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ABSTRACT

PREDICTIVE MAPPING OF TWO NEARSHORE, DEMERSAL FISH SPECIES ON
NORTHERN CALIFORNIA REEFS USING SCUBSBASED VISUAL SURVEYS
AND REMOTE SENSING

Christopher Hiroshi Teague

California's shallow rocky reefs provide critical habitat for a diverse assemblage
of fishes. Effective management strategies for these species require both accurate stock
assessments as well as a spatially explicietstdnding of the relationship between
fishes and characteristics of their habitat. We used a generalized additive model
framework to create spatially predictive maps of the abundance and biomass of two
demersal fish species prevalent on northern Caldomeefs: lingcod@phiodon
elongatu$ and kelp greenlingHexagrammos decagrammu$hese models incorporated
data from SCUBAbased fish and habitat surveys at depths frofiGLeheters as well as
measures of seafloor topography derived from remotely séxadegnetric surveys.
Topographic psitonindex, a measure of a | ocationods
surroundings, was an important predictor for all chosen models. Percentage of rocky
substrate and rugosity, a metric describing habitat complexity, \geréngportant
predictive variablesni many of the chosen models. Thé&sdings indicate that these
species have complex associations with specific habitat features and that they may select

these features of their environmenimultiple spatial scales. &hesultspresented here

e



highlight the utility of combining remotely sensed habitat data with SCloBged visual

surveys to aid in stock assessments and marine spatial planning.
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INTRODUCTION

Widespread accounts of fishery declines, habitat degradation, and other
anthropogenic influences on the marine realm have driven calls for innovative new
strategies to better manage fisheries and preserve biodiV€@msityder & Norse 2008,
Jackson 2008, Halpern et al. 2008, Carr et al. 2Eibhre marine species and thesats
they face are not distributed randomly across the seascape, it is critically important that
these approaches are placed in a spatedplicit, biogeographic contexRoberts et al.

2003, Hamilton et al. 2010Additionally, effective management strategies require a
detailed understanding of the environmenta
(Pittman & Brown 2011)

Many studies have described biogeographic patterns in the distributions of
temperate demersal fishes aalivas associations between these species and the physical
environment in which they resi@8tein et al. 1992eviewed inStephens et al. 2006,

Love & Yoklavich 2008) These studies, however, are often subject to a-tbHide

between highresolution and broadcale. For example, visual techoes that are

commonly used for reef fish community assessments, such as SCUBA and submersible
surveys, provide high resolution data on spebmsitat relationships, but only within the
relatively narrow regions sampled. While these methods provide tdstales relevant to

the ecological requirements of reef fishes, they often offer strictly qualitative information

and do not allow for quantitative predictions outside of the surveyed area. Thus, these
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methods are limited in their ability to make inferes@cross the broad geographic scales
necessary for effective managemg@hatfield et al. 2010, Young & Carr 2015)

Advances in seafloor mapping technology have allowed for the collection of high
resolution benthic habitat data across broad swaths of the seafloor. The California
Seafloor Mapmg Program (CSMP) was implemented by the state of California in order
to create bathymetric digital elevation models (DEMSs), often at resolutions of 2m per
pixel, that span the coastline from shore
to depth, a range of other habitat variables that may be important determinants of fish
distributions, such as slope, topographic position, and vertical relief, can then be derived
from the DEMs. Previous work has indicated that many of these variablespamtain
determinants of fish presence, abundance, and bigivasag et al. 2010, Wedding &
Yoklavich 2015) Furthermore, by collecting these data at such fine resolutions, fish
habitat associations can be assessed at multiple spatial scales. Multiscale approaches are
necessary for determining fish distributions, as orgasiahitat relationships may differ
between fineand broaescaleqWiens 1989)

Methods that link spatialhgxplicit species datwith highresolution seafloor
maps, such as species distribution models (SDMs), can yield quantitative information on
the spatial distribution of species and communities as well as the environmental factors
that drive these distributiorfRittman et al. 2009, Knudby et al. 2018 important
component of SDMs is that they can be used in a predictive capacity to estimate a range
of population and community metrics including probability of occurrence, abuadanc

biomass, and diversity at locations that have not been sampled preyRitisiyan et al.



2007, lampietro et al. 2008, Knudby et al. 2010, Wedding & Yoklavich 2@&\5)
makingpredictions outside of the original sampling areas, SDMs can extend the utility of
visual survey techniques to larger regional scales more relevant to management. These
models thus have the potential to meet a range of management and conservation goals
including the delineation of essential habitat feat(®#eslerson & Yoklavich 2007, Ortiz

& Tissot 2012) marine reserve sitindRees et al. 2014and accurate stock assessments
(NasbyLucas et al. 2002, Young & Carr 2015)

SDMs can provide crucial information to fishery management efforts on shallow
reefs along the west coast of the United S
characterized by a highly complex, rocky structure which supports a high diversity of
demersal fish species including rockfishes, greenlings, and surfpéleinémson &

Craig 2017) These species make up a substantial portion of tithibdauna and are

important components of both recreational and commercial fisheries in the (leggoet

al. 1999, Love 2006, Stephens et al. 208&hough they are often targets of

conservation efforts, there is still a lack of data on the distribution and stock size of many
nearshor@lemersal fish species. Formal stock assessments have only been conducted for
roughly half of the 87 groundfish species managed under the Pacific Fishery

Management Council (www.pcouncil.org/groundfish/staslksessments/), many of which

are presentonCélior ni aés shallow reefs. This is par
California because, historically, this region has not been surveyed as often as other parts

of the stat€Allen & Pondella 2006)SCUBA-based visual techniques are the primary

survey method employed in these shallow habitats, however it is costly to conduct these



techniques across large arédsnkirson & Craig 2017)By incorporating data from
visual surveys and high resolution bathymetric maps, SDMs extend the utility of visual
techniques across the broad spatial scales necessary for effective marine management.

Here, we used a spatial modelimgrhework to create models and predictive maps
of density and biomass for kelp greenliftekagrammos decagrammusnd lingcod
(Ophiodon elongatysBoth species belong to the famigexagrammidaeKelp
greenling are common from the Aleutian Islands to ¢Q@alifornia and are found at
depths up to 130m. Lingcod are found between the Gulf of Alaska and central Baja
California up to depths of 475thove 2011) The maximum size of kelp greenling is
63cm and 2.1d(Love 2011) Lingcod reach a maximum size of 150¢Gass et al.
1990)and 37.5kdLove 2011)

Both species are botteoriented and adults are most often found in rocky
habitats(Miller & Geibel 1973, Cope & MacCall 2005freeding habits and predator
avoidance likely play important roles in driving this preference for reef structure
(Stephens et al. 20Q&elp greenling are opportwstic generalists that eat a wide variety
of bottomoriented foods often associated with rocky habitats including shrimp, crabs,
octopuses, and amphipofdove 1996, Howard & Silberberg 2001Kelp greenling
inhabit rocky habitats of any shape and size and are almost always found amongst algal
or surfgrass covgilCope &MacCall 2005, Love 2011which may provide cover from
predation.

Adult lingcod are primarily piscivorous though they will also feed on octopuses,

squid, hermit crabs, fish eggs, and hydrd@ldsse 2011) In California, a substantial
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portion of lingcod diets are made up of juvenile rockfishes, many species of which are in
high abundance on complex, rocky re@dams & Starr 2001, Stephens et al. 2006)
Lingcod are often found on prominent reedtigres, which may be advantageous for
ambushing preyLynn 2008, Love 2011)Structural complexity, particularly the
presence of overhangs, cracad crevices, also appears to be highly important to
lingcod as it provides ideal nesting locations and cover from pred&ishens et al.

2006, Lynn 2008Love 2011)

In Northern California, lingcod make up a substantial component of both the

commercial and recreational fisher{@agielo & Wallace 2005Kelp greenling are often
targeted in the commercial livfesh fishery as wikas in the recreational fishery via
shorebased anglingHoward & Silberberg 2001, Berger et al. 2014lthough both
species are important for fisheries, there is a paucity of data available to inform
management. Cope and MacCall (2005) provided the onli sgsessment of kelp
greenling in California waters, however it has not been used to advise management due to
insufficient information on its population structyierger et al. 2015While
assessments of lingcod have been conducted several times in the past thirty years, they
often rely on trawbased catch and survey délagielo & Wallace 2005, Hamel et al.
2009) These data sources, however, do not encompass the full range of habitats used by
lingcod, specifically rocky habitats which are untrawlable due to their-hegjef nature
(Zimmermann 2003)

In this study we first use data from SCUBBased fistand habitasurveys at two

Northern California shallow rocky reef sites to examine relationships between kelp
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greenling, lingcod, and the situ habitat data. We then combine the survey data with
remotely sensed attibeam bathymetry to develop models of density and biomass for
each species. Next, we use these models to evaluate which habitat features are most
highly associated with these species and determine the spatial scales at which these
relationships occur.ifally, we create predictive maps of density and biomass for kelp
greenling and lingcod using model outputs and assess the predictive accuracy of each

map using a crosgalidation procedure.



METHODS

Study Area

The focal sites for this study were the Tdite State Marine Reserve (SMR)
(39.585° N, 123.786° W) and Abalone Point (39.667° N, 123.801° W). Both sites are
located in Mendocino County, California several miles north of Ft. Bragg and are
separated by six kilometerSi¢. 1). This area is charactead by highrelief, rocky reef
structures that extend from shore to a depth of roughly 80 m. Rocky sections of the reef
are separated by sand channels ranging from 10s to 100s of m in width. Adult fish
assemblages are dominated by blue and black roclSethagtes mystinasdS.
melanopsrespectively) and kelp greenling. Several other species including striped
surfperch Embiotoca laterali} lingcod, and other rockfish species (geBebastdsare
also present, but at lower abundances. The Ten Milesssitectake state marine reserve
that was established in 2012. Due to the short amount of time since its implementation,
there is a low likelihood of any reserve effect afforded by its protected &latsnson
& Craig 2017) Abalore Point remains open to recreational and commercial fishing

activities.
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Figurel: Study area along the Mendocino coast in Northern California. The two sites,
Abalone Point and the Ten Mile State Marine Reserve are outlined im heple
points indicate survey locations.



Habitat Mapping

Multibeam bathymetric data were obtained from the CalifdB@afloor Mapping
Project(CSMP 2010)a collaborative effort toreate a detailed set of seafloor
bathymetric maps throughout California state waters from the shoreline to the 3 nautical
mile limit. Since the project's inception in 2005, the CSMP have successfully mapped the
majority of the coastline and have madetipeoducts freely available to the public.

CSMP surveys of the focal sites were conducted between August 22 and October 31,
2009 using shitrased multibeam echo sounders. The CSMRpastessed the

multibeam data and produced final map products. The pyipraduct of these surveys is

a series of high resolution digital elevation models (DEMs) provided in raster format. In
this study, we used the highest resolution DEMs available, which have a resolution of 2m
per pixel and cover a depth range e84m. These maps have a reported horizontal

position accuracy of + 2mnd vertical accuracy of £ 5¢c(@SMP 2010)

A range of other habitat variables were derived from the DEM using the Spatial
Analyst toolbox in ArcMap (Environmental Systems Research Institute, ESRI). Slope
and slopeof-the-slope were calculated using the slope function in the Spatial Analyst
toolbox. Grids of vector ruggedness measure (VRM), a rugosity metric, were created
usingthe Benthic Terrain Modeler toolbox. VRM measures terrain ruggedness as the
variation in the &imensional orientation of grid cells in a DEMobson 1972,

Sappington et al. 2007¥RM is based on a usspecified neighborhood of cells and can

thus be calculated at multiple spatial scales. Here, VRM rasters were created at six scales
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ranging from fine to broad: 6, 10, 50, 118, 198, and 498 meters. These scales correspond
to the ngghborhood size used in raster creation (e.g. VRM6 used to a neighborhood of 6
X 6 meters).

Rasters denoting substrate type (rough/smooth classification) and topographic
position index (TPI) were provided by the CSMP. The substrate raster is based on the
VRMG6 raster, however it has been reclassified such that values below a cutoff are
considered smooth (soft sediment) and higher values are considered rough (hard
substrate). TPI is a second order derivative that describes a given point based on its
surroundhgs by comparing the elevation of each cell in a DEM to the mean elevation of
neighboring cell§Weiss 2001, Lundblad et al. 2006)igh TPI values indicate peaks and
ridges, whereas low values indicate waleLike VRM, TPI can be calculated at multiple
scales. The CSMP calculated TPI using an annulus neighborhood with 20m, 50m, and
250m outer radii to yield fine, medium, and broad scales, respectively (labeled hereafter

as TPI20, TPI50, and TPI1250).

SCUBA-based Visual Surveys

Survey stations were selected across both sites based on a stratified random
sampling design in order to ensure that a broad range of habitat types were surveyed.
Strata were défed by two depth zones (BDmand 2030m), three substrate types
(hard, soft, and mixed), and three levels of habitat complexity (low, med, and high).

Using ArcMap, a grid of 120 x 120m blocks was overlaid across the two sites. Mean
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depth, percent hard substrate, and habitat comphexite extracted for each block using
the DEM, substrate, and VRM®6 rasters, respectively. Stations were then chosen at
random from each combination of variables (e.g2Qfh, hard, higkrelief). Since
smooth values in the substrate raster are equivalémvtodRM6 values, blocks
designated as soft substrate were not further split into varying levels of complexity. A
total of 46 stations were surveyed across Abalone Point and the Ten MileTalldR 9.

Dive surveys of demersal fishes and habitat chaiatiterwere conducted from
July to September in 2015 and May through August in 2016. Survey locations were based
on the center point of each station. Upon arrival at a station, a weight attached to a float
and line was deployed in order to minimize driftagy from the actual station coordinates
as divers descended. Each dive consisted of two 50 x 2 x 2m band transects. After
descent to the seafloor, divers extended a 10m line from the weight location due north
before beginning the transect. This was remktighe south for the second transect. This
process ensured a distance of 20m between transects in order to reduce the possibility of
counting the same fish multiple times. Transects were aligned along a rougkaoutth
orientation as a safety precautito limit excessive changes in depth experienced by the

divers.
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Tablel: Distribution of sampling stations across sites and habitat strata.

Stratum # of Stations: Abalone Poir # of Stations: Ten Mile
10-20m, hard, high relief 5 5
10-20m, hard, med relief 5 5
10-20m, hard, low relief 5 5

10-20m, soft 2 2
10-20m, mixed 3 2
20-30m, hard, high relief 1 1
20-30m, hard, med relief 1 1
20-30m, hard, low relief 1 0
20-30m, soft 1 0
20-30m, mixed 1 0

On each transect, one divanducted fish surveys where all conspicuous fishes
within the transect volume were counted and identified to the lowest possible taxon
(IACUC #14/15.F.94A, 05 May 2015). Several species in this region are too similar in
appearance to distinguish betwesprecies and were therefore placed in broader umbrella
groups. This applied primarily two such groups consisting primarily jafzenile
rockfishes OYT, which is composed of olivés( serranoidgsand yellowtail §. flavidu$
rockfishes and KGBC, whichg an umbrella term used by several other fish survey

organizations in California that generally includes k&8 pdtroviren}, gopher §.
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carnatug, blackandyellow (S. chrysomelgsand copperS. caurinuyrockfishes. In
Northern California, however, kerockfish are rare and were likely not observed on our
surveys. Juvenile quillbads.maliger) and china$.nebulosuprockfishalsomay have
been identified as KGBC, since smaller individuals can look similar to the sjibeies
within this groupingFlannery2018) Thetotal length of each fisbbservedvas
estimated visually to the nearest centimeter. These methods are a modification of the
protocols used by the Partnership nterdisciginary Study of Coastal Ocea(RBISCO
2016) Total lengths were later converted to biomass based on temgght relationships
taken from either the literatufeea et al. 1999, Love 201} recfin.org.

A second diver followed the fish surveyor along the transect line collecting
habitat data using a uniform point contact (UPC) design also modified from PISCO
methods. Bpth was measured both at the descent weight and every two meters on the
transect. Substrate type was recorded every two meters as one of four categories (sand,
cobble, boulder, and bedrock) based on grain size. Vertical relief, measured as the
greatest cange in reef height within a 0.5 x 1m area surrounding each two meter mark,
was also recorded as one of four categories: let0@n), mediurdow (10cm1m),
mediumhigh (1:2m), and high (greater than 2m). Additionally, compass headings were
taken every fie metersHeadingdata, combined with the known transect start
coordinates, allowed transects to be digitally recreated in ArcMap. Heading
measurements taken in the field were corrected based on a 14° declination to account for

the difference between madiweand true north at the study location.
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Data Analysis

While data were collected on all fishes observed, analyses employed a size cutoff
based on length at one year for each species in order to exclude juveniles. This was
deemed necessary as many rasbaiated species exhibit ontogenetic shifts wherein
habitat requirements differ between juveniles and aduitge et al. 1991, Steiet al.

1992, Love 2011)Length at one year was calculated using the von Bertalanffy growth
equation and published parameters for each sp@emse & MacCall 2005, Jagielo &
Wallace 2005)The size cutoffs used for kelp greenling anddiod were 22cm and

36¢cm, respectively. After the dive surveys were completed, each transect was digitally
recreated in ArcMap using compass headings and known transect start coordinates.
Distances traveled were corrected to account for changes in depth.

Rasterbased habitat variables were extracted to the midpoint of each transect
using a 25m radius roving window mean with
substrate raster, this yielded the percent of hard substrate within the window (hereafter
deroted as SUB). Additionallyn situdepth data were attached to each 2m mark along
the transect to compare SCUB¥ased depth data with the remotely sensed DEM.

Accuracy of the remotely sensed data was tested by comparing DEM derived depth
againstn situdepth at both the weight location and at every 2m mark using non
parametric Spearmands rho correlation coef

Canonical correspondence analysis (CCA) is an ordination technique that detects

correlations between two sets of varial{fésr-Braak 1986) CCA was used to determine
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relationships between fish survey data amsitu habitat variables (i.e. depth, substrate,
and relief). Although we focus here on kelp greenling and lingcod, CCA did not produce
reliable results when only two species weredusehe analysis. Therefore, in addition to
kelp greenling and lingcod, we included the 3 other most abundant fish species observed
(blue rockfish, black rockfish, and striped surfperch). Separate CCA plots were created
for fish density and biomass. Deptalues used were the means of all measurements
taken on each transect. Each category of substrate and relief was converted to percentage
pertransect by dividing the number of observations for a given category by the number
of UPC points onthe transe@. CA was <carried out i n R usi
(Oksanen et al. 2017)

Generalized additive modgl&€AMs, Wood 2006yvere used to create predictive
models of density and biomass for kelp greenling and lingcod. GAMs are often ideal for
ecological data as they apply smoothing functions at¢hesdata to allow for complex,
nortlinear relationships between a response variable and multiple explanatory variables
(Zuur et al. 2009)Protocols in Zuur et al (2009) were used for initial data exploration
prior to the model building process. Presence of outliers and the need for data
transformations were determined using Cleveland dotplots.\&$Bhe only highly
skewed variable so we applied a square transformation. Variance inflation factors (VIF)
and multipanel scatterplots were used to examine multicollinearity between predictor
variables. Variables with high VIF values were removed fragratialysis until all values

were below 3.5. After completing these procedures, six predictor variables remained for
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model building: depth, SUBfine-scale VRM (VRM®6), broadgcale VRM (VRM498),
fine-scale TPI (TPI120), and broagtale TPI (TPI250).

GAMswee produced i n R w(Wodd2008)@ensgyac k a g e

models for both species were built using a Poisson distribution and log link. The Poisson
distribution is ideal for count and density data as it assumesegative responsalues
and the log link ensures that fitted values are alsenegative(Zuur et al. 2009)
Biomass models were created with a Tweedie distribution and log link to allow for
continuous data with a substantial zero point nf@ssin & Smyth 2005)An upper limit
was set for the degrees of freedom of smoothing functions for all vartabieduce
overfitting. Degrees of freedom were lted to either 3 or 4 based on visual examination
of smoothers and by comparing effective degrees of freedom with the basis dimension
(Wood 2006)

Model selection was conducted by a backwards stepwise appnoabith each

model stared with the full set of six candidate predictor variab\eiables were then

0

n

removed iteratively until Akaikeds infor ma

(Zuur et al. 2009)Final models were validated based on protocols given in Zuur et al
(2009). Model deviance residuals were assessed for normal@ylot), homogeneity
of variance (esiduals vs fitted values), independence (residuals vs explanatory variables),
and spatial autocorrelation (residuals vs coordinates).

Predictive accuracy of each model was assessed using soleavet cross
validation procedure. Final models were retea on the dataset after removing a single

sample and predictions were made for the removed sample. Model accuracy is given as
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the correlation between these predicted va
rho correlation coefficient. The R packapgg ast er 6 was used to crea
density and biomass for kelp greenling and lingcod across the studyHgneans 2016)
Predictions were limited to only those values observed in the field for both predictors and
response variables order to limit any errors due to extrapolating past the values used to
train the model. Standard error maps were also produced for each final model to examine

the spatial distribution of model uncertainty.
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RESULTS

A total of 92 transects covering 9206 were conducted across Abalone Point
(50 transects) and the Ten Mile SMR (42 transects). Mean transect depths based on
situ measurements ranged from 11.7m to 25.9m. Depths meas.siaiwwere highly
correlated with the DEM at both the weight locati®pe ar manés |} = 0. 855,
and at every two meter mark (Spearmands |
was composed of 58% bedrock, 8% boulder, 2% cobble, and 32% sand. Vertical relief on
all transects was 23% low-Icm), 58% mediurtow (10cm1m), 14% mediurhigh
(2-2m), and 5% high (>2m) relief.

A total of 21 species were observed during the SCUBA surveys. Fish assemblages
across both sites were dominated by blue and black rockfishes (42% and 17% of total
individuals observed, respectlygFig. 2). Also in high abundance were juvenile
rockfishes belonging tthe OYT and KGBC groups as well as juvenile canary rockfish.

The most abundant newnckfish species were kelp greenling, striped surfperch, and
lingcod.We observed 162 kelp greergiand 76 lingcod during the SCUBA surveys.

Kelp greenling size frequency distributions show similar patterns between Abalone Point
and the Ten Mile SMRFig. 3. Size frequencies for lingcod were largely similar for
lingcod above 30cm total length betwdba two sites, however individuals smaller than
30cm were observed only at Abalone Pokfig(4). 158 kelp greenling and 57 lingcod

were considered adults after applying size cutoffs and were included in the ordination and
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modeling analyses. Adult kelpegnling ranged in size from 22 to 46cm total length and

adult lingcod ranged from 36 to 120cm total length.

Blue rockfish
Black rockfish
KGBC rockfishes
OYT rockfishes

Kelp greenling
Canary rockfish
Striped surfperch
Lingcod
Vermillion rockfish
Painted greenling
Flatfishes

Other rockfishes

Cabezon
Sculpin
Eel
Other

Other surfperches

o

4 8 12 16 20 24
Mean density (individuals per 100 m? )

Figure2: Average petransect densities of all species or species groups observed during
SCUBA surveys
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Figure3: Size frequency distributions for kelp greenling between Abalone Point and the
Ten Mile State Marine Reserve
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Figure4: Size frequencyigdtributions for lingcocbetween Abalone Point and the Ten
Mile State Marine Reserve
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Relationships between fish amdsitu habitat variables

CCA showed significant associations between fish biomasagitl habitat
metrics Fig. 5 (Chi-square, p < 0.05). Overall, the CCAptured 27% of the total
variation in the species data. The majority of this variation is explained by axes 1 (63%)
and 2 (24%). Axis 1 was primarily associated with mediow relief (vector length =
.99, p < 0.05), which increased along the axis. Meéhighh and high relief had large
vector lengths that decreased along axi) P8 and-0.94, respectively), however these
were not significant (p > 0.05). Depth increased substantially along axis 2 (vector length
= 0.97), but the relationship was only maadly significant (p < 0.10). Kelp greenling
biomass was most highly associated with boulder habitats and m&xiuvertical relief
(Fig. 5. Lingcod biomass was greatest in medinigh relief reef structures composed
primarily of bedrock and, to a lessxtent, cobble. Neither species was associated with
deep, lowrelief, or sandy habitats. While CCA was able to determine relationships
between fish biomass amdsitu habitat variables, CCA based on fish abundance was not

significant (Chisquare, p = @5).
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Figure5: Canonical Correspondence Analysis (CCA) on associations between five
abundant fish species observed at the study site and two categorical habitat variables:
substrate and vertical relief. Black points are samplingtions, redrianglesare species,
and blue vectors indicate habitat variables.

Generalized additive models: Kelp greenling

The chosen GAM for kelp greenling density identified SdBd finescale
topographic position as the most important predictoable 2 see appendix for full
model selection table). This model explained 37% of the deviance and had an adjusted R
of 0.31. Model ©predictions of kelp greenl:i
0.53. Response curves indicate that density ineceadth SUB initially before leveling
off (Fig. 6a see Appendix B for univariate plots of response variables versus each

predictor variable included in final modgl3he response curve comparing density with
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TPI20 showed that density increased with bigialues of fine scale topographic

position, corresponding to relative shallow points on the Fagf 6b.

Similar to the density model, the selected GAM for kelp greenling biomass

indicated that SUBand TPI120 were the most impantgredictors Table2). The model

explained 34% of the deviance and had an adjusted ®25. Model predictions of kelp

greenling biomass had an

accuracy of

curve, biomass had a nearly linear positive relationship with’$tBughout all values

Spear

(Fig. 79. The response curve comparing biomass with TP120 was similar to the density

response curve with biomass maximized at relative shallow parts of th&igeefh).

Table2: Final generalized additiveadels for kelp greenling and lingcod density and

biomass
Species Formula R-sq. Deviance
(adj.) Explained
(%)
Kelp Density ~ SUB + TPI20 0.31 36.9
greenling
Biomass ~ SUB+ TPI20 0.254 34.4
Lingcod Density ~ TPI20 + TPI1250 0.254 30.1
Biomass ~ VRM6+ VRM498 + TPI20 + 0.409 48.9
TPI1250
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Figure6: Generalized additive model response curves for kelp greenling density versus
(a) (percent hard substrat@nd (b) finescale topographic position index (TPI). Solid

lines = mean, dashed lines = $E. Rug plot along-axis indicates observed values used
to train models.
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Figure7: Generalized additive modedsponse curves for kelp greenling biomass versus
(a) (percent hard substrat@nd (b) finescale topographic position index (TPI). Solid
lines = mean, dashed lines = $E. Rug plot along-axis indicates observed values used
to train models.
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Predictivemaps produced nearly identical trends in the distribution of both
density and lmmass of kelp greenling (Figs. 8 & The predicted distributions were
patchy at fine spatial scales (10s of m) and this patchiness was spread evenly on reef
structures acrasboth sites. Projected values of both population metrics were highest in
rocky habitats and either low or netistent on soft sediments. Additionally, the highest
predicted values were found in areas containing a large number of prominent reef
outcropsMaps of the standard error associated with both density and biomass indicated

low levels of uncertaitacross the study area (Figs. 8d&.9
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Figure8: Predictedkelp greenling density. (a) &b of model predictions across the stud
area. Grey regions indicate areas where no predictions were made; (b) subset of model
predictions around Abalone Point; (c) subset of model predictions rethdlile State
Marine Reserve(d) distribution of standard errors associated with the kelkpndjrey

density model.
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Figure9: Predicted klp greenling biomass. (a)ay of model predictions across the

study area. Grey regions indicate areas where no predictions were made; (b) subset of

model predictions around Abalone Poif} subset of model predictions in then Mile
State Marine Reserv]) distribution of standard errors associated with the kelp

greenling biomass model.
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Generalized additive models: Lingcod

The chosen GAM folingcoddensity included TPI at both fil@0m) and broad
(250m) scales as the nasportant predictors (Table.2This model explained 30% of
the deviance and had an adjustédfR0.25. Model predictions dingcod density had an
accuracy of Spearmands |} = (ned3@e The respo
topographic position showed that density increased at a relatively slow rate until a TPI120
value of ~150 at which point density increased more rapkdty (03, suggesting that
lingcoddensity increases were greatest in habitats charactdnyzpeaks and ridges
rather than valleys at the 20m scale. This sharp increase may be misleading, however, as
the standard errors on this part of the curve are substantially higher than at other TPI120
values. The curve of density and breswdle TPI depied a negative relationship with
the highest densities bhgcodoccurring at low TPI1250 values, which correspond to

valleys or depressions at the 250m schlg.(100.
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FigurelO: Generalized additive model response curvesirigcoddensity versus (a)
fine-scale topographic position index (TPI) and (b) breedle topographic position
index. Solid lines = mean, dashed lines =SE. Rug plot along-axis indicates
observed vales used to train models.

The final GAM forlingcodbiomass found that VRM6, VRM498, TP120, and
TPI250 wee important predictorsT@ble 3. The model explained 49% of the deviance
and had an adjusted Bf 0.41. Predictions based on this model had anracy of
Spearmands J} = 0. 30. Angadbiordasswas mMaximizeceas pon s e
middling levels of finescale rugosityKig. 118. The response curve comparing biomass
with broadscale VRM indicated that biomass increased steadily with higR&498
values Fig. 118. The curve for biomass vs firggale TPl was somewhat similar to the
density curve with biomass showing no increase until a TP120 value of FIbA.{9.
Again, the standard errors surrounding this region of the curve werdajgge The

response curve dihgcodbiomass and broascale TPI showed a complex relationship

with higher biomass at both relative low points (TPI1250 values betvi®@®nand 0) and
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relative high points on the reef (values between 200 and B@)1(1d. Biomass was

low at both moderate TP1250 values and values over 300.

a b

Figurell: Generalized additive model response curvesirigcoddensity versus (a)
fine-scale rugosityVector Ruggedness Measure, VRM), (b) brsadle rugosity, (c)
fine-scale topographic position index (TPI), and (d) breeale topographic position
index. Solid lines = mean, dashed lines =S#. Rug plot along-axis indicates
observed values usedttain models.




















































































