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ABSTRACT 

PREDICTIVE MAPPING OF TWO NEARSHORE, DEMERSAL FISH SPECIES ON 

NORTHERN CALIFORNIA REEFS USING SCUBA-BASED VISUAL SURVEYS 

AND REMOTE SENSING 

 

Christopher Hiroshi Teague 

 

California's shallow rocky reefs provide critical habitat for a diverse assemblage 

of fishes. Effective management strategies for these species require both accurate stock 

assessments as well as a spatially explicit understanding of the relationship between 

fishes and characteristics of their habitat. We used a generalized additive model 

framework to create spatially predictive maps of the abundance and biomass of two 

demersal fish species prevalent on northern California reefs: lingcod (Ophiodon 

elongatus) and kelp greenling (Hexagrammos decagrammus). These models incorporated 

data from SCUBA-based fish and habitat surveys at depths from 12-26 meters as well as 

measures of seafloor topography derived from remotely sensed bathymetric surveys. 

Topographic position index, a measure of a location’s elevation relative to its 

surroundings, was an important predictor for all chosen models. Percentage of rocky 

substrate and rugosity, a metric describing habitat complexity, were also important 

predictive variables in many of the chosen models. These findings indicate that these 

species have complex associations with specific habitat features and that they may select 

these features of their environment at multiple spatial scales. The results presented here 
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highlight the utility of combining remotely sensed habitat data with SCUBA-based visual 

surveys to aid in stock assessments and marine spatial planning.  
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INTRODUCTION 

Widespread accounts of fishery declines, habitat degradation, and other 

anthropogenic influences on the marine realm have driven calls for innovative new 

strategies to better manage fisheries and preserve biodiversity (Crowder & Norse 2008, 

Jackson 2008, Halpern et al. 2008, Carr et al. 2011). Since marine species and the threats 

they face are not distributed randomly across the seascape, it is critically important that 

these approaches are placed in a spatially-explicit, biogeographic context (Roberts et al. 

2003, Hamilton et al. 2010). Additionally, effective management strategies require a 

detailed understanding of the environmental factors that drive species’ distributions 

(Pittman & Brown 2011).  

Many studies have described biogeographic patterns in the distributions of 

temperate demersal fishes as well as associations between these species and the physical 

environment in which they reside (Stein et al. 1992, reviewed in Stephens et al. 2006, 

Love & Yoklavich 2008). These studies, however, are often subject to a trade-off 

between high-resolution and broad-scale. For example, visual techniques that are 

commonly used for reef fish community assessments, such as SCUBA and submersible 

surveys, provide high resolution data on species-habitat relationships, but only within the 

relatively narrow regions sampled. While these methods provide data at scales relevant to 

the ecological requirements of reef fishes, they often offer strictly qualitative information 

and do not allow for quantitative predictions outside of the surveyed area. Thus, these 
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methods are limited in their ability to make inferences across the broad geographic scales 

necessary for effective management (Chatfield et al. 2010, Young & Carr 2015). 

Advances in seafloor mapping technology have allowed for the collection of high-

resolution benthic habitat data across broad swaths of the seafloor. The California 

Seafloor Mapping Program (CSMP) was implemented by the state of California in order 

to create bathymetric digital elevation models (DEMs), often at resolutions of 2m per 

pixel, that span the coastline from shore to the state’s three nautical mile limit. In addition 

to depth, a range of other habitat variables that may be important determinants of fish 

distributions, such as slope, topographic position, and vertical relief, can then be derived 

from the DEMs. Previous work has indicated that many of these variables are important 

determinants of fish presence, abundance, and biomass (Young et al. 2010, Wedding & 

Yoklavich 2015). Furthermore, by collecting these data at such fine resolutions, fish-

habitat associations can be assessed at multiple spatial scales. Multiscale approaches are 

necessary for determining fish distributions, as organism-habitat relationships may differ 

between fine- and broad-scales (Wiens 1989).  

Methods that link spatially-explicit species data with high-resolution seafloor 

maps, such as species distribution models (SDMs), can yield quantitative information on 

the spatial distribution of species and communities as well as the environmental factors 

that drive these distributions (Pittman et al. 2009, Knudby et al. 2010). An important 

component of SDMs is that they can be used in a predictive capacity to estimate a range 

of population and community metrics including probability of occurrence, abundance, 

biomass, and diversity at locations that have not been sampled previously (Pittman et al. 
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2007, Iampietro et al. 2008, Knudby et al. 2010, Wedding & Yoklavich 2015). By 

making predictions outside of the original sampling areas, SDMs can extend the utility of 

visual survey techniques to larger regional scales more relevant to management. These 

models thus have the potential to meet a range of management and conservation goals 

including the delineation of essential habitat features (Anderson & Yoklavich 2007, Ortiz 

& Tissot 2012), marine reserve siting (Rees et al. 2014), and accurate stock assessments 

(Nasby-Lucas et al. 2002, Young & Carr 2015).  

SDMs can provide crucial information to fishery management efforts on shallow 

reefs along the west coast of the United States. Northern California’s nearshore reefs are 

characterized by a highly complex, rocky structure which supports a high diversity of 

demersal fish species including rockfishes, greenlings, and surfperches (Jenkinson & 

Craig 2017). These species make up a substantial portion of the benthic fauna and are 

important components of both recreational and commercial fisheries in the region (Lea et 

al. 1999, Love 2006, Stephens et al. 2006). Although they are often targets of 

conservation efforts, there is still a lack of data on the distribution and stock size of many 

nearshore demersal fish species. Formal stock assessments have only been conducted for 

roughly half of the 87 groundfish species managed under the Pacific Fishery 

Management Council (www.pcouncil.org/groundfish/stock-assessments/), many of which 

are present on California’s shallow reefs. This is particularly problematic in Northern 

California because, historically, this region has not been surveyed as often as other parts 

of the state (Allen & Pondella 2006). SCUBA-based visual techniques are the primary 

survey method employed in these shallow habitats, however it is costly to conduct these 
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techniques across large areas (Jenkinson & Craig 2017). By incorporating data from 

visual surveys and high resolution bathymetric maps, SDMs extend the utility of visual 

techniques across the broad spatial scales necessary for effective marine management. 

Here, we used a spatial modeling framework to create models and predictive maps 

of density and biomass for kelp greenling (Hexagrammos decagrammus) and lingcod 

(Ophiodon elongatus). Both species belong to the family Hexagrammidae. Kelp 

greenling are common from the Aleutian Islands to Central California and are found at 

depths up to 130m. Lingcod are found between the Gulf of Alaska and central Baja 

California up to depths of 475m (Love 2011). The maximum size of kelp greenling is 

63cm and 2.1 kg (Love 2011). Lingcod reach a maximum size of 150cm (Cass et al. 

1990) and 37.5kg (Love 2011). 

Both species are bottom-oriented and adults are most often found in rocky 

habitats (Miller & Geibel 1973, Cope & MacCall 2005). Feeding habits and predator 

avoidance likely play important roles in driving this preference for reef structure 

(Stephens et al. 2006). Kelp greenling are opportunistic generalists that eat a wide variety 

of bottom-oriented foods often associated with rocky habitats including shrimp, crabs, 

octopuses, and amphipods (Love 1996, Howard & Silberberg 2001).  Kelp greenling 

inhabit rocky habitats of any shape and size and are almost always found amongst algal 

or surfgrass cover (Cope & MacCall 2005, Love 2011), which may provide cover from 

predation.  

Adult lingcod are primarily piscivorous though they will also feed on octopuses, 

squid, hermit crabs, fish eggs, and hydroids (Love 2011). In California, a substantial 
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portion of lingcod diets are made up of juvenile rockfishes, many species of which are in 

high abundance on complex, rocky reefs (Adams & Starr 2001, Stephens et al. 2006). 

Lingcod are often found on prominent reef features, which may be advantageous for 

ambushing prey (Lynn 2008, Love 2011). Structural complexity, particularly the 

presence of overhangs, cracks, and crevices, also appears to be highly important to 

lingcod as it provides ideal nesting locations and cover from predators (Stephens et al. 

2006, Lynn 2008, Love 2011).  

In Northern California, lingcod make up a substantial component of both the 

commercial and recreational fisheries (Jagielo & Wallace 2005). Kelp greenling are often 

targeted in the commercial live-fish fishery as well as in the recreational fishery via 

shore-based angling (Howard & Silberberg 2001, Berger et al. 2015). Although both 

species are important for fisheries, there is a paucity of data available to inform 

management. Cope and MacCall (2005) provided the only stock assessment of kelp 

greenling in California waters, however it has not been used to advise management due to 

insufficient information on its population structure (Berger et al. 2015). While 

assessments of lingcod have been conducted several times in the past thirty years, they 

often rely on trawl-based catch and survey data (Jagielo & Wallace 2005, Hamel et al. 

2009). These data sources, however, do not encompass the full range of habitats used by 

lingcod, specifically rocky habitats which are untrawlable due to their high-relief nature 

(Zimmermann 2003).   

In this study, we first use data from SCUBA-based fish and habitat surveys at two 

Northern California shallow rocky reef sites to examine relationships between kelp 
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greenling, lingcod, and the in situ habitat data. We then combine the survey data with 

remotely sensed multibeam bathymetry to develop models of density and biomass for 

each species. Next, we use these models to evaluate which habitat features are most 

highly associated with these species and determine the spatial scales at which these 

relationships occur. Finally, we create predictive maps of density and biomass for kelp 

greenling and lingcod using model outputs and assess the predictive accuracy of each 

map using a cross-validation procedure.  
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METHODS 

Study Area 

The focal sites for this study were the Ten Mile State Marine Reserve (SMR) 

(39.585° N, 123.786° W) and Abalone Point (39.667° N, 123.801° W). Both sites are 

located in Mendocino County, California several miles north of Ft. Bragg and are 

separated by six kilometers (Fig. 1). This area is characterized by high-relief, rocky reef 

structures that extend from shore to a depth of roughly 80 m. Rocky sections of the reef 

are separated by sand channels ranging from 10s to 100s of m in width. Adult fish 

assemblages are dominated by blue and black rockfish (Sebastes mystinus and S. 

melanops, respectively) and kelp greenling.  Several other species including striped 

surfperch (Embiotoca lateralis), lingcod, and other rockfish species (genus Sebastes) are 

also present, but at lower abundances. The Ten Mile site is a no-take state marine reserve 

that was established in 2012. Due to the short amount of time since its implementation, 

there is a low likelihood of any reserve effect afforded by its protected status (Jenkinson 

& Craig 2017). Abalone Point remains open to recreational and commercial fishing 

activities. 
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Figure 1: Study area along the Mendocino coast in Northern California. The two sites, 

Abalone Point and the Ten Mile State Marine Reserve are outlined in green. Purple 

points indicate survey locations. 
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Habitat Mapping 

 Multibeam bathymetric data were obtained from the California Seafloor Mapping 

Project (CSMP 2010), a collaborative effort to create a detailed set of seafloor 

bathymetric maps throughout California state waters from the shoreline to the 3 nautical-

mile limit. Since the project's inception in 2005, the CSMP have successfully mapped the 

majority of the coastline and have made their products freely available to the public. 

CSMP surveys of the focal sites were conducted between August 22 and October 31, 

2009 using ship-based multibeam echo sounders. The CSMP post-processed the 

multibeam data and produced final map products. The primary product of these surveys is 

a series of high resolution digital elevation models (DEMs) provided in raster format. In 

this study, we used the highest resolution DEMs available, which have a resolution of 2m 

per pixel and cover a depth range of 2-84m. These maps have a reported horizontal 

position accuracy of ± 2m and vertical accuracy of ± 5cm (CSMP 2010). 

A range of other habitat variables were derived from the DEM using the Spatial 

Analyst toolbox in ArcMap (Environmental Systems Research Institute, ESRI). Slope 

and slope-of-the-slope were calculated using the slope function in the Spatial Analyst 

toolbox. Grids of vector ruggedness measure (VRM), a rugosity metric, were created 

using the Benthic Terrain Modeler toolbox. VRM measures terrain ruggedness as the 

variation in the 3-dimensional orientation of grid cells in a DEM (Hobson 1972, 

Sappington et al. 2007). VRM is based on a user-specified neighborhood of cells and can 

thus be calculated at multiple spatial scales. Here, VRM rasters were created at six scales 
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ranging from fine to broad:  6, 10, 50, 118, 198, and 498 meters. These scales correspond 

to the neighborhood size used in raster creation (e.g. VRM6 used to a neighborhood of 6 

x 6 meters).  

Rasters denoting substrate type (rough/smooth classification) and topographic 

position index (TPI) were provided by the CSMP. The substrate raster is based on the 

VRM6 raster, however it has been reclassified such that values below a cutoff are 

considered smooth (soft sediment) and higher values are considered rough (hard 

substrate). TPI is a second order derivative that describes a given point based on its 

surroundings by comparing the elevation of each cell in a DEM to the mean elevation of 

neighboring cells (Weiss 2001, Lundblad et al. 2006). High TPI values indicate peaks and 

ridges, whereas low values indicate valleys. Like VRM, TPI can be calculated at multiple 

scales. The CSMP calculated TPI using an annulus neighborhood with 20m, 50m, and 

250m outer radii to yield fine, medium, and broad scales, respectively (labeled hereafter 

as TPI20, TPI50, and TPI250). 

 

SCUBA-based Visual Surveys 

 Survey stations were selected across both sites based on a stratified random 

sampling design in order to ensure that a broad range of habitat types were surveyed. 

Strata were defined by two depth zones (10-20m and 20-30m), three substrate types 

(hard, soft, and mixed), and three levels of habitat complexity (low, med, and high). 

Using ArcMap, a grid of 120 x 120m blocks was overlaid across the two sites. Mean 
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depth, percent hard substrate, and habitat complexity were extracted for each block using 

the DEM, substrate, and VRM6 rasters, respectively. Stations were then chosen at 

random from each combination of variables (e.g. 10-20m, hard, high-relief). Since 

smooth values in the substrate raster are equivalent to low VRM6 values, blocks 

designated as soft substrate were not further split into varying levels of complexity. A 

total of 46 stations were surveyed across Abalone Point and the Ten Mile SMR (Table 1). 

 Dive surveys of demersal fishes and habitat characteristics were conducted from 

July to September in 2015 and May through August in 2016. Survey locations were based 

on the center point of each station. Upon arrival at a station, a weight attached to a float 

and line was deployed in order to minimize drift away from the actual station coordinates 

as divers descended. Each dive consisted of two 50 x 2 x 2m band transects. After 

descent to the seafloor, divers extended a 10m line from the weight location due north 

before beginning the transect. This was repeated to the south for the second transect. This 

process ensured a distance of 20m between transects in order to reduce the possibility of 

counting the same fish multiple times. Transects were aligned along a rough north-south 

orientation as a safety precaution to limit excessive changes in depth experienced by the 

divers.  
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Table 1: Distribution of sampling stations across sites and habitat strata. 

 

On each transect, one diver conducted fish surveys where all conspicuous fishes 

within the transect volume were counted and identified to the lowest possible taxon 

(IACUC #14/15.F.91-A, 05 May 2015). Several species in this region are too similar in 

appearance to distinguish between species and were therefore placed in broader umbrella 

groups. This applied primarily to two such groups consisting primarily of juvenile 

rockfishes: OYT, which is composed of olive (S. serranoides) and yellowtail (S. flavidus) 

rockfishes, and KGBC, which is an umbrella term used by several other fish survey 

organizations in California that generally includes kelp (S. atrovirens), gopher (S. 

Stratum # of Stations: Abalone Point # of Stations: Ten Mile 

10-20m, hard, high relief 5 5 

10-20m, hard, med relief 5 5 

10-20m, hard, low relief 5 5 

10-20m, soft 2 2 

10-20m, mixed 3 2 

20-30m, hard, high relief 1 1 

20-30m, hard, med relief 1 1 

20-30m, hard, low relief 1 0 

20-30m, soft 1 0 

20-30m, mixed 1 0 
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carnatus), black-and-yellow (S. chrysomelas), and copper (S. caurinus) rockfishes. In 

Northern California, however, kelp rockfish are rare and were likely not observed on our 

surveys. Juvenile quillback (S. maliger) and china (S. nebulosus) rockfish also may have 

been identified as KGBC, since smaller individuals can look similar to the other species 

within this grouping (Flannery 2018). The total length of each fish observed was 

estimated visually to the nearest centimeter. These methods are a modification of the 

protocols used by the Partnership for Interdisciplinary Study of Coastal Oceans (PISCO 

2016). Total lengths were later converted to biomass based on length-weight relationships 

taken from either the literature (Lea et al. 1999, Love 2011) or recfin.org.  

 A second diver followed the fish surveyor along the transect line collecting 

habitat data using a uniform point contact (UPC) design also modified from PISCO 

methods. Depth was measured both at the descent weight and every two meters on the 

transect. Substrate type was recorded every two meters as one of four categories (sand, 

cobble, boulder, and bedrock) based on grain size. Vertical relief, measured as the 

greatest change in reef height within a 0.5 x 1m area surrounding each two meter mark, 

was also recorded as one of four categories: low (0-10cm), medium-low (10cm-1m), 

medium-high (1-2m), and high (greater than 2m). Additionally, compass headings were 

taken every five meters. Heading data, combined with the known transect start 

coordinates, allowed transects to be digitally recreated in ArcMap. Heading 

measurements taken in the field were corrected based on a 14° declination to account for 

the difference between magnetic and true north at the study location. 

 



14 

 

  

Data Analysis 

 While data were collected on all fishes observed, analyses employed a size cutoff 

based on length at one year for each species in order to exclude juveniles. This was 

deemed necessary as many reef associated species exhibit ontogenetic shifts wherein 

habitat requirements differ between juveniles and adults (Love et al. 1991, Stein et al. 

1992, Love 2011). Length at one year was calculated using the von Bertalanffy growth 

equation and published parameters for each species (Cope & MacCall 2005, Jagielo & 

Wallace 2005). The size cutoffs used for kelp greenling and lingcod were 22cm and 

36cm, respectively. After the dive surveys were completed, each transect was digitally 

recreated in ArcMap using compass headings and known transect start coordinates. 

Distances traveled were corrected to account for changes in depth.  

Raster-based habitat variables were extracted to the midpoint of each transect 

using a 25m radius roving window mean within ArcMap’s focal statistics tool. For the 

substrate raster, this yielded the percent of hard substrate within the window (hereafter 

denoted as SUB). Additionally, in situ depth data were attached to each 2m mark along 

the transect to compare SCUBA-based depth data with the remotely sensed DEM. 

Accuracy of the remotely sensed data was tested by comparing DEM derived depth 

against in situ depth at both the weight location and at every 2m mark using non-

parametric Spearman’s rho correlation coefficient. 

 Canonical correspondence analysis (CCA) is an ordination technique that detects 

correlations between two sets of variables (Ter-Braak 1986). CCA was used to determine 
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relationships between fish survey data and in situ habitat variables (i.e. depth, substrate, 

and relief). Although we focus here on kelp greenling and lingcod, CCA did not produce 

reliable results when only two species were used in the analysis. Therefore, in addition to 

kelp greenling and lingcod, we included the 3 other most abundant fish species observed 

(blue rockfish, black rockfish, and striped surfperch). Separate CCA plots were created 

for fish density and biomass. Depth values used were the means of all measurements 

taken on each transect. Each category of substrate and relief was converted to percentage 

per-transect by dividing the number of observations for a given category by the number 

of UPC points on the transect. CCA was carried out in R using the ‘vegan’ package 

(Oksanen et al. 2017). 

 Generalized additive models (GAMs, Wood 2006) were used to create predictive 

models of density and biomass for kelp greenling and lingcod. GAMs are often ideal for 

ecological data as they apply smoothing functions across the data to allow for complex, 

non-linear relationships between a response variable and multiple explanatory variables 

(Zuur et al. 2009). Protocols in Zuur et al (2009) were used for initial data exploration 

prior to the model building process. Presence of outliers and the need for data 

transformations were determined using Cleveland dotplots. SUB was the only highly 

skewed variable so we applied a square transformation. Variance inflation factors (VIF) 

and multipanel scatterplots were used to examine multicollinearity between predictor 

variables. Variables with high VIF values were removed from the analysis until all values 

were below 3.5. After completing these procedures, six predictor variables remained for 
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model building: depth, SUB2, fine-scale VRM (VRM6), broad-scale VRM (VRM498), 

fine-scale TPI (TPI20), and broad-scale TPI (TPI250). 

GAMs were produced in R with the package ‘mgcv’ (Wood 2006). Density 

models for both species were built using a Poisson distribution and log link. The Poisson 

distribution is ideal for count and density data as it assumes non-negative response values 

and the log link ensures that fitted values are also non-negative (Zuur et al. 2009). 

Biomass models were created with a Tweedie distribution and log link to allow for 

continuous data with a substantial zero point mass (Dunn & Smyth 2005). An upper limit 

was set for the degrees of freedom of smoothing functions for all variables to reduce 

overfitting. Degrees of freedom were limited to either 3 or 4 based on visual examination 

of smoothers and by comparing effective degrees of freedom with the basis dimension 

(Wood 2006).  

Model selection was conducted by a backwards stepwise approach in which each 

model started with the full set of six candidate predictor variables. Variables were then 

removed iteratively until Akaike’s information criterion (AIC) values were minimized 

(Zuur et al. 2009). Final models were validated based on protocols given in Zuur et al 

(2009). Model deviance residuals were assessed for normality (Q-Q plot), homogeneity 

of variance (residuals vs fitted values), independence (residuals vs explanatory variables), 

and spatial autocorrelation (residuals vs coordinates). 

Predictive accuracy of each model was assessed using a leave-one-out cross 

validation procedure. Final models were retrained on the dataset after removing a single 

sample and predictions were made for the removed sample. Model accuracy is given as 
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the correlation between these predicted values and field observations using Spearman’s 

rho correlation coefficient. The R package ‘raster’ was used to create predictive maps of 

density and biomass for kelp greenling and lingcod across the study area (Hijmans 2016). 

Predictions were limited to only those values observed in the field for both predictors and 

response variables in order to limit any errors due to extrapolating past the values used to 

train the model. Standard error maps were also produced for each final model to examine 

the spatial distribution of model uncertainty.  
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RESULTS 

A total of 92 transects covering 9200 m2 were conducted across Abalone Point 

(50 transects) and the Ten Mile SMR (42 transects). Mean transect depths based on in 

situ measurements ranged from 11.7m to 25.9m. Depths measured in situ were highly 

correlated with the DEM at both the weight location (Spearman’s ρ = 0.855, p < 0.001) 

and at every two meter mark (Spearman’s ρ = 0.911, p < 0.001). The seafloor substrate 

was composed of 58% bedrock, 8% boulder, 2% cobble, and 32% sand. Vertical relief on 

all transects was 23% low (0-10cm), 58% medium-low (10cm-1m), 14% medium-high 

(1-2m), and 5% high (>2m) relief.  

A total of 21 species were observed during the SCUBA surveys. Fish assemblages 

across both sites were dominated by blue and black rockfishes (42% and 17% of total 

individuals observed, respectively; Fig. 2). Also in high abundance were juvenile 

rockfishes belonging to the OYT and KGBC groups as well as juvenile canary rockfish. 

The most abundant non-rockfish species were kelp greenling, striped surfperch, and 

lingcod. We observed 162 kelp greenling and 76 lingcod during the SCUBA surveys. 

Kelp greenling size frequency distributions show similar patterns between Abalone Point 

and the Ten Mile SMR (Fig. 3). Size frequencies for lingcod were largely similar for 

lingcod above 30cm total length between the two sites, however individuals smaller than 

30cm were observed only at Abalone Point (Fig. 4). 158 kelp greenling and 57 lingcod 

were considered adults after applying size cutoffs and were included in the ordination and 
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modeling analyses. Adult kelp greenling ranged in size from 22 to 46cm total length and 

adult lingcod ranged from 36 to 120cm total length. 

 

 
 

 

Figure 2: Average per-transect densities of all species or species groups observed during 

SCUBA surveys 
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Figure 3: Size frequency distributions for kelp greenling between Abalone Point and the 

Ten Mile State Marine Reserve. 

 

 

Figure 4: Size frequency distributions for lingcod between Abalone Point and the Ten 

Mile State Marine Reserve. 
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Relationships between fish and in situ habitat variables 

 CCA showed significant associations between fish biomass and in situ habitat 

metrics (Fig. 5) (Chi-square, p < 0.05). Overall, the CCA captured 27% of the total 

variation in the species data. The majority of this variation is explained by axes 1 (63%) 

and 2 (24%). Axis 1 was primarily associated with medium-low relief (vector length = 

.99, p < 0.05), which increased along the axis. Medium-high and high relief had large 

vector lengths that decreased along axis 1 (-0.98 and -0.94, respectively), however these 

were not significant (p > 0.05). Depth increased substantially along axis 2 (vector length 

= 0.97), but the relationship was only marginally significant (p < 0.10). Kelp greenling 

biomass was most highly associated with boulder habitats and medium-low vertical relief 

(Fig. 5). Lingcod biomass was greatest in medium-high relief reef structures composed 

primarily of bedrock and, to a lesser extent, cobble. Neither species was associated with 

deep, low-relief, or sandy habitats. While CCA was able to determine relationships 

between fish biomass and in situ habitat variables, CCA based on fish abundance was not 

significant (Chi-square, p = 0.25). 
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Figure 5: Canonical Correspondence Analysis (CCA) on associations between five 

abundant fish species observed at the study site and two categorical habitat variables: 

substrate and vertical relief. Black points are sampling locations, red triangles are species, 

and blue vectors indicate habitat variables. 

 

Generalized additive models: Kelp greenling 

 The chosen GAM for kelp greenling density identified SUB2 and fine-scale 

topographic position as the most important predictors (Table 2, see appendix for full 

model selection table). This model explained 37% of the deviance and had an adjusted R2 

of 0.31. Model predictions of kelp greenling density had an accuracy of Spearman’s ρ = 

0.53. Response curves indicate that density increased with SUB2 initially before leveling 

off (Fig. 6a, see Appendix B for univariate plots of response variables versus each 

predictor variable included in final models). The response curve comparing density with 
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TPI20 showed that density increased with higher values of fine scale topographic 

position, corresponding to relative shallow points on the reef (Fig. 6b). 

Similar to the density model, the selected GAM for kelp greenling biomass 

indicated that SUB2 and TPI20 were the most important predictors (Table 2). The model 

explained 34% of the deviance and had an adjusted R2 of 0.25. Model predictions of kelp 

greenling biomass had an accuracy of Spearman’s ρ = 0.48. Unlike the density response 

curve, biomass had a nearly linear positive relationship with SUB2 throughout all values 

(Fig. 7a). The response curve comparing biomass with TPI20 was similar to the density 

response curve with biomass maximized at relative shallow parts of the reef (Fig. 7b).  

 

Table 2: Final generalized additive models for kelp greenling and lingcod density and 

biomass 

 

Species Formula R-sq. 

(adj.) 

Deviance 

Explained 

(%) 

Kelp 

greenling 

Density ~ SUB2 + TPI20 0.31 36.9 

 Biomass ~ SUB2 + TPI20 0.254 34.4 

Lingcod Density ~ TPI20 + TPI250 0.254 30.1 

 Biomass ~ VRM6 + VRM498 + TPI20 + 

TPI250 

0.409 48.9 
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Figure 6: Generalized additive model response curves for kelp greenling density versus 

(a) (percent hard substrate)2 and (b) fine-scale topographic position index (TPI). Solid 

lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates observed values used 

to train models. 

 

Figure 7: Generalized additive model response curves for kelp greenling biomass versus 

(a) (percent hard substrate)2 and (b) fine-scale topographic position index (TPI). Solid 

lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates observed values used 

to train models.  

a b 

b a 
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Predictive maps produced nearly identical trends in the distribution of both 

density and biomass of kelp greenling (Figs. 8 & 9). The predicted distributions were 

patchy at fine spatial scales (10s of m) and this patchiness was spread evenly on reef 

structures across both sites. Projected values of both population metrics were highest in 

rocky habitats and either low or non-existent on soft sediments. Additionally, the highest 

predicted values were found in areas containing a large number of prominent reef 

outcrops. Maps of the standard error associated with both density and biomass indicated 

low levels of uncertainty across the study area (Figs. 8d & 9d). 
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Figure 8: Predicted kelp greenling density. (a) Map of model predictions across the study 

area. Grey regions indicate areas where no predictions were made; (b) subset of model 

predictions around Abalone Point; (c) subset of model predictions in the Ten Mile State 

Marine Reserve; (d) distribution of standard errors associated with the kelp greenling 

density model. 



27 

 

  

Figure 9: Predicted kelp greenling biomass. (a) Map of model predictions across the 

study area. Grey regions indicate areas where no predictions were made; (b) subset of 

model predictions around Abalone Point; (c) subset of model predictions in the Ten Mile 

State Marine Reserve; (d) distribution of standard errors associated with the kelp 

greenling biomass model. 
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Generalized additive models: Lingcod 

 The chosen GAM for lingcod density included TPI at both fine (20m) and broad 

(250m) scales as the most important predictors (Table 2). This model explained 30% of 

the deviance and had an adjusted R2 of 0.25. Model predictions of lingcod density had an 

accuracy of Spearman’s ρ = 0.36. The response curve of density vs. fine-scale 

topographic position showed that density increased at a relatively slow rate until a TPI20 

value of ~150 at which point density increased more rapidly (Fig. 10a), suggesting that 

lingcod density increases were greatest in habitats characterized by peaks and ridges 

rather than valleys at the 20m scale. This sharp increase may be misleading, however, as 

the standard errors on this part of the curve are substantially higher than at other TPI20 

values. The curve of density and broad-scale TPI depicted a negative relationship with 

the highest densities of lingcod occurring at low TPI250 values, which correspond to 

valleys or depressions at the 250m scale (Fig. 10b). 
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Figure 10: Generalized additive model response curves for lingcod density versus (a) 

fine-scale topographic position index (TPI) and (b) broad-scale topographic position 

index. Solid lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates 

observed values used to train models. 

 

  The final GAM for lingcod biomass found that VRM6, VRM498, TPI20, and 

TPI250 were important predictors (Table 2). The model explained 49% of the deviance 

and had an adjusted R2 of 0.41. Predictions based on this model had an accuracy of 

Spearman’s ρ = 0.30. According to response curves, lingcod biomass was maximized at 

middling levels of fine-scale rugosity (Fig. 11a). The response curve comparing biomass 

with broad-scale VRM indicated that biomass increased steadily with higher VRM498 

values (Fig. 11b). The curve for biomass vs fine-scale TPI was somewhat similar to the 

density curve with biomass showing no increase until a TPI20 value of ~150 (Fig. 11c). 

Again, the standard errors surrounding this region of the curve were quite large. The 

response curve of lingcod biomass and broad-scale TPI showed a complex relationship 

with higher biomass at both relative low points (TPI250 values between -100 and 0) and 

a b 
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relative high points on the reef (values between 200 and 300) (Fig. 11d). Biomass was 

low at both moderate TPI250 values and values over 300.  

Figure 11: Generalized additive model response curves for lingcod density versus (a) 

fine-scale rugosity (Vector Ruggedness Measure, VRM), (b) broad-scale rugosity, (c) 

fine-scale topographic position index (TPI), and (d) broad-scale topographic position 

index. Solid lines = mean, dashed lines = +/- SE. Rug plot along x-axis indicates 

observed values used to train models. 

 

a b

c d 
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Similar to that of kelp greenling, the map of predicted lingcod density was 

relatively patchy across the study area, however the highest densities were concentrated 

around several key areas (Fig. 12a). At Abalone Point, high densities were predicted at 

the edges of rocky habitats on the northern and southern sections of reef as well as the 

center of the main reef (Fig. 12b). The highest predictions in the Ten Mile SMR were 

along the offshore margins of the reef systems (Fig. 12c). Predictions were uniformly low 

in sandy, flat habitats, particularly in the large sand channels between reefs. The 

distribution of standard error associated with the lingcod density model largely followed 

the model predictions with higher predicted densities associated with higher levels of 

uncertainty (Fig. 12d).  

 The distribution of predicted lingcod biomass was more spatially concentrated 

than any of the previous models (Fig. 13a). These concentrated areas were centered on 

the northern, inshore section of the main reef and small sections of the southern reef at 

Abalone Point (Fig. 13b). At the Ten Mile SMR, the highest biomass predictions were 

located in the large reef systems at the north and south ends of the site (Fig. 13c). Again, 

the map of standard error revealed that the distribution of uncertainty closely followed 

the spatial distribution of lingcod biomass (Fig. 13d). 
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Figure 12: Predicted lingcod density. (a) Map of model predictions across the study area. 

Grey regions indicate areas where no predictions were made; (b) subset of model 

predictions around Abalone Point; (c) subset of model predictions in the Ten Mile State 

Marine Reserve; (d) distribution of standard errors associated with the lingcod density 

model. 
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Figure 13: Predicted lingcod biomass. (a) Map of model predictions across the study area. 

Grey regions indicate areas where no predictions were made; (b) subset of model 

predictions around Abalone Point; (c) subset of model predictions in the Ten Mile State 

Marine Reserve; (d) distribution of standard errors associated with the lingcod biomass 

model. 
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DISCUSSION 

Previous work has shown that fishes can exhibit complex relationships with reef 

features in both tropical (Pittman & Brown 2011, Ortiz & Tissot 2012) and temperate 

(Love & Yoklavich 2008, Anderson et al. 2009) environments. In this study, we 

demonstrate that both kelp greenling and lingcod exhibit similarly complex associations 

with bathymetry-derived habitat characteristics. Additionally, we show that the nature of 

these relationships is often dependent on the spatial scale of the habitat features.  

Our results indicate that kelp greenling density and biomass are driven by the 

amount of hard substrate and fine-scale topographic position. Lingcod density was 

primarily associated with both fine- and broad-scale topographic position. Lingcod 

biomass was driven by rugosity and topographic position at fine- and broad-scales. 

Furthermore, we highlight that GAMs are capable of using a combination of remotely 

sensed bathymetric data and SCUBA-based fish surveys to make accurate predictions of 

fish density and biomass into previously unsampled regions of the study area, however 

these models should be tested on an independent dataset in order to fully assess this 

accuracy.  
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Predictor and response variable relationships  

 Fine-scale topographic position was an important predictor in each of the four 

final models. The relationships between topographic position and each response variable 

followed similar patterns with either density or biomass maximized at the highest values, 

indicating that both species share a preference for higher points on the reef relative to the 

immediate (~20 m) surroundings. For lingcod, this fits with Love’s (2011) description 

wherein lingcod are often found sitting atop prominent reef features. While less 

information has been published on the specific habitat requirements of kelp greenling, 

they also seem to be found more often on tops of rocks rather than in cracks and crevices 

(Love 2011, Berger et al. 2015).  

 Depth was not a significant predictor in any of the final models. Previous work 

has shown that depth is an important predictor of fish presence, density, and biomass 

(Young et al. 2010, Wedding & Yoklavich 2015), however these studies surveyed a 

greater range of depths than the present study. Recent work also using SCUBA-based 

GAMs noted that depth contributed to models only when the species depth range was 

contained within the depth range surveyed (Young & Carr 2015). This phenomenon may 

be at play here as well, since the surveys in this study extended to depths of only 26 m 

while kelp greenling and lingcod can be found much deeper (130m and 475m, 

respectively). In order for the effects of depth on fish distributions to be fully realized, 

surveys must cover the full depth range of the species. 
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 Models of density and biomass differed for both species either by the predictors 

present in the final models or the nature of the relationships between a given predictor 

and the response variables. The final model for lingcod biomass included rugosity at fine- 

and broad-scales as predictors, whereas the density model did not. This discrepancy 

between the two models shows that there are different factors driving high abundance and 

high biomass. As observations of higher biomass were driven by the presence of larger 

and likely older individuals, this suggests a potential ontogenetic shift wherein lingcod 

have different associations with habitat as they grow. Previous work has noted that 

lingcod tend to seek out higher relief bottom structure as they age (Miller & Geibel 1973, 

Love 2011). Our results support this, however the varied response of lingcod biomass to 

VRM at different spatial scales indicates that this relationship is more nuanced in that 

lingcod may prefer highly rugose habitats at broad scales and lower rugosity habitats at 

finer scales. 

The response of lingcod to broad-scale topographic position was dependent on 

whether density or biomass was used as the response variable. Density was at its 

maximum at deep points on the reef relative to the surrounding 250m. The biomass 

model, however, showed a complex relationship with broad-scale topographic positon 

with the highest levels of biomass occurring on relatively shallow peaks and ridges. The 

spike in biomass demonstrates that larger individuals are utilizing high points on the reef 

more than smaller fish. While this difference between the two lingcod models could also 

point to the presence of an ontogenetic shift in habitat preference, it may be due to larger 
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lingcod outcompeting smaller individuals for either preferable locations on the reef or 

access to food. 

Competition in this instance assumes that either space in ideal habitats or prey 

items are limited and that lingcod will actively fend off other individuals for access to 

these locations or prey. Others have noted, however, that several lingcod will inhabit a 

single rock or promontory when conditions are favorable (Love 2011) which would 

suggest that the relatively low densities we observed (max 5 individuals / 100m2) are 

insufficient for space-based competition to be a strong contributor to these patterns. 

Furthermore, without more information on prey availability within the study area, it is not 

possible to determine the role of resource competition in driving these model differences. 

The model of kelp greenling density showed a potential threshold effect in the 

response to the amount of available hard substrate. Density increased rapidly with hard 

substrate presence until 55% of the seafloor was hard substrate, at which point density 

then leveled off. The asymptotic nature of the response curve is indicative of a threshold 

where a certain percentage of rock must be present for density to be maximized and that 

greater amounts of hard substrate do not yield increased densities. Interestingly, no such 

threshold could be seen for kelp greenling biomass as biomass was maximized at the 

highest percentages of hard substrate. The effect of this can be seen in the predictive 

maps where hotspots of biomass tended to be further removed from reef edges than 

density hotspots. 

 Our results show that the spatial scale of predictors is an important factor when 

modeling fish distributions. Numerous studies have confirmed this, showing that fishes 
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interact with their environment at multiple spatial scales (Wedding et al. 2008, Anderson 

et al. 2009, Pittman & Brown 2011). Comparison between kelp greenling and lingcod 

models revealed that these species have varied responses to habitat features at fine and 

broad scales. Kelp greenling density and biomass were driven by fine scale topographic 

features whereas lingcod keyed into features at both fine and broad scales.  

This pattern of lingcod responding to broader scale reef features is partially 

supported by differences in home range sizes between the two species. Kelp greenling 

have average home ranges between 500 and 1200 m2 (corresponding to circles with 15 

and 20m radii, respectively), whereas lingcod have average home ranges of 2800 m2 

(30m radius) (Freiwald 2009, Tolimieri et al. 2009). This difference in home ranges, 

however, is on the scale of tens of meters which does not account for the inclusion of reef 

features at the scale of hundreds of meters (i.e. VRM498 and TPI250) in the final lingcod 

models. One key behavioral difference that may lend some inference into this 

discrepancy is the fact that, while they have a high degree of site fidelity around a 

relatively small location of residence, lingcod frequently make short excursions away 

from their home range to feed (Starr et al. 2005, Tolimieri et al. 2009). Conversely, kelp 

greenling tend to stay within their home range for years at a time (Freiwald 2009). Thus, 

the differences in the spatial scale of predictor variables may be driven by differing 

foraging behaviors between the two species.  
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Limitations of methodology 

 A potential pitfall of our survey methods is that two transects were conducted for 

each station, raising issues of pseudoreplication and lack of independence between 

samples (Hurlbert 1984). While we maintained a large (20m) distance between transects 

in order to increase sample independence and tested for spatial independence explicitly 

by plotting model residuals against transect coordinates, the possibility remains that the 

assumption of independence was violated. A more robust way to handle this survey 

design would be to utilize a generalized additive mixed model (GAMM) approach that 

incorporates station as a random effect (Zuur et al. 2009). We attempted to use GAMMs 

initially during the modeling phase of this study, however some important automated 

parameter selection procedures used in GAMs are not available for mixed effect models 

(Wood 2006). The alternative of hand-selecting these parameter values was deemed too 

subjective. Furthermore, attempts to utilize random effects resulted in models failing to 

converge. Future work should likewise attempt to use GAMMs insofar as a reliable set of 

parameter selection criteria can be devised. Alternatively, the use of a non-nested survey 

design would remove the issue entirely.  

 An important caveat of our modeling approach is that all of the predictor variables 

were derived from multibeam bathymetric sonar data. Therefore, our models only 

incorporate the physical structure of the habitat and do not explicitly include other 

potentially important drivers of fish density and biomass such as fishing pressure, 

nutrients, oceanographic conditions, and presence of biogenic habitat. Data for many of 
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these variables are either non-existent for the region or are only available at resolutions 

that are substantially coarser than the bathymetric data. Use of these data types as 

predictor variables when they become available could conceivably improve these models. 

Reliance on these physical habitat characteristics also requires that survey 

locations overlap with the bathymetric maps. Due to difficulties in mapping shallow reefs 

from ship-based sonar systems, many of the shallowest portions of the coast have not yet 

been mapped. While there are specialized vessels capable of conducting bathymetric 

surveys in these nearshore regions, they have not been deployed in the vicinity of the 

study area (http://seafloor.otterlabs.org/descriptions/kelpflydescrip.html). As a result, no 

surveys were conducted within the 0-10 m depth zone, thereby limiting our ability to 

extend our models into these shallow areas. Many fish species along the north coast, 

including kelp greenling, utilize these shallow reefs, particularly where there is high algal 

and surfgrass cover (Love 2011). Incorporating shallow habitats into these models would 

provide valuable information on the distribution and habitat requirements of these 

species. 

In order to effectively capture relationships between fishes and features of their 

habitat within an SDM framework, it is vital that the geographic locations at which fishes 

are observed are reproduced accurately with respect to the bathymetric maps used for 

modeling. Uncertainty of fish locations limits the scales of analysis (Young & Carr 2015) 

which could mask habitat associations at finer scales. Analysis of our data indicated a 

strong correlation between the DEM and in situ depth measurements at both the 

centerpoint of the station and every 2 meters along the transect. This demonstrates that 
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the methods used here to map transect locations (i.e. using a single known geographic 

location for each station) were adequate for the accurate portrayal of survey locations 

even at fine spatial scales.  

Though our results indicated a high degree of agreement, two relatively minor 

changes to the survey methods could further increase the accuracy of our transect 

mapping. First, the use of a weighted transect line, rather than the more common plastic 

lines, would ensure that transects conform to the seafloor more completely. Second, 

placing a marker buoy at the end of each transect would yield an additional two 

geographic locations per station, which would allow for corrections based on the 

discrepancy between mapped transect endpoints and their actual locations. 

Differences in historical fishing pressure between Abalone Point and Ten Mile are 

likely minimal given the close proximity of the two study sites as well as their similarity 

in seafloor topography. As such, insights into the effects of fishing on the model results 

are not possible without high-resolution data on past and present fishing effort within the 

study area. Alternatively, there may be an opportunity to examine the effects of fishing 

on kelp greenling and lingcod habitat use by revisiting these sites after a sufficient 

amount of time has elapsed since the establishment of the Ten Mile SMR for potential 

reserve effects to be realized. This could also yield information on how increased fish 

density may affect habitat associations if strong reserve effects are observed. 

 The temporal and spatial extent of the surveys plays an important role in the 

interpretation of our findings. The surveys used here were conducted in summer months 

between 2015 and 2016 and therefore do not incorporate seasonal and long-term changes 
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in fish abundance and biomass. Furthermore, these two years were peculiar for the study 

region as they were marked by an extreme warming event which has been linked to a 

number of widespread ecological changes (Kintisch 2015, OPC 2017). These surveys 

also spanned a relatively small length of the California coastline, thereby preventing 

inferences into patterns of fish distributions at larger, regional scales. Young and Carr 

(2015) used a similar GAM framework to model fish density across much of central 

California, which allowed them to incorporate broad-scale habitat variables including 

kelp biomass and wave orbital velocity. The scale of their survey data also enabled them 

to make estimates of fish density across an MPA spanning roughly nine kilometers of 

coastline. By including long-term datasets that span a large geographic range into this 

modeling framework, future work could examine any potential changes in the habitat 

requirements of these fishes through time as well as in the context of MPA effects and 

broad-scale oceanographic phenomena.  

 It is important to note that the models used here tend to work best for benthic-

oriented species in high abundance. Young and Carr (2015) suggest that low observation 

rates were likely responsible for their models failing to show strong relationships between 

environmental variables and two of the fish species included in their study, kelp greenling 

and tubesnout (Aulorhynchus flavidus). In the current study, the reduced accuracy of the 

models for lingcod compared to those of kelp greenling may also be due to fewer 

observations, as lingcod were absent on 60% of all transects whereas kelp greenling were 

absent on 36% of transects. While certain distribution families used in GAMs (e.g. 

Poisson, Tweedie) are able to handle some amount of zeroes in the data, other model 
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types such as zero-inflated or hurdle models may be more suitable (Zuur et al. 2009). It is 

possible that such an approach could reduce uncertainty at locations where predictions 

indicated high habitat suitability but zero individuals were observed.  

 The present study focused solely on adult kelp greenling and lingcod and 

excluded juveniles in order to account for differences in habitat preference between 

juveniles and adults. Kelp greenling juveniles tend to be found in the intertidal and 

shallow (<10m) subtidal, whereas adults inhabit a broader range of depths from the 

intertidal to 130m (Love 2011, Berger et al. 2015). Juvenile lingcod settle in low 

complexity, sandy habitats before moving to progressively more complex environments 

as they grow (Miller & Geibel 1973, Love 2011). Exclusion of these individuals was 

prudent as their habitat preferences are distinct enough as to warrant their own separate 

analyses. On our surveys, observations of juveniles were too sparse to conduct such 

separate analyses.  

A total of four juvenile kelp greenling and 19 juvenile lingcod were removed 

prior to analysis. The four kelp greenling were found in habitats not distinctly different 

from their larger counterparts: rocky habitats at depths ranging between 10 and 15m. 

Juvenile lingcod, however, were observed more often over either soft or mixed sediments 

rather than the rocky, high relief areas inhabited by adults. All 19 juvenile lingcod 

observations were from Abalone Point, whereas none were observed on transects in the 

Ten Mile SMR. This may be due, at least in part, to sampling differences as soft or mixed 

sediments were targeted at seven Abalone Point stations compared with four stations in 

the Ten Mile SMR. Future studies that explicitly model juveniles could shed further light 
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onto the drivers of this difference as well as provide useful information about the habitat 

requirements of each species at this important life stage. 

 Extrapolation of models to novel environments is often criticized in species 

distribution modeling as species interactions and distributions may change when habitats 

or environmental variables differ (Elith & Leathwick 2009). We sought to reduce these 

errors when developing our predictive maps by limiting predictor variables to only those 

values observed during field surveys. The effect of this can be seen as “holes” in the 

predictive maps where the value of at least one predictor variable fell outside the 

observed range. While these gaps are sparse in the kelp greenling maps, they are 

considerably more extensive for the lingcod models. Increased sampling effort and 

survey designs that specifically target these extreme values could provide more complete 

maps of fish distributions. 

 

Management implications 

 Spatially-explicit, quantitative data on fish distributions can help inform 

management and conservation efforts, particularly for species associated with complex, 

rocky substrates. The modeling framework used in this study is an effective method for 

identifying habitat features that are important for demersal fishes. Delineation of these 

essential fish habitats is a major stated goal of the Sustainable Fisheries Act of 1996 

(SFA 1996) and is a critical component of effective marine reserve siting (Ward et al. 

1999). While juveniles were excluded from analysis in this study, defining the features 
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that constitute ideal habitats for these young individuals will be key for determining the 

full extent of essential fish habitats (Rosenberg et al. 2000). These models can yield 

valuable insights into the life histories of demersal species by examining relationships 

between fishes and characteristics of their habitat. As stock assessments for reef 

associated species are often inadequate, SDMs may also provide a reliable, cost-effective 

means of estimating species density and biomass at regional scales meaningful to 

fisheries managers (Nasby-Lucas et al. 2002).  
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CONCLUSIONS 

The modeling approach used in this study combined remotely-sensed habitat data 

with spatially-explicit, SCUBA-based fish surveys to examine the habitat requirements of 

two demersal fish species in northern California. Here we demonstrate that SDMs can 

provide useful inferences on the relationships between fishes and characteristics of their 

physical habitat, the spatial scales at which these relationships occur, and how these 

relationships affect the distribution of each species across the study area. Our results 

highlight the fact that both kelp greenling and lingcod have complex and varied habitat 

requirements and that their relationship with habitat characteristics may change as they 

grow. Additionally, the nature of these requirements depend, to some extent, on the 

spatial scale at which they are examined. In order for these species to be properly 

managed, efforts must consider a variety of habitat features and spatial scales. By 

expanding this approach using longer datasets that span greater geographic ranges, 

researchers can better understand the habitat requirements of demersal fish populations, 

help inform the ideal siting of marine reserves, and provide accurate stock estimates of 

important fish species. 
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APPENDIX A 

Appendix A. Backwards stepwise model selection tables used to select final models for 

each of the four response variables: (A) Kelp greenling density, (B) Kelp greenling 

biomass, (C) Lingcod density, and (D) Lingcod biomass.  

 

A.  

 

Formula R-sq. 

(adj.) 
Deviance 

Explained 

(%) 

AIC 

Kelp greenling density ~ Depth + SUB2 + VRM6 +      

VRM498 + TPI20 + TPI250 

 

.337 43.8 

 

294.1895 

Kelp greenling density ~ Depth + SUB2 + VRM498 + 

TPI20 + TPI250 

 

.319 40.7 292.6760 

 

Kelp greenling density ~ Depth + SUB2 + TPI20 + 

TPI250 

 

 

.326 40.3 291.2203 

Kelp greenling density ~ Depth + SUB2 + TPI20 

 

 

.319 38.7 291.8041 

Kelp greenling density ~ SUB2 + TPI20 

 

 

.31 36.9 290.5798 

Kelp greenling density ~ SUB2  

 

 

.244 33.1 295.5677 
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B.  

 

Formula R-sq. 

(adj.) 
Deviance 

Explained 

(%) 

AIC 

Kelp greenling biomass ~ Depth + SUB2 + VRM6 +      

VRM498 + TPI20 + TPI250 

 

.27 38.4 1090.957 

Kelp greenling biomass ~ Depth + SUB2 + VRM498 + 

TPI20 + TPI250 

 

.279 38.3 1089.046 

Kelp greenling biomass ~ Depth + SUB2 + VRM498 + 

TPI20 

 

.274 36.6 1088.708 

Kelp greenling biomass ~ SUB2 + VRM498 + TPI20 

 

 

.26 34.9 1087.392 

Kelp greenling biomass ~ SUB2 + TPI20 

 

 

.254 34.4 1086.941 

Kelp greenling biomass ~ SUB2  

 

 

.205 32.2 1088.733 
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C.  

 

Formula R-sq. 

(adj.) 
Deviance 

Explained 

(%) 

AIC 

Lingcod density ~ Depth + SUB2 + VRM6 + VRM498 + 

TPI20 + TPI250 

 

.313 37.0 186.2230 

Lingcod density ~ Depth + VRM6 + VRM498 + TPI20 + 

TPI250 

 

.315 37.1 184.5080 

Lingcod density ~ Depth + VRM6 + TPI20 + TPI250 

 

 

.317 36.3 183.9734 

Lingcod density ~ Depth + TPI20 + TPI250 

 

 

.282 33.0 183.9876 

Lingcod density ~ TPI20 + TPI250 

 

 

.254 30.1 183.8107 

Lingcod density ~ TPI20 

  

 

.127 20.0 191.0412 
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D. 

 

Formula R-sq. 

(adj.) 
Deviance 

Explained 

(%) 

AIC 

Lingcod biomass ~ Depth + SUB2 + VRM6 + VRM498 + 

TPI20 + TPI250 

 

.408 60.5 816.2784 

Lingcod biomass ~ Depth + VRM6 + VRM498 + TPI20 + 

TPI250 

 

.422 51.1 813.7402 

Lingcod biomass ~ VRM6 + VRM498 + TPI20 + 

TPI250 

 

.409 48.9 812.6507 

Lingcod biomass ~ VRM6 + VRM498 + TPI250 

 

 

.379 43.9 814.3767 

Lingcod biomass ~ VRM6 + TPI250 

 

 

.229 37.2 821.5283 

Lingcod biomass ~ VRM6 

  

 

.063 21.4 831.4932 
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APPENDIX B 

Appendix B. Scatterplots of each of the four response variables: (A) Kelp greenling 

density, (B) Kelp greenling biomass, (C) Lingcod density, and (D) Lingcod biomass 

versus each predictor variable included in the final models. 

 

A. 
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