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ABSTRACT 

PREDICTIVE MAPPING OF TWO NEARSHORE, DEMERSAL FISH SPECIES ON 

NORTHERN CALIFORNIA REEFS USING SCUBA-BASED VISUAL SURVEYS 

AND REMOTE SENSING 

 

Christopher Hiroshi Teague 

 

California's shallow rocky reefs provide critical habitat for a diverse assemblage 

of fishes. Effective management strategies for these species require both accurate stock 

assessments as well as a spatially explicit understanding of the relationship between 

fishes and characteristics of their habitat. We used a generalized additive model 

framework to create spatially predictive maps of the abundance and biomass of two 

demersal fish species prevalent on northern California reefs: lingcod (Ophiodon 

elongatus) and kelp greenling (Hexagrammos decagrammus). These models incorporated 

data from SCUBA-based fish and habitat surveys at depths from 12-26 meters as well as 

measures of seafloor topography derived from remotely sensed bathymetric surveys. 

Topographic position index, a measure of a locationôs elevation relative to its 

surroundings, was an important predictor for all chosen models. Percentage of rocky 

substrate and rugosity, a metric describing habitat complexity, were also important 

predictive variables in many of the chosen models. These findings indicate that these 

species have complex associations with specific habitat features and that they may select 

these features of their environment at multiple spatial scales. The results presented here 
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highlight the utility of combining remotely sensed habitat data with SCUBA-based visual 

surveys to aid in stock assessments and marine spatial planning.  
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INTRODUCTION 

Widespread accounts of fishery declines, habitat degradation, and other 

anthropogenic influences on the marine realm have driven calls for innovative new 

strategies to better manage fisheries and preserve biodiversity (Crowder & Norse 2008, 

Jackson 2008, Halpern et al. 2008, Carr et al. 2011). Since marine species and the threats 

they face are not distributed randomly across the seascape, it is critically important that 

these approaches are placed in a spatially-explicit, biogeographic context (Roberts et al. 

2003, Hamilton et al. 2010). Additionally, effective management strategies require a 

detailed understanding of the environmental factors that drive speciesô distributions 

(Pittman & Brown 2011).  

Many studies have described biogeographic patterns in the distributions of 

temperate demersal fishes as well as associations between these species and the physical 

environment in which they reside (Stein et al. 1992, reviewed in Stephens et al. 2006, 

Love & Yoklavich 2008). These studies, however, are often subject to a trade-off 

between high-resolution and broad-scale. For example, visual techniques that are 

commonly used for reef fish community assessments, such as SCUBA and submersible 

surveys, provide high resolution data on species-habitat relationships, but only within the 

relatively narrow regions sampled. While these methods provide data at scales relevant to 

the ecological requirements of reef fishes, they often offer strictly qualitative information 

and do not allow for quantitative predictions outside of the surveyed area. Thus, these 
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methods are limited in their ability to make inferences across the broad geographic scales 

necessary for effective management (Chatfield et al. 2010, Young & Carr 2015). 

Advances in seafloor mapping technology have allowed for the collection of high-

resolution benthic habitat data across broad swaths of the seafloor. The California 

Seafloor Mapping Program (CSMP) was implemented by the state of California in order 

to create bathymetric digital elevation models (DEMs), often at resolutions of 2m per 

pixel, that span the coastline from shore to the stateôs three nautical mile limit. In addition 

to depth, a range of other habitat variables that may be important determinants of fish 

distributions, such as slope, topographic position, and vertical relief, can then be derived 

from the DEMs. Previous work has indicated that many of these variables are important 

determinants of fish presence, abundance, and biomass (Young et al. 2010, Wedding & 

Yoklavich 2015). Furthermore, by collecting these data at such fine resolutions, fish-

habitat associations can be assessed at multiple spatial scales. Multiscale approaches are 

necessary for determining fish distributions, as organism-habitat relationships may differ 

between fine- and broad-scales (Wiens 1989).  

Methods that link spatially-explicit species data with high-resolution seafloor 

maps, such as species distribution models (SDMs), can yield quantitative information on 

the spatial distribution of species and communities as well as the environmental factors 

that drive these distributions (Pittman et al. 2009, Knudby et al. 2010). An important 

component of SDMs is that they can be used in a predictive capacity to estimate a range 

of population and community metrics including probability of occurrence, abundance, 

biomass, and diversity at locations that have not been sampled previously (Pittman et al. 
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2007, Iampietro et al. 2008, Knudby et al. 2010, Wedding & Yoklavich 2015). By 

making predictions outside of the original sampling areas, SDMs can extend the utility of 

visual survey techniques to larger regional scales more relevant to management. These 

models thus have the potential to meet a range of management and conservation goals 

including the delineation of essential habitat features (Anderson & Yoklavich 2007, Ortiz 

& Tissot 2012), marine reserve siting (Rees et al. 2014), and accurate stock assessments 

(Nasby-Lucas et al. 2002, Young & Carr 2015).  

SDMs can provide crucial information to fishery management efforts on shallow 

reefs along the west coast of the United States. Northern Californiaôs nearshore reefs are 

characterized by a highly complex, rocky structure which supports a high diversity of 

demersal fish species including rockfishes, greenlings, and surfperches (Jenkinson & 

Craig 2017). These species make up a substantial portion of the benthic fauna and are 

important components of both recreational and commercial fisheries in the region (Lea et 

al. 1999, Love 2006, Stephens et al. 2006). Although they are often targets of 

conservation efforts, there is still a lack of data on the distribution and stock size of many 

nearshore demersal fish species. Formal stock assessments have only been conducted for 

roughly half of the 87 groundfish species managed under the Pacific Fishery 

Management Council (www.pcouncil.org/groundfish/stock-assessments/), many of which 

are present on Californiaôs shallow reefs. This is particularly problematic in Northern 

California because, historically, this region has not been surveyed as often as other parts 

of the state (Allen & Pondella 2006). SCUBA-based visual techniques are the primary 

survey method employed in these shallow habitats, however it is costly to conduct these 
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techniques across large areas (Jenkinson & Craig 2017). By incorporating data from 

visual surveys and high resolution bathymetric maps, SDMs extend the utility of visual 

techniques across the broad spatial scales necessary for effective marine management. 

Here, we used a spatial modeling framework to create models and predictive maps 

of density and biomass for kelp greenling (Hexagrammos decagrammus) and lingcod 

(Ophiodon elongatus). Both species belong to the family Hexagrammidae. Kelp 

greenling are common from the Aleutian Islands to Central California and are found at 

depths up to 130m. Lingcod are found between the Gulf of Alaska and central Baja 

California up to depths of 475m (Love 2011). The maximum size of kelp greenling is 

63cm and 2.1 kg (Love 2011). Lingcod reach a maximum size of 150cm (Cass et al. 

1990) and 37.5kg (Love 2011). 

Both species are bottom-oriented and adults are most often found in rocky 

habitats (Miller & Geibel 1973, Cope & MacCall 2005). Feeding habits and predator 

avoidance likely play important roles in driving this preference for reef structure 

(Stephens et al. 2006). Kelp greenling are opportunistic generalists that eat a wide variety 

of bottom-oriented foods often associated with rocky habitats including shrimp, crabs, 

octopuses, and amphipods (Love 1996, Howard & Silberberg 2001).  Kelp greenling 

inhabit rocky habitats of any shape and size and are almost always found amongst algal 

or surfgrass cover (Cope & MacCall 2005, Love 2011), which may provide cover from 

predation.  

Adult lingcod are primarily piscivorous though they will also feed on octopuses, 

squid, hermit crabs, fish eggs, and hydroids (Love 2011). In California, a substantial 
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portion of lingcod diets are made up of juvenile rockfishes, many species of which are in 

high abundance on complex, rocky reefs (Adams & Starr 2001, Stephens et al. 2006). 

Lingcod are often found on prominent reef features, which may be advantageous for 

ambushing prey (Lynn 2008, Love 2011). Structural complexity, particularly the 

presence of overhangs, cracks, and crevices, also appears to be highly important to 

lingcod as it provides ideal nesting locations and cover from predators (Stephens et al. 

2006, Lynn 2008, Love 2011).  

In Northern California, lingcod make up a substantial component of both the 

commercial and recreational fisheries (Jagielo & Wallace 2005). Kelp greenling are often 

targeted in the commercial live-fish fishery as well as in the recreational fishery via 

shore-based angling (Howard & Silberberg 2001, Berger et al. 2015). Although both 

species are important for fisheries, there is a paucity of data available to inform 

management. Cope and MacCall (2005) provided the only stock assessment of kelp 

greenling in California waters, however it has not been used to advise management due to 

insufficient information on its population structure (Berger et al. 2015). While 

assessments of lingcod have been conducted several times in the past thirty years, they 

often rely on trawl-based catch and survey data (Jagielo & Wallace 2005, Hamel et al. 

2009). These data sources, however, do not encompass the full range of habitats used by 

lingcod, specifically rocky habitats which are untrawlable due to their high-relief nature 

(Zimmermann 2003).   

In this study, we first use data from SCUBA-based fish and habitat surveys at two 

Northern California shallow rocky reef sites to examine relationships between kelp 
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greenling, lingcod, and the in situ habitat data. We then combine the survey data with 

remotely sensed multibeam bathymetry to develop models of density and biomass for 

each species. Next, we use these models to evaluate which habitat features are most 

highly associated with these species and determine the spatial scales at which these 

relationships occur. Finally, we create predictive maps of density and biomass for kelp 

greenling and lingcod using model outputs and assess the predictive accuracy of each 

map using a cross-validation procedure.  
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METHODS 

Study Area 

The focal sites for this study were the Ten Mile State Marine Reserve (SMR) 

(39.585° N, 123.786° W) and Abalone Point (39.667° N, 123.801° W). Both sites are 

located in Mendocino County, California several miles north of Ft. Bragg and are 

separated by six kilometers (Fig. 1). This area is characterized by high-relief, rocky reef 

structures that extend from shore to a depth of roughly 80 m. Rocky sections of the reef 

are separated by sand channels ranging from 10s to 100s of m in width. Adult fish 

assemblages are dominated by blue and black rockfish (Sebastes mystinus and S. 

melanops, respectively) and kelp greenling.  Several other species including striped 

surfperch (Embiotoca lateralis), lingcod, and other rockfish species (genus Sebastes) are 

also present, but at lower abundances. The Ten Mile site is a no-take state marine reserve 

that was established in 2012. Due to the short amount of time since its implementation, 

there is a low likelihood of any reserve effect afforded by its protected status (Jenkinson 

& Craig 2017). Abalone Point remains open to recreational and commercial fishing 

activities. 
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Figure 1: Study area along the Mendocino coast in Northern California. The two sites, 

Abalone Point and the Ten Mile State Marine Reserve are outlined in green. Purple 

points indicate survey locations. 
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Habitat Mapping 

 Multibeam bathymetric data were obtained from the California Seafloor Mapping 

Project (CSMP 2010), a collaborative effort to create a detailed set of seafloor 

bathymetric maps throughout California state waters from the shoreline to the 3 nautical-

mile limit. Since the project's inception in 2005, the CSMP have successfully mapped the 

majority of the coastline and have made their products freely available to the public. 

CSMP surveys of the focal sites were conducted between August 22 and October 31, 

2009 using ship-based multibeam echo sounders. The CSMP post-processed the 

multibeam data and produced final map products. The primary product of these surveys is 

a series of high resolution digital elevation models (DEMs) provided in raster format. In 

this study, we used the highest resolution DEMs available, which have a resolution of 2m 

per pixel and cover a depth range of 2-84m. These maps have a reported horizontal 

position accuracy of ± 2m and vertical accuracy of ± 5cm (CSMP 2010). 

A range of other habitat variables were derived from the DEM using the Spatial 

Analyst toolbox in ArcMap (Environmental Systems Research Institute, ESRI). Slope 

and slope-of-the-slope were calculated using the slope function in the Spatial Analyst 

toolbox. Grids of vector ruggedness measure (VRM), a rugosity metric, were created 

using the Benthic Terrain Modeler toolbox. VRM measures terrain ruggedness as the 

variation in the 3-dimensional orientation of grid cells in a DEM (Hobson 1972, 

Sappington et al. 2007). VRM is based on a user-specified neighborhood of cells and can 

thus be calculated at multiple spatial scales. Here, VRM rasters were created at six scales 
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ranging from fine to broad:  6, 10, 50, 118, 198, and 498 meters. These scales correspond 

to the neighborhood size used in raster creation (e.g. VRM6 used to a neighborhood of 6 

x 6 meters).  

Rasters denoting substrate type (rough/smooth classification) and topographic 

position index (TPI) were provided by the CSMP. The substrate raster is based on the 

VRM6 raster, however it has been reclassified such that values below a cutoff are 

considered smooth (soft sediment) and higher values are considered rough (hard 

substrate). TPI is a second order derivative that describes a given point based on its 

surroundings by comparing the elevation of each cell in a DEM to the mean elevation of 

neighboring cells (Weiss 2001, Lundblad et al. 2006). High TPI values indicate peaks and 

ridges, whereas low values indicate valleys. Like VRM, TPI can be calculated at multiple 

scales. The CSMP calculated TPI using an annulus neighborhood with 20m, 50m, and 

250m outer radii to yield fine, medium, and broad scales, respectively (labeled hereafter 

as TPI20, TPI50, and TPI250). 

 

SCUBA-based Visual Surveys 

 Survey stations were selected across both sites based on a stratified random 

sampling design in order to ensure that a broad range of habitat types were surveyed. 

Strata were defined by two depth zones (10-20m and 20-30m), three substrate types 

(hard, soft, and mixed), and three levels of habitat complexity (low, med, and high). 

Using ArcMap, a grid of 120 x 120m blocks was overlaid across the two sites. Mean 
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depth, percent hard substrate, and habitat complexity were extracted for each block using 

the DEM, substrate, and VRM6 rasters, respectively. Stations were then chosen at 

random from each combination of variables (e.g. 10-20m, hard, high-relief). Since 

smooth values in the substrate raster are equivalent to low VRM6 values, blocks 

designated as soft substrate were not further split into varying levels of complexity. A 

total of 46 stations were surveyed across Abalone Point and the Ten Mile SMR (Table 1). 

 Dive surveys of demersal fishes and habitat characteristics were conducted from 

July to September in 2015 and May through August in 2016. Survey locations were based 

on the center point of each station. Upon arrival at a station, a weight attached to a float 

and line was deployed in order to minimize drift away from the actual station coordinates 

as divers descended. Each dive consisted of two 50 x 2 x 2m band transects. After 

descent to the seafloor, divers extended a 10m line from the weight location due north 

before beginning the transect. This was repeated to the south for the second transect. This 

process ensured a distance of 20m between transects in order to reduce the possibility of 

counting the same fish multiple times. Transects were aligned along a rough north-south 

orientation as a safety precaution to limit excessive changes in depth experienced by the 

divers.  
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Table 1: Distribution of sampling stations across sites and habitat strata. 

 

On each transect, one diver conducted fish surveys where all conspicuous fishes 

within the transect volume were counted and identified to the lowest possible taxon 

(IACUC #14/15.F.91-A, 05 May 2015). Several species in this region are too similar in 

appearance to distinguish between species and were therefore placed in broader umbrella 

groups. This applied primarily to two such groups consisting primarily of juvenile 

rockfishes: OYT, which is composed of olive (S. serranoides) and yellowtail (S. flavidus) 

rockfishes, and KGBC, which is an umbrella term used by several other fish survey 

organizations in California that generally includes kelp (S. atrovirens), gopher (S. 

Stratum # of Stations: Abalone Point # of Stations: Ten Mile 

10-20m, hard, high relief 5 5 

10-20m, hard, med relief 5 5 

10-20m, hard, low relief 5 5 

10-20m, soft 2 2 

10-20m, mixed 3 2 

20-30m, hard, high relief 1 1 

20-30m, hard, med relief 1 1 

20-30m, hard, low relief 1 0 

20-30m, soft 1 0 

20-30m, mixed 1 0 
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carnatus), black-and-yellow (S. chrysomelas), and copper (S. caurinus) rockfishes. In 

Northern California, however, kelp rockfish are rare and were likely not observed on our 

surveys. Juvenile quillback (S. maliger) and china (S. nebulosus) rockfish also may have 

been identified as KGBC, since smaller individuals can look similar to the other species 

within this grouping (Flannery 2018). The total length of each fish observed was 

estimated visually to the nearest centimeter. These methods are a modification of the 

protocols used by the Partnership for Interdisciplinary Study of Coastal Oceans (PISCO 

2016). Total lengths were later converted to biomass based on length-weight relationships 

taken from either the literature (Lea et al. 1999, Love 2011) or recfin.org.  

 A second diver followed the fish surveyor along the transect line collecting 

habitat data using a uniform point contact (UPC) design also modified from PISCO 

methods. Depth was measured both at the descent weight and every two meters on the 

transect. Substrate type was recorded every two meters as one of four categories (sand, 

cobble, boulder, and bedrock) based on grain size. Vertical relief, measured as the 

greatest change in reef height within a 0.5 x 1m area surrounding each two meter mark, 

was also recorded as one of four categories: low (0-10cm), medium-low (10cm-1m), 

medium-high (1-2m), and high (greater than 2m). Additionally, compass headings were 

taken every five meters. Heading data, combined with the known transect start 

coordinates, allowed transects to be digitally recreated in ArcMap. Heading 

measurements taken in the field were corrected based on a 14° declination to account for 

the difference between magnetic and true north at the study location. 
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Data Analysis 

 While data were collected on all fishes observed, analyses employed a size cutoff 

based on length at one year for each species in order to exclude juveniles. This was 

deemed necessary as many reef associated species exhibit ontogenetic shifts wherein 

habitat requirements differ between juveniles and adults (Love et al. 1991, Stein et al. 

1992, Love 2011). Length at one year was calculated using the von Bertalanffy growth 

equation and published parameters for each species (Cope & MacCall 2005, Jagielo & 

Wallace 2005). The size cutoffs used for kelp greenling and lingcod were 22cm and 

36cm, respectively. After the dive surveys were completed, each transect was digitally 

recreated in ArcMap using compass headings and known transect start coordinates. 

Distances traveled were corrected to account for changes in depth.  

Raster-based habitat variables were extracted to the midpoint of each transect 

using a 25m radius roving window mean within ArcMapôs focal statistics tool. For the 

substrate raster, this yielded the percent of hard substrate within the window (hereafter 

denoted as SUB). Additionally, in situ depth data were attached to each 2m mark along 

the transect to compare SCUBA-based depth data with the remotely sensed DEM. 

Accuracy of the remotely sensed data was tested by comparing DEM derived depth 

against in situ depth at both the weight location and at every 2m mark using non-

parametric Spearmanôs rho correlation coefficient. 

 Canonical correspondence analysis (CCA) is an ordination technique that detects 

correlations between two sets of variables (Ter-Braak 1986). CCA was used to determine 
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relationships between fish survey data and in situ habitat variables (i.e. depth, substrate, 

and relief). Although we focus here on kelp greenling and lingcod, CCA did not produce 

reliable results when only two species were used in the analysis. Therefore, in addition to 

kelp greenling and lingcod, we included the 3 other most abundant fish species observed 

(blue rockfish, black rockfish, and striped surfperch). Separate CCA plots were created 

for fish density and biomass. Depth values used were the means of all measurements 

taken on each transect. Each category of substrate and relief was converted to percentage 

per-transect by dividing the number of observations for a given category by the number 

of UPC points on the transect. CCA was carried out in R using the óveganô package 

(Oksanen et al. 2017). 

 Generalized additive models (GAMs, Wood 2006) were used to create predictive 

models of density and biomass for kelp greenling and lingcod. GAMs are often ideal for 

ecological data as they apply smoothing functions across the data to allow for complex, 

non-linear relationships between a response variable and multiple explanatory variables 

(Zuur et al. 2009). Protocols in Zuur et al (2009) were used for initial data exploration 

prior to the model building process. Presence of outliers and the need for data 

transformations were determined using Cleveland dotplots. SUB was the only highly 

skewed variable so we applied a square transformation. Variance inflation factors (VIF) 

and multipanel scatterplots were used to examine multicollinearity between predictor 

variables. Variables with high VIF values were removed from the analysis until all values 

were below 3.5. After completing these procedures, six predictor variables remained for 
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model building: depth, SUB2, fine-scale VRM (VRM6), broad-scale VRM (VRM498), 

fine-scale TPI (TPI20), and broad-scale TPI (TPI250). 

GAMs were produced in R with the package ómgcvô (Wood 2006). Density 

models for both species were built using a Poisson distribution and log link. The Poisson 

distribution is ideal for count and density data as it assumes non-negative response values 

and the log link ensures that fitted values are also non-negative (Zuur et al. 2009). 

Biomass models were created with a Tweedie distribution and log link to allow for 

continuous data with a substantial zero point mass (Dunn & Smyth 2005). An upper limit 

was set for the degrees of freedom of smoothing functions for all variables to reduce 

overfitting. Degrees of freedom were limited to either 3 or 4 based on visual examination 

of smoothers and by comparing effective degrees of freedom with the basis dimension 

(Wood 2006).  

Model selection was conducted by a backwards stepwise approach in which each 

model started with the full set of six candidate predictor variables. Variables were then 

removed iteratively until Akaikeôs information criterion (AIC) values were minimized 

(Zuur et al. 2009). Final models were validated based on protocols given in Zuur et al 

(2009). Model deviance residuals were assessed for normality (Q-Q plot), homogeneity 

of variance (residuals vs fitted values), independence (residuals vs explanatory variables), 

and spatial autocorrelation (residuals vs coordinates). 

Predictive accuracy of each model was assessed using a leave-one-out cross 

validation procedure. Final models were retrained on the dataset after removing a single 

sample and predictions were made for the removed sample. Model accuracy is given as 
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the correlation between these predicted values and field observations using Spearmanôs 

rho correlation coefficient. The R package órasterô was used to create predictive maps of 

density and biomass for kelp greenling and lingcod across the study area (Hijmans 2016). 

Predictions were limited to only those values observed in the field for both predictors and 

response variables in order to limit any errors due to extrapolating past the values used to 

train the model. Standard error maps were also produced for each final model to examine 

the spatial distribution of model uncertainty.  
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RESULTS 

A total of 92 transects covering 9200 m2 were conducted across Abalone Point 

(50 transects) and the Ten Mile SMR (42 transects). Mean transect depths based on in 

situ measurements ranged from 11.7m to 25.9m. Depths measured in situ were highly 

correlated with the DEM at both the weight location (Spearmanôs ɟ = 0.855, p < 0.001) 

and at every two meter mark (Spearmanôs ɟ = 0.911, p < 0.001). The seafloor substrate 

was composed of 58% bedrock, 8% boulder, 2% cobble, and 32% sand. Vertical relief on 

all transects was 23% low (0-10cm), 58% medium-low (10cm-1m), 14% medium-high 

(1-2m), and 5% high (>2m) relief.  

A total of 21 species were observed during the SCUBA surveys. Fish assemblages 

across both sites were dominated by blue and black rockfishes (42% and 17% of total 

individuals observed, respectively; Fig. 2). Also in high abundance were juvenile 

rockfishes belonging to the OYT and KGBC groups as well as juvenile canary rockfish. 

The most abundant non-rockfish species were kelp greenling, striped surfperch, and 

lingcod. We observed 162 kelp greenling and 76 lingcod during the SCUBA surveys. 

Kelp greenling size frequency distributions show similar patterns between Abalone Point 

and the Ten Mile SMR (Fig. 3). Size frequencies for lingcod were largely similar for 

lingcod above 30cm total length between the two sites, however individuals smaller than 

30cm were observed only at Abalone Point (Fig. 4). 158 kelp greenling and 57 lingcod 

were considered adults after applying size cutoffs and were included in the ordination and 
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modeling analyses. Adult kelp greenling ranged in size from 22 to 46cm total length and 

adult lingcod ranged from 36 to 120cm total length. 

 

 
 

 

Figure 2: Average per-transect densities of all species or species groups observed during 

SCUBA surveys 
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Figure 3: Size frequency distributions for kelp greenling between Abalone Point and the 

Ten Mile State Marine Reserve. 

 

 

Figure 4: Size frequency distributions for lingcod between Abalone Point and the Ten 

Mile State Marine Reserve. 
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Relationships between fish and in situ habitat variables 

 CCA showed significant associations between fish biomass and in situ habitat 

metrics (Fig. 5) (Chi-square, p < 0.05). Overall, the CCA captured 27% of the total 

variation in the species data. The majority of this variation is explained by axes 1 (63%) 

and 2 (24%). Axis 1 was primarily associated with medium-low relief (vector length = 

.99, p < 0.05), which increased along the axis. Medium-high and high relief had large 

vector lengths that decreased along axis 1 (-0.98 and -0.94, respectively), however these 

were not significant (p > 0.05). Depth increased substantially along axis 2 (vector length 

= 0.97), but the relationship was only marginally significant (p < 0.10). Kelp greenling 

biomass was most highly associated with boulder habitats and medium-low vertical relief 

(Fig. 5). Lingcod biomass was greatest in medium-high relief reef structures composed 

primarily of bedrock and, to a lesser extent, cobble. Neither species was associated with 

deep, low-relief, or sandy habitats. While CCA was able to determine relationships 

between fish biomass and in situ habitat variables, CCA based on fish abundance was not 

significant (Chi-square, p = 0.25). 
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Figure 5: Canonical Correspondence Analysis (CCA) on associations between five 

abundant fish species observed at the study site and two categorical habitat variables: 

substrate and vertical relief. Black points are sampling locations, red triangles are species, 

and blue vectors indicate habitat variables. 

 

Generalized additive models: Kelp greenling 

 The chosen GAM for kelp greenling density identified SUB2 and fine-scale 

topographic position as the most important predictors (Table 2, see appendix for full 

model selection table). This model explained 37% of the deviance and had an adjusted R2 

of 0.31. Model predictions of kelp greenling density had an accuracy of Spearmanôs ɟ = 

0.53. Response curves indicate that density increased with SUB2 initially before leveling 

off (Fig. 6a, see Appendix B for univariate plots of response variables versus each 

predictor variable included in final models). The response curve comparing density with 
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TPI20 showed that density increased with higher values of fine scale topographic 

position, corresponding to relative shallow points on the reef (Fig. 6b). 

Similar to the density model, the selected GAM for kelp greenling biomass 

indicated that SUB2 and TPI20 were the most important predictors (Table 2). The model 

explained 34% of the deviance and had an adjusted R2 of 0.25. Model predictions of kelp 

greenling biomass had an accuracy of Spearmanôs ɟ = 0.48. Unlike the density response 

curve, biomass had a nearly linear positive relationship with SUB2 throughout all values 

(Fig. 7a). The response curve comparing biomass with TPI20 was similar to the density 

response curve with biomass maximized at relative shallow parts of the reef (Fig. 7b).  

 

Table 2: Final generalized additive models for kelp greenling and lingcod density and 

biomass 

 

Species Formula R-sq. 

(adj.) 

Deviance 

Explained 

(%)  

Kelp 

greenling 

Density ~ SUB2 + TPI20 0.31 36.9 

 Biomass ~ SUB2 + TPI20 0.254 34.4 

Lingcod Density ~ TPI20 + TPI250 0.254 30.1 

 Biomass ~ VRM6 + VRM498 + TPI20 + 

TPI250 

0.409 48.9 
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Figure 6: Generalized additive model response curves for kelp greenling density versus 

(a) (percent hard substrate)2 and (b) fine-scale topographic position index (TPI). Solid 

lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates observed values used 

to train models. 

 

Figure 7: Generalized additive model response curves for kelp greenling biomass versus 

(a) (percent hard substrate)2 and (b) fine-scale topographic position index (TPI). Solid 

lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates observed values used 

to train models.  

a b 

b a 
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Predictive maps produced nearly identical trends in the distribution of both 

density and biomass of kelp greenling (Figs. 8 & 9). The predicted distributions were 

patchy at fine spatial scales (10s of m) and this patchiness was spread evenly on reef 

structures across both sites. Projected values of both population metrics were highest in 

rocky habitats and either low or non-existent on soft sediments. Additionally, the highest 

predicted values were found in areas containing a large number of prominent reef 

outcrops. Maps of the standard error associated with both density and biomass indicated 

low levels of uncertainty across the study area (Figs. 8d & 9d). 
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Figure 8: Predicted kelp greenling density. (a) Map of model predictions across the study 

area. Grey regions indicate areas where no predictions were made; (b) subset of model 

predictions around Abalone Point; (c) subset of model predictions in the Ten Mile State 

Marine Reserve; (d) distribution of standard errors associated with the kelp greenling 

density model. 
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Figure 9: Predicted kelp greenling biomass. (a) Map of model predictions across the 

study area. Grey regions indicate areas where no predictions were made; (b) subset of 

model predictions around Abalone Point; (c) subset of model predictions in the Ten Mile 

State Marine Reserve; (d) distribution of standard errors associated with the kelp 

greenling biomass model. 
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Generalized additive models: Lingcod 

 The chosen GAM for lingcod density included TPI at both fine (20m) and broad 

(250m) scales as the most important predictors (Table 2). This model explained 30% of 

the deviance and had an adjusted R2 of 0.25. Model predictions of lingcod density had an 

accuracy of Spearmanôs ɟ = 0.36. The response curve of density vs. fine-scale 

topographic position showed that density increased at a relatively slow rate until a TPI20 

value of ~150 at which point density increased more rapidly (Fig. 10a), suggesting that 

lingcod density increases were greatest in habitats characterized by peaks and ridges 

rather than valleys at the 20m scale. This sharp increase may be misleading, however, as 

the standard errors on this part of the curve are substantially higher than at other TPI20 

values. The curve of density and broad-scale TPI depicted a negative relationship with 

the highest densities of lingcod occurring at low TPI250 values, which correspond to 

valleys or depressions at the 250m scale (Fig. 10b). 



29 

 

  

Figure 10: Generalized additive model response curves for lingcod density versus (a) 

fine-scale topographic position index (TPI) and (b) broad-scale topographic position 

index. Solid lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates 

observed values used to train models. 

 

  The final GAM for lingcod biomass found that VRM6, VRM498, TPI20, and 

TPI250 were important predictors (Table 2). The model explained 49% of the deviance 

and had an adjusted R2 of 0.41. Predictions based on this model had an accuracy of 

Spearmanôs ɟ = 0.30. According to response curves, lingcod biomass was maximized at 

middling levels of fine-scale rugosity (Fig. 11a). The response curve comparing biomass 

with broad-scale VRM indicated that biomass increased steadily with higher VRM498 

values (Fig. 11b). The curve for biomass vs fine-scale TPI was somewhat similar to the 

density curve with biomass showing no increase until a TPI20 value of ~150 (Fig. 11c). 

Again, the standard errors surrounding this region of the curve were quite large. The 

response curve of lingcod biomass and broad-scale TPI showed a complex relationship 

with higher biomass at both relative low points (TPI250 values between -100 and 0) and 

a b 
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relative high points on the reef (values between 200 and 300) (Fig. 11d). Biomass was 

low at both moderate TPI250 values and values over 300.  

Figure 11: Generalized additive model response curves for lingcod density versus (a) 

fine-scale rugosity (Vector Ruggedness Measure, VRM), (b) broad-scale rugosity, (c) 

fine-scale topographic position index (TPI), and (d) broad-scale topographic position 

index. Solid lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates 

observed values used to train models. 

 

a b
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