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ABSTRACT 

EVALUATING CURRENT AND FUTURE RANGE LIMITS OF AN ENDANGERED, 

KEYSTONE RODENT (DIPODOMYS INGENS) 

 

Ivy Victoria Widick 

 

Climate is often considered the single most important factor limiting species’ 

ranges. Other factors, such as biotic interactions, are often assumed to be included via 

abiotic proxies. However, differential responses to climate change may decouple these 

relationships or lead to adaptation to novel environments. Accounting for competition 

and local adaptation should more accurately describe environmental factors influencing 

current distributions and increase the predictive accuracy of future distributions. 

Modeling the endangered giant kangaroo rat (Dipodomys ingens) is an excellent 

application of these model improvements, as the species range consists of geographically 

and genetically isolated populations experiencing disparate climatic change. From eight 

years of trapping data, I used Maxent to model the distributions of two isolated 

populations of D. ingens. Using local surveys and state-wide data, I also modeled 

California ground squirrels (Otospermophilus beecheyi), a potential novel competitor. 

Models included landscape variables (slope and soil composition) and climate variables 

(temperature, precipitation, and climatic water deficit). Niche overlap between the D. 

ingens populations was moderate (I = 0.43), suggesting that they already experience 

different climatic regimes and providing support for population-level modeling. 
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Projecting population models into the future, under a high emission climate change 

scenario (CCSM4, rcp8.5), resulted in less predicted range contraction than modeling the 

species as a whole. However, forecasted distributions showed areas of increasing niche 

overlap between the Panoche population of D. ingens and O. beecheyi (I = 0.63 to 0.74), 

indicating competition could be a novel range limit. These species distribution models 

identify range limiting factors and detect potentially important future habitat. However, 

27% of modeled suitable habitat is currently in agricultural use, preventing D. ingens 

occupation. In combination with historical distribution models, we can target key areas to 

prevent further anthropogenic development and to protect the giant kangaroo rat within 

an endangered ecosystem.  
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INTRODUCTION 

Climate is often considered the single most important factor limiting species’ 

ranges (e.g. Merriam 1894, Peterson 2011). Most contemporary approaches to modeling 

species distributions and predicting range shifts under climate change suggest species 

will relocate to track their climatic niches (Parmesan 2006). This response is governed by 

niche conservatism, which occurs when species retain ecological traits related to their 

niche over time (Wiens et al. 2010). Throughout the text, “niche” refers to the 

combination of abiotic and biotic factors that a species experiences and their distribution 

in geographic space (Hutchinson 1957).  Niche conservatism suggests that species 

maintain their relationship with environmental factors, even in the absence of those niche 

characteristics. Thus, species may shift their range through space to follow the conditions 

to which they are adapted, or they may locally express retained traits in response to 

change. The interaction between abiotic and biotic factors is important in determining 

whether species follow or deviate from niche conservatism. 

Abiotic factors, often related to climate and topography, are commonly used in 

distribution and niche modeling (e.g. Lawler et al. 2006, Escalante et al. 2013, Aycrigg et 

al. 2015, Beaumont et al. 2016). While some large-scale studies have detected 

movements poleward or toward higher elevations (e.g. Parmesan and Yohe 2003), long-

term and fine-scale studies have revealed more idiosyncratic responses to climate change 

(e.g. Moritz et al. 2008, Gibson-Reinemer and Rahel 2015). Species, or even populations, 

respond inconsistently to climatic changes; some shift their range across latitude or 
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longitude, some shift in elevation, and others remain stable (Gibson-Reinemer and Rahel 

2015). This is often explained by geographically tracking temperature and retaining niche 

characteristics. 

Climate-driven models of species distributions have received criticism for 

focusing on temperature without consideration of precipitation (Rapacciulo et al. 2014). 

While temperature is vital in determining local climate, precipitation also plays a large 

role by shaping the vegetative community. Community structure directly affects primary 

productivity, a major limiting factor for many species (Brown et al. 1979). Tingley et al. 

(2009) compared niche shifts of 53 bird species from historical (1911-1929) to 

contemporary (2003-2008), showing that species’ responses to changing climate could 

not be predicted solely from temperature or precipitation, but estimates were far more 

accurate when the two were used in tandem.  

Even with the improved accuracy from multiple climatic variables, broad 

correlations between species distributions and climate may obscure local adaptations. 

Species ranges may shift to track a fluctuating niche, but others remain in place, exposing 

them to changes in climate (Holt 1990). Noncontiguous populations within a species 

could experience dissimilar climatic conditions, and over time the population-level niche 

could vary based on local conditions (Gibson-Reinemer and Rahel 2015). Including 

multiple aspects of climate may make predictions more accurate, but still neglects the 

potentially powerful influence of biotic interactions, such as competition. 

Competition limits resource use when competing species co-occur in small areas 

and can serve as a range limit where geographic ranges meet (Boulangeat et al. 2012). 
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Biotic interactions are governed by niche overlap and/or geographic overlap of multiple 

species. Small mammal communities are structured by internal mechanisms to avoid 

competition (e.g. microhabitat partitioning, resource selection, temporal separation) 

(Price 1978). While these processes may reduce the effects of competition within 

communities, the boundaries between communities could serve as intense areas of 

competition, which can influence species distributions (Gaston 2003). Even niche 

partitioning within a community does not prevent interspecific competition (e.g. Hughes 

et al. 1994). Climate change is expected to affect community assembly, with species 

expanding across community boundaries at different rates, inducing novel competitive 

interactions (Montoya and Raffaelli 2010). Antagonistic interactions become potential 

limits to distribution, as competitors could prevent range expansion of less dominant or 

more specialized species (Lurgi et al. 2012). Most species distribution models – whether 

explicitly stated or not – incorporate biotic interactions through indirect abiotic proxies, 

such as attempting to capture competitive species boundaries with differences in 

temperature (Guisan and Thuiller 2005). However, because species respond to climate 

change at various scales and via different mechanisms, the relationship between climate 

and competition may be decoupled when projecting into the future (Guisan and Thuiller 

2005, Elith and Leathwick 2009, Lurgi et al. 2012). Consideration of biotic limitations 

directly may better explain the mechanisms limiting current distributions and, therefore, 

more accurately forecast species distributions under future climates. 

The giant kangaroo rat (Dipodomys ingens) is an ideal species to test the inclusion 

of local adaptation and biotic interactions into species distribution modeling. They are a 



4 

 

  

state and federally listed endangered species endemic to California’s San Joaquin Valley 

(USFWS 1987). They currently only reside in a few remnant, and often isolated 

populations, the largest of which are found in the Carrizo Plain National Monument 

(Carrizo) and the Ciervo-Panoche Natural Area (Panoche). These two populations are 

geographically isolated by about 150 km, and recent work suggests genetic isolation 

dating back at least 10,000 years (Statham et al. In review), making local adaptation more 

likely (CDFW 2016). Although populations may experience different local conditions, 

the species exists within a narrow range of habitat characteristics (Bean et al. 2014a). 

These habitat specialists thrive in desert-grasslands with low annual precipitation, (< 30 

cm), sandy loam soils, and flat or very low-grade slopes, particularly below six degrees 

(Grinnell 1932, Hawbecker 1951, and Bean et al. 2014a). Their burrow structures are 

used by other vertebrate species, including some classified as endangered, and their seed 

caching may serve as a food source for invertebrate inhabitants (Prugh and Brashares 

2012). They are thus thought to be ecosystem engineers and, due to their impact despite 

generally low abundance, a keystone species (Prugh and Brashares 2012). Understanding 

the limitations to D. ingens range should aid in crafting more effective conservation 

strategies, and help protect an endangered ecosystem. 

Precipitation appears to play a key role in limiting D. ingens distributions (Bean et 

al. 2014a). Persistence in areas of low annual precipitation is presumably limited by food 

resources, particularly after consecutive years of low rainfall. However, the specific 

mechanisms by which precipitation limits D. ingens in the wetter parts of their range is 
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undetermined (Bean 2012). D. ingens could be limited by precipitation in several ways, 

leading to three non-exclusive mechanistic hypotheses.  

The Precipitation Hypothesis 

As a burrowing, seed-caching species, high precipitation could directly affect 

their ability to maintain burrows, or cause seed spoilage, depleting seasonal food stores 

(Valone et al. 1995). In this case, excess precipitation would limit the geographic range. 

Conversely, areas of insufficient precipitation may not support adequate food resources, 

again limiting geographic range (Figure 1). 

 

Figure 1. Expected relationships between range-limiting variables and habitat suitability for giant kangaroo 

rats (Dipodomys ingens). Relationships reflect the three hypotheses presented in the text. 

The Vegetation Hypothesis 

Higher precipitation causes increased growth of dense, non-native vegetation (e.g. 

Bromus madritensis spp. rubens) that impedes D. ingens movement, decreasing foraging 

efficiency and increasing the risk of predation (Germano et al. 2012). Precipitation may 

variably affect plant growth according to local environmental conditions and the 
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availability of water post-rainfall. Climatic water deficit is the amount of 

evapotranspiration that would have occurred, given more water in the system. It 

combines the effects of precipitation, temperature, and radiation to provide a metric of 

available water that helps shape the identity of the vegetative community.  A lower 

deficit would result in increased soil moisture, which could improve growth conditions 

for dense non-native vegetation, inhibiting saltatorial movements (Stephenson 1998). 

Conversely, a greater deficit could prevent primary productivity altogether, limiting the 

food supply (Figure 1). 

The Competition Hypothesis 

As the largest of the kangaroo rat species, D. ingens is considered competitively 

dominant within its community, which includes other Dipodomys species (Grinnell 1932, 

Prugh and Brashares 2012, Bean 2012). D. ingens adapted to thrive in extremely arid 

regions, and maintains dominance over similarly-sized or smaller species. However, 

wetter areas of their range are suitable to potential novel competitors, increasing the 

possibility for a loss of the competitive dominance of D. ingens (Figure 1). Populations in 

areas of higher precipitation have a greater chance of interacting with California ground 

squirrels (Otospermophilus beecheyi) which currently occupy the fluctuating wetter 

edges of D. ingens habitat. Direct contact between species could result in antagonistic 

interactions, as O. beecheyi is known to be aggressive (Trulio 1996). In fact, Williams 

and Germano (1993) observed O. beecheyi raiding D. ingens seed caches and have 

anecdotal evidence of a direct mortality or eviction event of D. ingens due to burrow 
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invasion. Additionally, O. beecheyi is a diet and habitat generalist that has shown little 

response to climate change over the last century and could pose a threat to D. ingens 

expansion into wetter territory (Grinnell and Dixon 1918, Moritz et al. 2008, Eastman et 

al. 2012, Hubbart 2012).  

The Carrizo and Panoche D. ingens populations appear to be genetically isolated 

(Statham et al. in Review) and experience different climatic regimes – the Panoche, 

receives up to over 10 cm (~45%) more average annual precipitation than Carrizo. It is 

therefore possible that the two populations of D. ingens respond differently to increasing 

levels of precipitation and, over time, adapted to their respective local conditions. A 

distribution model of the Panoche population would incorporate areas of higher 

precipitation than that of the Carrizo population. This could reduce niche overlap 

between populations, but predict less range contraction given the populations are adapted 

to a wider range of climatic conditions. 

I tested three hypotheses of D. ingens range limitation, which I tested by 

identifying important variables in species distribution models. By incorporating more 

direct mechanisms – i.e., local adaptation and biotic interactions -- I attempted to improve 

the predictive accuracy of habitat suitability from species distribution models for D. 

ingens. I created a suite of distribution models using Maxent including: (1) rangewide D. 

ingens, (2) population specific D. ingens in the Panoche, (3) population specific D. 

ingens in the Carrizo, and the same set of models for O. beecheyi (4-6). To test the 

efficacy of the models including local adaptation, I compared the rangewide model (1) to 

the population-level niche models (2 and 3) to determine differences of population-level 



8 

 

  

models. Then, I used the Panoche and Carrizo models to project the population-level 

estimates of habitat suitability rangewide, for both current and future climate. Finally, I 

estimated niche overlap between D. ingens and O. beecheyi to assess the possibility of a 

competitive interaction limiting D. ingens range expansion. To inform future 

management, I projected the top performing models into the future.  
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STUDY AREA 

The San Joaquin Valley, the southern portion of California’s Central Valley, is a 

desert grassland characterized by mild winters with low rainfall, and hot, dry summers. 

The vegetative community includes primarily annual grasses and forbs as well as some 

perennial shrubs (Germano et al. 2011). Much of the land, particularly in the eastern 

portion of the valley, primarily includes agriculture that has replaced D. ingens habitat 

(Williams et al. 1998). Land converted to agriculture is tilled and irrigated making it 

unsuitable to D. ingens. After conversion to agriculture, the next greatest threat to 

persistence within remaining D. ingens populations is land conversion for solar energy 

development (USFWS 2010). 

The northern population of D. ingens persists in the Ciervo-Panoche Natural Area 

(Panoche) in San Benito and Fresno Counties (Figure 2). While this population’s habitat 

is the more mesic of the two, mean annual rainfall is still low (~20-30 cm). D. ingens are 

sparsely distributed on the locally available areas of level terrain as well as gradual 

slopes. Soil composition in this area is dominated by sand, but smaller particles of silt 

and clay are present in significant quantities (NRCS 2003).  
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Figure 2. Study area including the Ciervo-Panoche Natural Area (top left image, North on map) in San 

Benito and Fresno Counties, California, and the Carrizo Plain National Monument (bottom left 

image, South on map) in San Luis Obispo County, California. The black outline indicates the 

historical distribution presented by Williams et al. (1992). 
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Much like in the Panoche, the Carrizo population of D. ingens has faced habitat 

loss due to conversion for agriculture and oil development in the surrounding area. The 

Carrizo has served as an area of refuge for endemic species, including rare and 

endangered plants and animals (Buck-Diaz and Evans 2011). The landscape is 

characterized by grasslands and ridges, as well as Soda Lake, a natural alkali wetland. 

Mean annual rainfall is lower than in the Panoche, at approximately 17-23cm per year 

(California Department of Water Resources 2004). Although variable across the 

landscape, soil composition here is generally higher in sand, with fewer smaller particles 

than the Panoche, potentially restricting D. ingens to shorter, less complex burrow 

systems (Laundré and Reynolds 1993, NRCS 2003). 

In California, the average annual temperature increased 1.7oC over the last 

century, which is 70% higher than the national average increase (Moser et al. 2009). The 

state has experienced extended periods of drought, like the recent D4 (exceptional 

drought) conditions in the Central Valley (National Drought Mitigation Center 2016). 

According to Cal-Adapt (2018), a compilation of climate research from various locations 

in California, the maximum temperature in the Panoche is expected to increase between 

2.5 and 4.1°C by the years 2070-2099. Annual precipitation is expected to remain stable 

or to increase by up to 2.8 cm (Cal-Adapt 2018). The temperature in the Carrizo is 

predicted to increase by 1.8 to 3.4°C by the years 2070-2099, and precipitation is 

expected to decrease between 3 and 3.8 cm (Cal-Adapt 2018). 
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METHODS 

I used presence-only data derived from live-trapping and visual surveys to 

construct species distribution models for two species and to project suitability into the 

future. Live-trapping of D. ingens occurred in the summers of 2010 through 2017 (Bean 

et al. 2012, N. Alexander, unpublished data, and A. Semerdjian, unpublished data). All 

individuals were marked with a unique ear tag and morphological measurements were 

recorded. I conducted driving surveys and recorded opportunistic sightings of O. 

beecheyi. I established a suite of current species distribution models using climatic 

variables and other remotely sensed data and used projected climate conditions to create 

future models. Models for both populations (Panoche and Carrizo) and rangewide were 

constructed for D. ingens as well as for O. beecheyi. I then compared the niche overlap of 

the D. ingens populations and O. beecheyi now and in the future.  

Data Collection 

Live Trapping 

Occurrence data came from eight years of both occupancy and grid trapping 

across the range. Both methods of trapping occurred in the Carrizo in 2010- 2017 

(excluding 2013 and 2015), and in the Panoche in 2011-2017 (excluding 2012). This 

target-based trapping consisted of using extra-long Sherman live traps to identify 

presence of D. ingens at sites with occupancy signs, such as burrows mounds or scat. In 

the Panoche, each of the sites contained 5-20 traps placed near potentially occupied 
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burrow openings. Trapping grids were 100m ×100m, with 61 traps spaced 20m apart and 

offset into a checkerboard pattern (Prugh and Brashares 2012). All traps were baited with 

millet, opened at dusk, and checked starting at midnight (Prugh and Brashares 2010, 

Alexander et al. In Review). I collected data during the summers of 2016 and 2017. In 

2016, traps were set for five consecutive nights. Capture probability was high enough that 

three nights were sufficient to detect presence; therefore, in 2017 traps were only set for 

three consecutive nights. 

Presence was noted upon the capture of an individual as well as traps considered 

"empty", "tripped" or "inoperable".  Trap location was noted, but presence was identified 

at site level, including clusters of traps as well as grids. All animals were handled using 

exclusively physical restraint. I measured weight (grams) and noted the sex (male or 

female) and reproductive condition (scrotal, not scrotal, pregnant, lactating, post-

lactation, not reproductive). Prior to 2017, animals with food in their cheek pouches were 

reweighed upon recapture or not considered when estimating weight. Recapture rates 

were high enough to allow for this method while excluding minimal data. In 2017, due to 

fewer trapping nights, seeds were manually pushed out of the cheek pouches into the 

handling bag to be subtracted from the total weight. Each new individual received a 

unique ear tag and recaptures were recorded and released.  

All work was performed under Humboldt State Animal Care Protocol 13-

14.W.109-A and 16/17.W.96-A and followed American Society of Mammalogists 

guidelines (Sikes et al. 2011). 
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Environmental Variables 

I acquired climatic data from the Basic Characterization Model (Flint and Flint 

2014). I used a digital elevation model to calculate slope (USGS 2013) and used 

estimates of soil texture to incorporate important aspects of burrowing requirements 

(NRCS 2003). All environmental variables were resampled to the coarsest resolution for 

modeling, about 900 m (Table 1).   
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Table 1. Environmental variable layers that were included in the candidate model sets for species distribution models for Dipodomys ingens and 

Otospermophilus beecheyi. All variables were resampled to the coarsest resolution. 

Layer 

Name 

Environmental Variable Relevance Source Spatial 

Resolution 

Temporal 

Resolution 

precip Mean annual precipitation Forage Availability, 

Food Spoilage 

Basin Characterization Model 

 (Flint and Flint 2014) 

 

270m 1981-2010 

cwd Mean annual 

climatic water deficit 

Forage Availability 

Locomotion 

Basin Characterization Model 

 (Flint and Flint 2014) 

 

270m 1981-2010 

mintemp Mean annual 

minimum temperature 

Foraging Time, 

Forage Type 

Basin Characterization Model 

 (Flint and Flint 2014) 

 

270m 1981-2010 

maxtemp Mean annual 

maximum temperature 

Foraging Time, 

Forage Type 

Basin Characterization Model 

 (Flint and Flint 2014) 

 

270m 1981-2010 

sand Mean percent sand in soil Burrowing Soil Survey Geographic Database 

 (NRCS 2003) 

 

900m 2003 

clay Mean percent clay in soil Burrowing Soil Survey Geographic Database  

 (NRCS 2003) 

 

900m 2003 

slope Degrees of slope Burrowing, 

Locomotion 

US Geologic Survey 

 (USGS 2013) 

 

30m 2013 
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Driving Surveys 

In 2017 I conducted driving surveys to record sightings of O. beecheyi within a 50 

km radius of the Panoche (Figure 3).  With an additional observer, I drove five survey 

routes ranging between 130 and 190 km. In order to survey a range of environmental 

conditions, the five routes were stratified into five equally binned current (1981-2010) 

precipitation zones  (171-280 mm, 281-390 mm, 391-500 mm, 501-610 mm, 611-720 

mm) and overall the survey contained approximately equal numbers of survey points 

among these precipitation zones (Flint and Flint 2014). I stopped every four km, 

according to a waypoint, and two observers used binoculars to search for O. beecheyi for 

two minutes (Downey 2003). If a squirrel was detected before the two minutes were 

complete, the point was coded as a presence and the survey continued. If no squirrels 

were seen within two full minutes, the site was coded as no apparent presence and the 

survey continued. Opportunistic sightings during the surveys and during D. ingens 

trapping were also recorded. Each route was sampled once during 2017, and surveys 

occurred on separate days from June to July. 
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Figure 3. Driving survey routes for California ground squirrel (Otospermophilus beecheyi) within a 50km 

buffer of the Ciervo-Panoche Natural Area. Each line is a survey route and each point is a survey 

stop. Blue colors represent different routes, driven on different days. Average annual precipitation 

is displayed in 5 numerical categories approximately 130mm each, darker blue areas are the lowest 

precipitation values. 

Species Distribution Modeling 

I used Maxent to create species distribution models for D. ingens and O. beecheyi 

(Phillips et al. 2006). Maxent is a machine learning algorithm that calculates the 

maximum entropy probability distribution of occurrence points under a set of 

environmental constraints. Maxent samples background locations (default = 10,000) to 
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compare to presence locations. No inference is made as to whether background locations 

are presence or absence sites, hence they are considered "available". With the large 

number of background points sampled, there is a near certainty that they include both 

presence and absence locations. Once a model is estimated, Maxent projects it to the 

entire study area, resulting in a map of values ranging from zero to one. For the purposes 

of this study, Maxent values are referred to as habitat suitability. Bean et al. (2014b) 

found that Maxent accurately predicts habitat suitability for D. ingens at a coarse scale, 

but is less accurate in estimating fine-scale habitat quality which incorporates population 

vital rates. I first created a suite of models of current D. ingens distribution and then 

included future projections for temperature and precipitation, according to the 

Community Climate System Model’s emissions scenario under the most severe 

representative concentration pathway (rcp85) (Gent et al. 2011).  

For current climatic conditions, I created species distribution models for three 

different subsets of the D. ingens range: one for the Panoche, one for the Carrizo, and a 

third, rangewide model that contains both populations. After selecting biologically 

relevant predictor variables (Table 1), I ran a Pearson’s correlation test to avoid pairing 

variables that were strongly correlated. I assumed that a correlation value above 0.6 

indicated a strong relationship and decoupled those variables so that both remained 

potential variables, but were not included in the same models (Pearson 1920). Using a 

jackknife test of variable importance, performed by Maxent, and each variable’s percent 

contribution to the models, I finalized the set of variables available for candidate models. 

Although aspect was considered for initial candidate selection, after running preliminary 
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models, it was removed from the final candidate model set for lack of contribution. I 

adjusted the beta value, a regularization parameter designed to optimize data fitting, on 

the preliminary models (β = 0.5, 1, and 2) and used Akaike’s Information Criterion 

corrected for small sample size (AICc) to assess model fit. The top models were all 

created using β = 1, thus I determined that this value was the most appropriate (Morales 

2017). I used the default auto-features setting to select feature types and selected the 

complementary log-log output for Maxent predictions, constraining the output values 

between zero and one. With these constraints, I constructed a final candidate model set of 

43 different combinations of the seven variables for model selection (Appendix A). 

The best model for each geographic subset was chosen using AICc and model 

discrimination ability was assessed using area under the curve (AUC). The top model 

from each extent was iterated four times, with a 25% subset of presence locations. I 

calculated the coefficient of variation of the Maxent outputs (habitat suitability) of the 

four runs. Additionally, I calculated the Continuous Boyce Index (CBI), which measures 

model accuracy using background points, and does not require true absences (Hirzel et al. 

2006). CBI is an improvement of the Boyce Index that uses a moving window rather than 

discrete bins to estimate the Spearman rank correlation of the ratio of predicted to 

expected presence locations (Boyce et al. 2002). The moving window overcomes the 

Boyce Index’s sensitivity to the number of discrete bins of suitability. I calculated CBI 

using ten bins with a moving window between the maximum and minimum suitability 

values. I used 75% of the data to train the model and 25% to test using CBI. The result is 

a value between negative one and one, where a positive one represents a model that 
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accurately predicted presence, zero means the model is no better than random chance, 

and negative values predict presence in the areas of the lowest suitability (Hirzel et al. 

2006). I also estimated CBI by projecting each population’s model to the other 

population’s geographic extent, which provides an independent test of each population’s 

model. 

Due to habitat loss, a contemporary model may not capture the full range of the 

environmental niche. Rutrough et al. (In prep) built a historical D. ingens distribution 

model based on pre-1950 aerial imagery containing burrow mounds. Using predictions of 

climate under a high-emissions scenario, I projected the model of historical distribution 

into the future. Then, based on habitat suitability, compared the predicted range 

contraction from my models to that of the historical model. An estimate of historical 

niche breadth should be broader than the contemporary model. The historical model 

includes areas that are no longer occupied, mostly due to agricultural expansion, and 

could take in to account combinations of environmental factors absent in the current 

range.  

The current and future modeling process was then repeated with O. beecheyi 

occurrence data to create a similar suite of distribution models. The models included 

presence locations from anecdotal sightings, driving surveys, and GBIF, an open access 

resource for biodiversity data (Global Biodiversity Information Facility, GBIF Secretariat 

2017).  I modeled three geographic extents, slightly different from the D. ingens models: 

California-wide—rather than rangewide—and locally within the Panoche and Carrizo. I 

used only GBIF locations to create the California-wide models, to avoid biasing my study 
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areas with increased point locations. For the Panoche and Carrizo models I included 

survey locations and anecdotal sightings, but thinned the locations using the geogThin 

function in the R package enmSdm so that clusters of squirrels within one pixel (pixel 

width = 900m) were represented by a single location (Muscarella et al. 2014, Smith 

2018). 

 To visualize contemporary and future distributions and inform management, I 

selected threshold values to convert my continuous habitat suitability models to maps 

excluding the lowest suitability values. For all extents, the threshold for “not suitable” 

was selected based on the 5th percentile suitability value of all occurrence points within 

the respective current model. Thus, values where 95% of presence points occur were 

considered suitable and the lower 5% were considered “not suitable”. I subdivided 

suitability into two categories, low and high. I considered “low” suitability to be between 

the 5th and 50th percentile, and all greater values were considered “high” suitability. I 

used the same values for thresholding future models. These threshold values were only 

use for mapping purposes; unthresholded models were used for further analyses. 

Niche Overlap 

Maps of the three top D. ingens models (Panoche, Carrizo, rangewide) were 

compared to evaluate niche overlap and the evidence for separate adaptation in the 

Panoche and Carrizo populations. Subsequently, the same models were projected into the 

future using predicted climate variables according to the emissions scenario, and future 

overlap was calculated. Low niche overlap would indicate that populations experience 
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different environmental regimes, and could suggest adaptation in a specialist species. I 

used Warrens I (Warren et al. 2008) to calculate the degree of niche overlap. This 

similarity statistic ranges from zero to one with a value of one indicating identical niche 

models.  

Warren’s I is calculated as follows, 

𝐼(𝑝𝑋 , 𝑝𝑌) = 1 −
1

2
𝐻(𝑝𝑥, 𝑝𝑦) 

where px, and py are probability distributions of the models under comparison and H is 

Hellinger Distance (van der Vaart 1998, Warren et al. 2008): 

𝐻(𝑝𝑋, 𝑝𝑌) = √∑(√𝑝𝑋,𝑖 −√𝑝𝑌,𝑖)
2

𝑖

 

where i is a cell in the raster of habitat suitability. These calculations were conducted 

using the ENMeval package in R (Muscarella et al. 2014). High overlap between 

populations would indicate that they experience range limitations from similar 

environmental variables. Changes in future overlap reveal whether populations are likely 

to have similar limitations or will potentially experience different future constraints. 

The habitat suitability maps of both D. ingens and O. beecheyi were then 

compared to observe niche overlap. This allowed for a comparison of the current overlap 

between species and a prediction of future overlap, indicating whether competition is 

likely to become an issue. 
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RESULTS 

Data Collection 

Live Trapping 

Across the range, pooling all years, there were 439 total sites surveyed for D. 

ingens. In total 301 of these sites resulted in a positive detection; 197 presence locations 

were in the Panoche population, 101 in the Carrizo, and three in the range between 

populations. At these 301 sites 1,583 individuals were uniquely identified. 

Driving Surveys 

Driving surveys for O. beecheyi resulted in 228 thinned locations overall, 165 in 

the Panoche and 34 in the Carrizo. 

Species Distribution Modeling  

D. ingens 

A different model was created for the Carrizo and Panoche populations as well as 

the rangewide extent, with candidate models including various combinations of three to 

five of the seven variables. The top models for all three geographic extents were 

unambiguous; all other models had ΔAICc greater than seven. The Panoche model 

included climatic water deficit, minimum temperature, maximum temperature, percent 

clay, and slope (Table 2, Figure 4). The Carrizo model included precipitation, maximum 

temperature, percent clay and slope (Table 2, Figure 4). The rangewide model included 
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precipitation, minimum temperature, maximum temperature, clay, and slope (Table 2, 

Figure 5). The general trends present across all extents include a high preference for low 

slope, and a peak in suitability around 23% clay in the soil. All extents included 

maximum temperature as a variable, but while the Panoche and rangewide models show 

high suitability at high maximum temperatures, the Carrizo model showed a negative 

relationship with maximum temperature. The Panoche and rangewide models showed a 

peak in suitability at around 9°C for minimum temperature. The Carrizo and rangewide 

models showed a sharp peak in suitability at 210 mm of mean annual precipitation. 

Climatic water deficit was only included in the model for the Panoche and peaked in 

suitability around 1080 mm (Appendix B). All top models had AUC scores above 0.9 

(Appendix C). The CBI values were also all above 0.85, which indicates that the models 

accurately predicted suitability. Figures reflect suitability values in which 95% of 

detections occurred (5th percentile threshold). 
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Table 2. Inclusion of variables in the top Maxent models for four different study extents, the Ciervo-

Panoche Natural Area, the Carrizo Plain National Monument, and rangewide for giant kangaroo 

rats (Dipodomys ingens) and California-wide for California ground squirrels (Otospermophilus 

beecheyi). White rows correspond to D. ingens and grey bars are O. beecheyi. A blank cell 

indicates that a variable was not included, while the values represent the percent contribution of 

that variable to the model. The variables from left to right are as follows: mean annual 

precipitation, mean annual climatic water deficit, mean annual minimum temperature, mean 

maximum annual temperature, mean percent sand in soil, mean percent clay in soil, and degrees of 

slope. 

 Precip CWD Min 

Temp 

Max 

Temp 

Sand Clay Slope 

Panoche  31 13 16  7 33 

Carrizo 57   4  18 21 

Rangewide 38  11 9  20 22 

Panoche  35  9 51   5 

Carrizo  30  3  9 58 

California 65  17    18 
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Figure 4. Current (1980-2010) and future (2070-2099) species distribution models for giant kangaroo rats (Dipodomys ingens). Models were trained 

locally and projected rangewide. Higher suitability is indicated by dark shading. The model trained in the Panoche is shown in blue and the 

model trained in the Carrizo is shown in red. Purple areas indicate overlap between the two models. The gray shading indicates the historical 

distribution presented by Williams et al. (1992) and the crosshatching shows areas of agriculture or residential use. The future map (right) 

was projected using CCSM4 rcp8.5  
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When populations were modeled together in the rangewide model, the prediction 

of future habitat suitability was low and covered a small area (Figure 5). However, when 

the two populations were modeled separately and each projected into the future (2070-

2099), less range contraction was predicted (Figure 4). The future projection of the 

historical model also predicts less range contraction than the rangewide model (Figure 6). 



28 

 

  

 
 

Figure 5. Current (1980-2010) and future (2070-2099) species distribution models for giant kangaroo rats (Dipodomys ingens). Models were trained 

rangewide including all presence locations. Higher suitability is indicated by darker shading. The gray shading indicates the historical 

distribution presented by Williams et al. (1992) and the crosshatching shows areas of agriculture or residential use. The future map (right) 

was projected using CCSM4 rcp8.5  
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Figure 6. Future (2070-2099) species distribution model for giant kangaroo rats (Dipodomys ingens), based 

on their historical distribution. Rutrough at al. created a distribution model from rangewide 

historical aerial imagery (unpublished data). Here, the same model is projected into 2070-2099 

using CCSM4 rcp8.5. The gray shading indicates the historical distribution presented by Williams 

et al. (1992) and the crosshatching shows areas of agriculture or residential use. 

 

O. beecheyi 

The top models for all three extents — Panoche, Carrizo, and California-wide — 

differed but were unambiguous (Table 2, Figure 7). Habitat suitability for all extents 

included a strong effect of low slope. Habitat suitability in the Panoche showed a positive 

relationship with the percent of sand in the soil. Similarly, Carrizo showed a negative 
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relationship with the percent of clay. Maximum temperature peaked in suitability in both 

population-level models at about 26°C. The California-wide model peaked in suitability 

at 6°C minimum temperature and 190 mm precipitation. Climate water deficit in both the 

Panoche and Carrizo caused a peak in suitability at between 1000-1200 mm (Appendix 

D). All models had AUC values above 0.8 (Appendix C) and CBI values for the Panoche 

and California were 0.99 and 0.91 respectively, while the CBI for the Carrizo was 0.79.  
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Figure 7. Current (1980-2010) species distribution models for California ground squirrels 

(Otospermophilus beecheyi) and giant kangaroo rats (Dipodomys ingens). All maps include a D. 

ingens model trained locally in the Panoche (blue). On the left, the O. beecheyi model was trained 

across California and on the left was locally trained in the Panoche (orange). Higher suitability is 

indicated by dark shading. Purple areas indicate overlap between the two species’ models. 

Niche Overlap 

All D. ingens models were positively correlated, except the relationship between 

the Panoche and Carrizo models, which was near zero, but slightly negative. When 

calculating CBI to compare the Panoche model’s ability to predict suitability in the 

Carrizo, and vice versa, the values were well below zero, at about -0.8, indicating these 

models predicted the highest suitability in the least suitable areas. Niche overlap between 

the current Panoche and Carrizo populations was moderate (Warren’s I = 0.43). Niche 

overlap between O. beecheyi and D. ingens in the Panoche was higher than overlap 

between species in the Carrizo (Figure 8). Although the models of niche are consistent 

from current to future, the geographic availability of combinations of environmental 
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factors changes, this allows for different levels of niche overlap in the future. Niche 

overlap decreased between D. ingens populations in the future (I = 0.43 to 0.35). Niche 

overlap between the Carrizo population and O. beecheyi also decreased (I = 0.52 to 0.46), 

however, overlap between the Panoche population and O. beecheyi increased in the future 

(I = 0.63 to 0.74) (Figure 8) 

 

Figure 8. Values of niche overlap between local habitat suitability models for giant kangaroo rats 

(Dipodomys ingens) in the Ciervo-Panoche Natural Area and Carrizo Plain National Monument, 

as well as between local D. ingens models and California ground squirrel (Otospermophilus 

beecheyi) across California. Grey bars indicate current niche overlap according to Warren’s I and 

black bars are predicted future overlap in 2070-2099. 

  



33 

 

  

DISCUSSION 

Species Distribution Modeling 

Species distribution models of D. ingens in the past have focused on rangewide or 

Carrizo-specific models, leaving the Panoche population relatively underrepresented 

(Bean et al. 2014a). Habitat destruction and climate change have contributed to range 

contraction, isolation, and potentially local adaptation. My comparison of D. ingens local 

and rangewide models revealed niche differences between populations, providing 

evidence that the two populations should be treated separately. Rutrough et al. (In prep) 

created a historical distribution model which I projected according to current climatic 

conditions. Using the historical model to predict current habitat suitability, the Carrizo 

was predicted to remain relatively stable, but the Panoche was predicted to decrease in 

suitability. Hence, the persistence of D. ingens in the Panoche is an indicator of 

adaptation through time and supports the increased local accuracy of population-specific 

models.  

A review of range shifts in response to climate change revealed that observing 

species as a whole masks inconsistencies between populations (Gibson-Reinemer and 

Rahel 2015). Tracking the shifts of populations in different geographic areas showed 

idiosyncratic responses to changing climate. In fact, 50% of species studied shifted in 

different cardinal directions. My study of D. ingens populations provides more evidence 

for not generalizing range shifts for entire species as a unit, but considering population 
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differences across the range. In contrast, population-specific models may more accurately 

predict future distributions and identify range limiting factors in different geographic 

areas. 

For D. ingens, the environmental factors included in the top local models were 

similar for both populations, with the exception of the precipitation variable. Previous 

distribution modeling and habitat associations for this species showed similar 

environmentally suitable variables, such as low slope and hot temperatures, and have 

highlighted the importance of precipitation (Grinnell 1932, Williams 1992, Bean et al. 

2014a). The limitation imposed by precipitation could be defined by either excessive or 

insufficient rainfall. In the Carrizo model, precipitation was an influential variable, 

contributing 58% to the model (Table 2). Excessive precipitation may cause direct effects 

of water infiltration and burrow collapse (Germano et al. 2001). Alternatively, 

precipitation could better define the areas limited by too little water, hindering primary 

productivity. 

The Panoche model included climatic water deficit rather than mean annual 

precipitation. This is consistent with the Vegetation Hypothesis, suggesting D. ingens in 

the Panoche are more limited by consequences of dense vegetation due to increased water 

availability than they are by direct effects of precipitation. This population’s mechanism 

to reduce the impact of precipitation likely occurs underground, such as selection for 

sturdier soils, or constructing more complex or longer burrow systems to shelter food 

caches. However, increased precipitation produces more dense, non-native vegetation, 

providing the next adaptive challenge to persistence. Semerdjian et al. (In prep) have 



35 

 

  

shown that the Panoche population has lower average body weight compared to the 

Carrizo population, facilitating navigation through thick grasses, but potentially 

increasing the risk of competition from similarly sized species, like Heermann’s kangaroo 

rat (D. heermanni, Figure 9). 

 

Figure 9. A notched boxplot of giant kangaroo rat (Dipodomys ingens) weights (g) from two poulations, the 

Carrizo Plain National Monument (left) and the Ciervo-Panoche Natural Area (right). Weight is 

significantly lower in the Panoche population. Reflects data from Semerdjian et al. In prep. which 

includes the same individuals analyzed in this text. 

 

Future Predictions 

The local models predicted far less range contraction than the rangewide model. 

The local models also predict less contraction than the historical model which modeled 

the species as a whole (Rutrough et al. In prep). Treating the populations separately 

allows for the consideration of respective local adaptations when projecting into the 
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future, thus identifying areas where either population could survive, rather than the 

overlap between them (Figure 4). 

Niche Overlap 

Moderate niche overlap between populations indicates some niche divergence. 

The local models indicate retention of some niche characteristics shared between 

populations, namely a strong association with low slope, but emphasize the developed 

variation between them, such as an association with lower maximum temperatures in the 

Carrizo, and the importance of climatic water deficit over precipitation in the Panoche. 

While both populations share some fundamental environmental associations, the 

differences in climatic factors could alter their response to environmental change and 

disparate reactions to species interactions. 

The potential for competition was approximated using niche overlap between 

species. The results presented were estimated from the California-wide niche of O. 

beecheyi, which captures much of the range of the environmental associations of this 

generalist species. While this comparison suggested that niche overlap was greatest in the 

Panoche population, local models highlight the potential for interaction on a finer scale.  

The niche overlap between local species models was similar between the two 

populations, indicating that both D. ingens populations have the same potential for 

interspecific competition at this scale. However, the habitat suitability value of the 

geographic areas of niche overlap is important to consider. In the Carrizo, overlap occurs 

in peripheral areas that are currently considered inaccessible to D. ingens due to dispersal 
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limitations or land use. In contrast, the areas of overlap in the Panoche are within 

confirmed current D. ingens habitat, including areas where the two species have been 

observed in close proximity. Here I focus on the Panoche local model because the 

Carrizo model has a very small sample size because it was not surveyed systematically 

(Figure 7). 

Overall, the niche overlap between species in the Panoche was greater and 

included more critical areas. In particular, the Panoche Valley is an area of high 

suitability for D. ingens with confirmed occupancy, but it is at high risk from solar 

development and O. beecheyi habitation (USFWS 2010). Both species have been 

observed in the area, but spatial partitioning generally prevents them from occupying the 

same sites. The dynamics of interactions between the two species within the same site 

have yet to be defined, but based on my findings, such interactions warrant future study. 

Future Predictions 

I found that the degree of niche overlap between species and populations changes 

in the future. Although the prediction of habitat suitability across the landscape varies in 

the future, the model that is projected remains the same. Accordingly, niche overlap may 

be expected to remain stable. However, Warren’s I is calculated from a geographical 

prediction of the models, meaning that the calculation is inherently spatial. The 

probability distributions are compared, which means the extent of the study area and the 

availability of combinations of environmental predictors affect the amount of overlap. 

Since overlap was predicted to decrease between future populations, management 

should focus on protecting locally suitable areas. Hence, treating populations similar to 
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those in a sub-species management plan would be warranted. Protection of areas of 

overlap is important, but if the populations’ niches drift farther apart, the individually 

suitable areas will become more important. 

Niche overlap is also predicted to increase between D. ingens and O. beecheyi in 

the future. This combined with continued land conversion for human development may 

contribute to novel competition. An increase in geographic and niche overlap with O. 

beecheyi could negatively affect the dominance of D. ingens and increase the impact of 

biotic interactions on range limitation of D. ingens.  

Limitations and Future Directions 

 While the species distribution models in this study attempt to estimate the current 

niche and use it to forecast the future range, there are limitations in the models 

themselves as well as the niche being defined. Because so much of the historical range of 

D. ingens has been converted for anthropogenic use, estimating the fundamental niche 

using contemporary presence records may be impossible. Modeling the contemporary 

distribution likely represents the current realized niche for both populations, thus the 

future predictions assume the restrictions placed on the populations will persist and 

relationships to environmental variables will be maintained.  

The future predictions of habitat suitability are likely optimistic because they do 

not consider the importance of land use or vegetation type. Agriculture and other 

anthropogenic development prevent D. ingens occupation, affecting the amount of habitat 

available to them (USFWS 1998). My models estimate that 27% of currently suitable 
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habitat is already in use as agriculture. However, due to a lack of data and ability to 

predict future land use, it was omitted from the modeling process, despite its inherent 

importance.  

On the other hand, since agriculture is included as “available” to D. ingens in the 

models but there are no positive detections in those areas, environmental suitability of 

regions of current agriculture may be underestimated. This could be important when 

restoring areas of human development into viable habitat. Although, even with 

encouragement and compensation to fallow agricultural land, without knowledge of the 

timeline or ability of recolonization, we cannot include it in predictive modeling. For 

management purposes, we must consider these areas to be outside the scope of D. ingens 

range until restoration occurs and recolonization is documented. An ongoing project by 

The Nature Conservancy seeks to identify suitable areas for fallowing and restoration, 

hopefully providing valuable data to inform further modeling. Additionally, vegetative 

communities can alter habitat suitability, whether relating to food resources or 

locomotion, but without future knowledge of vegetation changes, this variable cannot be 

incorporated into the models. 

Furthermore, novel competitors could limit range shifts or expansion. Most 

current models attempt to capture competition through associations with abiotic proxies. 

This most likely means including environmental or demographic variables important to 

the distribution of the competitor in the models for the target species (Leathwick and 

Austin 2001). For example, canopy cover may not be important to the target species, but 

may reliably define the distribution of a competitor, thus including canopy cover in the 
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model may account for the separation in distribution between species. The alternative 

approach, used here, is to model the target species distribution independently and 

constrain it by the competitor’s distribution (Guisan and Thuiller 2005). In the future, 

even if agricultural land is restored, of the cultivated areas otherwise suitable for D. 

ingens, 33% is also suitable for O. beecheyi. However, future efforts could model O. 

beecheyi removal experiments to estimate the potential effects on D. ingens if agricultural 

land is recovered. 

While I did not directly model the effect of O. beecheyi in the future range 

predictions, niche overlap is expected to increase in the Panoche, creating more potential 

for competition. In the future, it would benefit range prediction and management to 

incorporate potential antagonistic interactions into D. ingens distribution models. 

Community ecologists are in pursuit of an effective method of modeling species co-

occurrences in this manner. Frameworks have been developed for joint species 

distribution models, but while their use is gaining popularity, it is a recent development 

mostly adapted for generalized additive or generalized linear models (Pollock et al. 2014, 

Cazelles et al. 2016). 

 In the future, incorporation of these key elements would create a more accurate 

model, improving the predictions of future ranges. This may mean multi-species 

distribution modeling to directly incorporate effects of biotic interactions. This method 

could also be used to include the effects of vegetation by creating future models of food 

sources or inhibitory vegetation. The colonization of fallowed farmland may prove 
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important in range expansion; this possibility should be investigated to be included in 

future modeling. 
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MANAGEMENT IMPLICATIONS 

The current recovery plan for D. ingens highlights the importance of acquiring 

and conserving specific locations of confirmed occupancy (Williams et al. 1998). An 

updated management plan for D. ingens should consider local adaptation, biotic 

interactions, and historical, current, and future habitat suitability. Protecting areas of high 

habitat suitability from development is essential for the survival of this keystone species. 

Suitable areas of overlap between the historical, local, and rangewide models should be 

of particular concern and importance, but of these three potential futures, the overlap 

between historical and local models should be a priority (Figure 10). This combination 

retains historical niche characteristics while incorporating the effects of local adaptation 

over time. Within the priority areas, those occupied by O. beecheyi populations should be 

considered less than ideal habitat.  
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Figure 10. Left: Four separate future projections of giant kangaroo rat (Dipodomys ingens) habitat suitability. Blue and red are models trained locally, 

within the Panoche and Carrizo populations, respectively. The green model was trained rangewide, including both populations. The yellow is 

the historical distribution based on aerial imagery (Rutrough et al. In prep). Right: The four models on the right combined. Low suitability 

was assigned a score of one, high suitability a score of two and the models were all added. Darker shading indicated higher suitability and 

more model agreement. All models are projected into 2070-2099 using CCSM4 rcp8.5. The gray shading indicates the historical distribution 

presented by Williams et al. (1992) and the crosshatching shows areas of agriculture or residential use. 
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Of particular interest is Cuyama Valley, just south of the Carrizo. Future 

suitability in the Cuyama Valley is high according to the historical, rangewide, and local 

models (Figure 11). The valley is currently used for ranching, agriculture and oil 

production, but is predicted to be suitable for both populations in the future. Another 

important location is the Panoche Valley on the western edge of the Panoche (Figure 11). 

This area is threatened by solar development, but remains one of the most suitable areas 

for both populations, including the projections from the historical model. While these 

areas are within the current range or directly adjacent, the models identify suitable areas 

at mostly mid-range latitudes further east of the current range, in the San Juan Creek area. 

D. ingens has a relatively short dispersal distance (~2.5km, Alexander 2016), but 

fortunately already inhabits the southern end of this suitable area, potentially allowing 

them to colonize areas further north that are anticipated to become or remain suitable in 

the future. Areas predicted to increase in suitability that are not already occupied or 

within dispersal distance may pose a challenge to colonization. Previous attempts at 

translocation of Dipodomys spp. (D. ingens, D. heermanni, D. nitratoides) have failed to 

establish colonies, resulting in the death of the founding members and the crash of 

populations (Germano 2010, Williams et al. 1993).  



45 

 

  

 

Figure 11. Left column: Four separate future projections of giant kangaroo rat (Dipodomys ingens) habitat 

suitability. Blue and red are models trained locally, within the Panoche and Carrizo populations, 

respectively. The green model was trained rangewide, including both populations. The yellow is 

the historical distribution based on aerial imagery (Rutrough et al. In prep). Right column: The 

four models on the right combined. Low suitability was assigned a score of one, high suitability a 

score of two and the models were all added. Darker shading indicated higher suitability and more 

model agreement. All models are projected into 2070-2099 using CCSM4 rcp8.5. 
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Conservation prioritization based on future suitability would improve the chance 

of survival for D. ingens populations. This may include a combination of future 

distribution predictions, connectivity modeling (i.e. Alexander 2016), and strategic land 

conservation. The protection of this keystone species and ecosystem engineer will help 

maintain the landscape for other taxa, and help ensure the health of the community in the 

future.   
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APPENDIX A 

Appendix A. Candidate Maxent model set for giant kangaroo rats (Dipodomys ingens) 

and California ground squirrel (Otospermophilus beecheyi) and the ΔAICc values (only 

comparable within columns). Variables include mean annual precipitation (mm), mean 

annual climatic water deficit (mm), mean annual minimum temperature (°C), mean 

annual maximum temperature (°C), percent sand in soil, percent clay in soil, and degree 

of slope. Grey shading in the leftmost column indicates that model was a top model in 

one of the six scenarios (columns). Grey shading in the remaining columns highlight the 

ΔAICc scores of the top ten models for that spatial extent. 
Spatial Extent 

Model Variables 

Panoche 

D. ingens 

Carrizo 

D. ingens 

Rangewide 

D. ingens 

Panoche 

O. beecheyi 

Carrizo 

O. beecheyi 

California 

O. beecheyi 

cwd, mintemp, 

maxtemp, clay, slope 

0 24 140 130 2036 832 

cwd, mintemp, 

maxtemp, sand, slope 

42 52 139 79 2459 813 

precip, mintemp, 

maxtemp, clay, slope 

66 14 0 69 2168 405 

precip, mintemp, 

maxtemp, sand, slope 

133 79 44 17 2137 394 

mintemp, maxtemp, 

clay, slope 

98 96 435 220 2632 829 

mintemp, maxtemp, 

sand, slope 

147 119 452 158 3017 1289 

cwd, maxtemp, clay, 

slope 

135 52 241 258 0 693 

cwd, maxtemp, sand, 

slope 

168 54 209 209 2463 706 

cwd, mintemp, clay, 

slope 

90 23 193 139 1867 668 

cwd, mintemp, sand, 

slope 

171 47 186 87 2610 627 

cwd, mintemp, 

maxtemp, slope 

110 42 251 287 1686 727 



58 

 

  

Spatial Extent 

Model Variables 

Panoche 

D. ingens 

Carrizo 

D. ingens 

Rangewide 

D. ingens 

Panoche 

O. beecheyi 

Carrizo 

O. beecheyi 

California 

O. beecheyi 

cwd, mintemp, 

maxtemp, clay 

287 72 291 189 2121 1292 

cwd, mintemp, 

maxtemp, sand 

361 70 273 98 3370 901 

precip, maxtemp, 

clay, slope 

193 0 72 205 2141 429 

precip, maxtemp, 

sand, slope 

284 32 81 114 2158 420 

precip, mintemp, 

clay, slope 

189 7 32 75 2127 444 

precip, mintemp, 

sand, slope 

242 31 18 0 1975 425 

precip, mintemp, 

maxtemp, slope 

158 27 163 219 2184 393 

precip, mintemp, 

maxtemp, clay 

338 71 180 48 2186 437 

precip, mintemp, 

maxtemp, sand 

362 78 191 17 2160 423 

maxtemp, clay, slope 317 96 604 350 2385 696 

maxtemp, sand, slope 346 108 594 283 2374 723 

mintemp, clay, slope 298 76 616 363 2384 722 

mintemp, sand, slope 353 113 614 325 2364 744 

mintemp, maxtemp, 

slope 

141 103 512 420 2412 740 

mintemp, maxtemp, 

clay 

336 180 651 259 2402 897 
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Spatial Extent 

Model Variables 

Panoche 

D. ingens 

Carrizo 

D. ingens 

Rangewide 

D. ingens 

Panoche 

O. beecheyi 

Carrizo 

O. beecheyi 

California 

O. beecheyi 

mintemp, maxtemp, 

sand 

407 231 631 227 2624 758 

cwd, clay, slope 185 34 381 294 2409 741 

cwd, sand, slope 242 47 357 207 2375 732 

cwd, maxtemp, slope 171 49 377 390 2815 704 

cwd, maxtemp, clay 389 75 430 280 2583 707 

cwd, maxtemp, sand 443 84 404 208 2464 691 

cwd, mintemp, slope 171 32 320 355 2529 687 

cwd, mintemp, clay 307 64 363 183 2099 750 

cwd, mintemp, sand 395 90 356 93 2416 707 

precip, clay, slope 291 8 202 264 1491 437 

precip, sand, slope 329 11 116 192 2553 213 

precip, maxtemp, 

slope 

295 19 192 365 2142 463 

precip, maxtemp, 

clay 

450 37 242 214 2108 278 

precip, maxtemp, 

sand 

517 66 267 147 2128 416 

precip, mintemp, 

slope 

270 26 148 319 2165 0 
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Spatial Extent 

Model Variables 

Panoche 

D. ingens 

Carrizo 

D. ingens 

Rangewide 

D. ingens 

Panoche 

O. beecheyi 

Carrizo 

O. beecheyi 

California 

O. beecheyi 

precip, mintemp, clay 411 32 306 74 2154 424 

precip, mintemp, 

sand 

497 77 252 7 2116 423 
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APPENDIX B 

Appendix B: Response curves for the top Maxent models at three extents for giant kangaroo rats (Dipodomys ingens). 

Variables are listed from left to right in order of contribution to the model. Variables include percent slope, mean annual 

climatic water deficit (mm), mean annual maximum temperature (oC), mean annual minimum temperature (oC), mean annual 

precipitation (mm), and percent clay. X-axes represents changing values of each variable while all other variables are held 

constant, and y-axes are the contribution to suitability. 
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APPENDIX C 

Appendix C: Area under the Curve values for the top five Maxent models from each 

spatial extent for both species. Models are in descending order of AICc (best model on 

top) and variables include mean annual precipitation (mm), mean annual climatic water 

deficit (mm), mean annual minimum temperature (°C), mean annual maximum 

temperature (°C), percent sand in soil, percent clay in soil, and degree of slope. 
Species Extent Model Variables AUC 

D. ingens Panoche cwd, mintemp, maxtemp, clay, slope 0.981 

  precip, mintemp, maxtemp, clay, slope 0.980 

  cwd, mintemp, maxtemp, slope 0.974 

  cwd, mintemp, clay, slope 0.972 

  cwd, mintemp, maxtemp, sand, slope 0.976 

 Carrizo precip, maxtemp, clay, slope 0.971 

  precip, clay, slope 0.970 

  precip, sand, slope 0.969 

  precip, mintemp, slope 0.965 

  precip, mintemp, maxtemp, slope 0.968 

 Rangewide precip, mintemp, maxtemp, clay, slope 0.972 

  precip, mintemp, sand, slope 0.969 

  precip, mintemp, clay, slope 0.970 

  precip, mintemp, maxtemp, sand, slope 0.972 

  precip, maxtemp, clay, slope 0.966 

O. beecheyi Panoche cwd, maxtemp, sand, slope 0.970 

  precip, mintemp, sand, slope 0.890 

  mintemp, clay, slope 0.879 

  cwd, mintemp, sand, slope 0.859 
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Species Extent Model Variables AUC 

  mintemp, sand, slope 0.875 

 Carrizo cwd, maxtemp, clay, slope 0.875 

  precip, clay, slope 0.882 

  cwd, mintemp, maxtemp, slope 0.874 

  cwd, mintemp, clay, slope 0.882 

  precip, mintemp, sand, slope 0.912 

 California precip, mintemp, slope 0.957 

  precip, sand, slope 0.964 

  precip, maxtemp, clay 0.959 

  precip, mintemp, maxtemp, slope 0.975 

  precip, mintemp, maxtemp, sand, slope 0.990 
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APPENDIX D 

Appendix D: Response curves for the top Maxent models at three extents for California ground squirrels (Otospermophilus 

beecheyi). Variables are listed from left to right in order of contribution to the model. Variables include percent slope, mean 

annual climatic water deficit (mm), mean annual maximum temperature (oC), mean annual minimum temperature (oC), mean 

annual precipitation (mm), and percent clay, and percent sand. X-axes represents changing values of each variable while all 

other variables are held constant, and y-axes are the contribution to suitability. 

 


