglobin, will further elucidate the capacity 

for rockfish to adapt to sustained hypoxic conditions. It is also important to consider how 

other organisms within the nearshore environment will also be affected, such as predators 

and prey of rockfish, to better predict future species-interactions. Further knowledge is 

required to predict how physiological responses observed in individuals might affect 

growth and survival over time and subsequently scale up to population-level responses. 

Due to the ecological importance of juvenile rockfish within the California Current Large 
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Marine Ecosystem and economic value of rockfish in the U.S. Pacific Coast fishery, 

further research is critical to better understand species’ sensitivities and potential 

resilience to changes in ocean pH and DO expected under ongoing global climate change.  

Recommendations for Future Studies  

The Ucrit experiment proved to be the most successful trial for assessing 

physiological changes in response to pH and DO stressors. Both species demonstrated 

clear responses, trials were relatively easy to conduct, and results from these experiments 

are easily compared to other studies since the Ucrit protocol is a standardized measure of 

maximal swimming performance. Larger sample sizes would improve emerging patterns 

of pH and DO effects on fish swimming capabilities. Respirometry trials, including SMR, 

MMR, and Pcrit, were time consuming, inherently difficult to conduct, and proved that 

much larger sample sizes are necessary due to substantial individual variability. As 

mentioned earlier, while only healthy fish were selected for respirometry trials, there is 

potential that even those fish that passed muster for inclusion in the trial were not in ideal 

health due to vitamin C deficiency in Year 2. Thus, further research on the effects of OA 

and hypoxia on juvenile rockfish metabolic rate is necessary. It is also recommended that 

the effect of different fasting periods on SMR is tested prior to conducting SMR trials to 

ensure a fasting period of 48 hours is sufficient (Clark et al. 2013). Future studies should 

also consider investigating the interactive effect of temperature with pH and DO stressors 

on rockfish metabolic rate along with other physiological measures.  
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Alternate behavioral studies should be pursued to measure changes in rockfish 

boldness in response to pH or DO stressors, such as activity level in a novel environment 

and responsiveness to threatening and benign objects (White et al. 2013). Also, pre- 

versus post-treatment exposure brain lateralization trials should be considered. Since 

behavioral responses demonstrated high individual variability, larger samples are highly 

recommended. 

As a final note on animal husbandry, this study showed that rockfish require a 

diverse, enriched diet to maintain long-term health. A diet consisting of either vitamin-

enriched krill or nutritionally balanced pellets is recommended for future studies to avoid 

confounding fish health issues with effects from environmental stressors. Subsequent 

experiments on black rockfish have been conducted in which nutritional decencies appear 

to be resolved and provide opportunities for evaluating present results and establishing 

protocols for future studies.  
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APPENDIX A 

Appendix A: Distribution and changes in fish size across treatments and trials (mean total length, total 

length standard deviation (sd), min total length, max total length, mean weight, mean weight standard 

deviation (sd) and sample size (N) for Year 1 copper rockfish. 

 

Trial Treatment TL TL 

 sd 

min TL max TL Weight Weight sd N 

 CONTROL 50.8 6.6 39.00 59 1.83 0.750 20 

INITAL DO2.0 50.5 5.1 40.00 60 1.80 0.598 20 

 DO4.0 52.4 5.2 43.00 59 1.91 0.603 20 

 DO6.0 51.8 5.5 37.00 60 1.93 0.558 20 

 PH7.2 51.2 6.6 40.00 60 1.85 0.721 20 

 PH7.5 52.5 6.0 42.00 62 1.91 0.726 20 

 PH7.8 52.0 5.0 42.00 61 1.95 0.623 20 

ESCAPE CONTROL 54.2 5.8 2.76 42 65.00 1.172 20 

 DO2.0 54.9 5.7 2.52 43 63.00 0.847 19 

 DO4.0 56.3 4.7 2.80 46 62.00 0.713 19 

 DO6.0 57.6 5.8 3.01 42 65.00 0.897 20 

 PH7.2 58.5 6.4 3.18 48 68.00 0.992 20 

 PH7.5 58.9 6.2 3.14 49 68.00 1.050 20 

 PH7.8 60.0 5.3 3.26 50 70.00 0.904 20 

BL CONTROL 59.3 6.6 47.00 70 3.28 1.136 20 

 DO2.0 56.6 7.5 44.00 67 2.97 1.146 10 

 DO4.0 59.7 5.0 50.00 67 3.29 0.863 20 

 DO6.0 61.3 5.7 47.00 69 3.45 0.960 20 

 PH7.2 60.5 6.8 49.00 70 3.56 1.145 20 

 PH7.5 61.0 5.9 51.00 70 3.66 1.126 20 
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Trial Treatment TL TL 

 sd 

min TL max TL Weight Weight sd N 

 PH7.8 60.5 5.7 50.00 74 3.63 1.06 20 

UCRIT CONTROL 63.0 3.6 59.00 69 3.87 0.60 7 

 DO2.0 61.8 4.2 57.00 68 3.81 1.01 6 

 DO4.0 64.9 1.2 63.00 66 4.51 0.30 7 

 DO6.0 65.1 3.0 59.00 68 4.41 0.78 8 

 PH7.2 64.9 3.4 58.00 69 4.57 0.94 8 

 PH7.5 64.8 2.4 60.00 67 4.46 0.67 8 

 PH7.8 62.9 3.3 59.00 69 4.22 0.59 10 

Final CONTROL 75.7 6.3 62.00 85 12.02 3.39 16 

 DO2.0 67.8 12.4 50.00 85 9.23 5.09 8 

 DO4.0 75.5 6.8 60.00 84 12.14 3.10 19 

 DO6.0 75.3 9.6 50.00 97 12.05 4.28 20 

 PH7.2 72.3 6.4 64.00 87 10.54 2.74 18 

 PH7.5 73.9 5.4 67.00 85 11.30 2.60 19 

 PH7.8 72.2 8.4 50.00 88 10.72 3.97 19 
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APPENDIX B 

Appendix B: Distribution and changes in fish size across treatments and trials (mean total length (TL), total 

length standard deviation (sd), min total length, max total length, sample size (N) for Year 2 copper 

rockfish. 

Trial Treatment TL TL SD Min TL Max TL N 

ESCAPE CONTROL 58.2 3.9 52 64 13 

 PH 60.4 3.8 55 69 14 

 DO 58.9 3.7 55 68 14 

 CROSS 57.8 3.0 53 64 11 

BRAIN LAT CONTROL 60.5 4.6 55 75 20 

 PH 59.1 3.9 51 70 20 

 DO 57.9 3.4 50 64 20 

 CROSS 61.0 3.9 56 69 20 

 CONTROL 60.6 2.5 57 64 8 

UCRIT PH 60.8 1.2 59 62 8 

 DO 59.6 1.2 58 62 8 

 CROSS 58.9 1.5 57 61 8 

VENTILATION CONTROL 62.2 3.3 58 68 10 

 PH 65.7 3.8 63 74 10 

 DO 65.1 5.7 61 80 10 

 CROSS 62.3 3.8 58 70 9 
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APPENDIX C 

Appendix C: Distribution and changes in fish size across treatments and trials (mean total length (TL), total 

length standard deviation (sd), min total length, max total length, sample size (N) for Year 2 black rockfish. 

 

Length Treatment TL TL sd Min TL Max TL N 

ESCAPE CONTROL 76.9 7.2 68 91 19 

 PH 75.1 7.9 61 90 19 

 DO 77.0 6.4 69 90 19 

 CROSS 75.7 4.7 66 83 20 

BRAIN LAT CONTROL 77.5 7.0 69 92 20 

 PH 78.2 6.3 70 92 20 

 DO 77.7 5.3 68 88 20 

 CROSS 75.2 7.8 62 90 20 

UCRIT CONTROL 75.6 3.2 71 80 8 

 PH 78.4 2.7 73 82 8 

 DO 76.0 3.0 72 80 8 

 CROSS 76.8 1.8 74 80 8 

VENTILATION CONTROL 82.2 6.4 74 94 9 

 PH 80.1 8.4 69 96 10 

 DO 83.5 7.1 74 96 10 

 CROSS 82.9 6.3 73 98 10 
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