
AN EXAMINATION OF WATER CONSUMPTION DURING AND AFTER SEVERE 

DROUGHT IN COASTAL STANDS OF DOUGLAS-FIR IN THE  

PACIFIC NORTHWEST  

 

By 

 

Kirsten Reddy 

 

 

A Thesis Presented to 

The Faculty of Humboldt State University 

In Partial Fulfillment of the Requirements for the Degree 

Master of Science in Natural Resources: Forestry, Watershed, and Wildland Sciences 

 

Committee Membership 

Dr. Andrew Stubblefield, Committee Chair 

Dr. Lucy Kerhoulas, Committee Member 

Dr. Rosemary Sherriff, Committee Member 

Dr. Alison O’Dowd, Program Graduate Coordinator 

 

December 2017



 

ii 

 

ABSTRACT 

AN EXAMINATION OF WATER CONSUMPTION DURING AND AFTER SEVERE 

DROUGHT IN COASTAL STANDS OF DOUGLAS-FIR IN THE  

PACIFIC NORTHWEST 

 

Kirsten Reddy 

 

The Pacific Northwest region is predicted to encounter rising temperatures over 

the next century, ultimately leading to less water storage during seasonal drought periods.  

Vast coniferous forests dependent upon this storage and will encounter periods of 

increased stress due to the lessening of available water supply. Under these conditions, 

stream flows will be directly affected by the forests competing for freshwater sources. 

Thinning treatments have been investigated as a means to compensate for increased water 

use by even-aged forest stands left over from past logging-practices.   

This study was completed on two sites within Humboldt County, CA: one inland 

site with a relatively dry climate and one coastal site with a wetter climate. Thinning 

treatments were implemented at the dry site in fall of 2014, while the wet site underwent 

thinning treatments in 2009.  For this study, eight sample Douglas-fir trees were chosen 

at each site representing various sizes and levels of competition. Sap flow measurements 

were taken during the summer drought period in 2015 and 2016. Water use was 

compared between trees, sites, and sample periods, with a focus on the differences 

between 2015, the fourth year in a 4-year drought, and 2016, an exceptionally wet year.  

Patterns of water use were strongly affected by the drought, manifested as high nighttime 
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water use due to cavitation and increased dependency on bole water storage. Adaptive 

water use strategies of the old-growth sample tree (diameter at breast height (DBH) = 104 

cm) and increased water allocated to sample trees receiving more solar radiation were 

observed as well.  Despite an above average annual precipitation in 2016, increased water 

stress was evident at the dry site, likely due to understory regeneration following thinning 

treatments and increased growth characteristic of a re-watering year.  DBH was 

positively correlated with water use during the lower stress 2016 growing season, while 

poorly correlated during preceding season of high stress, signifying that other factors may 

play a more important role when assessing water use during times of low water 

availability.  Local competition was not found to significantly influence tree water use.  
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INTRODUCTION 

Once an intact old-growth ecosystem, the landscape of the Pacific Northwest 

(PNW) has experienced many changes since European settlement.  Douglas-fir 

(Pseudotsuga menziesii) is one of the most prominent species that comprise the 

dominantly coniferous forests of this region (Halpern and Spies, 1995). Clear-cutting has 

been the primary means of harvesting, which has led to the replacement of old-growth 

forests, or virgin stands that have reached maturity, with dominantly younger, denser 

forest stands (Palais et al., 1950; Harr, 1976; Krankina et al.2012).  Compared to old-

growth forests, this young, dense forest structure uses more water (Moore et al., 2004), 

and therefore, likely yields less water to the watershed. 

Conifers typically increase sapwood, root, and leaf area growth in response to 

increased water availability following thinning treatments (Black et al.1980, Morikawa et 

al. 1986, Aussenac and Granier 1988, Shelburne et al. 1993).  Decreased among-tree 

competition increases soil water availability and ultimately growth in residual trees.   

Although opening the canopy through thinning initially increases soil water evaporation, 

this water loss is typically less than the amount of water gained via increased throughfall 

precipitation and decreased competition such that per tree water availability increases 

(Morikawa et al., 1986). While water yield to streams can increase directly after harvest 

(Stednick, 1996; Troendle, 1983; Bosch and Hewlett, 1982), this increase declines as 

forests regenerate due to the relatively high sapwood area associated with young growth 

and the acceleration of understory growth from reduced competition and increased solar 
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radiation (Lesch and Scott, 1997; Bosch and Hewlett, 1982).  Although this new 

regeneration can recover the pre-thinning water balance in the years directly following 

treatment (Aussenac and Granier, 1988), stand water use is expected to decrease overall 

once an uneven-aged growth structure is established.   

 The correlation between sap flow rates and water yield has proven to be the 

primary means of measuring the efficiency of forests in water production (Stednick, 

1996). This correlation reflects how much water individual trees or forest stands 

consume, and therefore, how much water is able to enter the water table.  Measuring sap 

flow by the heat pulse method is a reliable technique to gauge tree water consumption 

(Marshall, 1958; Grainier, 1986). As sapwood area size and shape vary, accurate 

measurement of sapwood area is integral to obtain sound sap flow values.  Water yield, a 

reflection of the amount of water available within the soil profile of a watershed, can be 

gauged by soil moisture content and stream discharge.  

 Species, age, and size of trees are major factors in estimating water use.  

Compared to hardwood, coniferous forests tend to have the greatest response to thinning 

treatments on water yield (Bosch and Hewlett, 1981). In an unmanaged ecosystem, 

forests undergo succession until eventually natural death and regeneration of trees are in 

a stable state and stands are characterized by a low-density mixture of tree ages making 

up an old-growth forest structure. Old-growth forests likely yield significantly more 

water than younger forests primarily due to lower sapwood basal area (Vertessy et al., 

2001; Moore et al., 2004).  Despite the greater basal area characteristic of older and larger 

trees, the ratio of active sapwood basal area to inactive heartwood area is greater in 
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younger trees. Because sapwood is the portion of the basal area that transports water 

(Reyes-Garcia et al., 2012), younger trees use more water per stem.  Taking into account 

these characteristics, and the historically dominant practice of clear-cutting, the PNW is 

home to vast areas of young forest stands that presumably consume high amounts of 

water.   Based on these trends, implementing thinning treatments to encourage old-

growth structure could increase potential for higher water yields.   

 If climate predictions are correct, spatial distribution and timing of precipitation 

over the next century in the PNW will lead to lower soil water availability. This decrease 

in soil water availability will also be in part due to increased evaporation and sap flow in 

response to predicted warmer temperatures and longer growing seasons (Juice et al. 2016, 

Mote and Salathe Jr. 2010, Mote et al. 2003). Sap flow rates are positively correlated to 

solar radiation, as is evident in the typical diurnal pattern of sap flow (Cermak et al. 

2007). Higher sap flow rates tend to exist in trees oriented on slopes facing the path of the 

sun, on south-facing aspects in the Northern Hemisphere and on north-facing aspects in 

the Southern Hemisphere (Chirino et al. 2011). However, there is little research on how 

tree and stand spatial distribution influence stand water consumption and spatial 

distribution is seldom brought into water balance models (Kostner et al., 1998).   

Increasing temperatures will also most likely increase the danger of cavitation and 

embolism in PNW coniferous forests.  Cavitation and embolism, the formation of 

gaseous cavities in water conducting xylem tissue due to excessively high water tension, 

reduce tree hydraulic capacity (Tyree and Sperry, 1989). In Douglas-fir, and many other 

tall tree species, vulnerability to cavitation increases with age and size, due to increased 
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height-related hydrostatic tension (Domec and Gartner, 2001).  In response to high 

cavitation rates, large old trees can shift to bole-stored water use rather than soil water 

during the day; depending on the amount of basal area attributed to large old trees within 

a stand, this could potentially affect forest water balance. With temperatures in this 

region predicted to warm over the next century (Mote et al., 2003), it is vital that we 

understand how periods of drought and recovery could influence basic forest water use 

trends. 

 The purpose of this study is to explore how local density, tree size, and spatial 

distribution affect Douglas-fir water use in the coastal PNW during and after severe 

drought.  As declining stream flows over the last century are likely attributable, at least in 

part, to widespread young dense forests typical of post-European settlement (Luce and 

Holden, 2009), restoration efforts in these even-aged stands will likely increase. Thus, 

there is a need to understand the effects of restoration on forest water balance during the 

regeneration period, a period with potentially higher water use due to higher sapwood 

areas, following these extensive landscape-scale treatments. The specific objectives of the 

study were to: 

1. Compare water use between old and young trees under seasonal and long-term 

drought conditions. 

2. Compare tree water use in wet and dry sites under seasonal and long-term drought 

conditions. 

3. Determine if neighborhood density significantly influences the amount and timing 

of tree water use. 



5 

  

4. Evaluate how thinning treatments influence water use during and after drought. 

California has recently experienced its most severe drought on record, lasting 

from the fall of 2011 through the 2015 water year. 2016 was considered a re-watering 

year, having received above average precipitation in the northern regions where most 

water storage originates for the rest of the state (Hanek et al., 2015). This study was 

conducted during the summer seasonal drought periods of 2015 and 2016, providing an 

opportunity to evaluate the effects of a critical long-term water shortage on coniferous 

forest stands in northern California. We expect to find evidence of drought stress at both 

sites during the 2015 sample period, and signs of stress relief in the following re-watering 

year. 
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MATERIALS AND METHODS 

To meet these objectives, sap flow rates of Douglas-fir trees of varying sizes (with 

DBHs’ ranging from 17 to 104 cm), as well as local and stand densities were measured at 

two locations in the summer of 2015 and the spring and summer of 2016. This study was 

performed on two sites in Humboldt County, northern California, USA.; the L.W. Schatz 

Demonstration Tree Farm in northern Humboldt County and on private land near Petrolia 

in southwestern Humboldt County.  The inland site belongs to the Mad River watershed 

and the coastal site is within the Mattole River watershed. Both sites have stands 

consisting dominantly of Douglas-fir of varying ages and densities.  Although both basins 

have a Mediterranean climate with cool rainy winters and hot dry summers, the Mattole 

River watershed receives higher annual rainfall and has greater fog influence.  For this 

reason, we refer to the inland L.W. Schatz Demonstration Tree Farm site as the dry site 

and the coastal Petrolia site as the wet site.  

 The wet site is located at 40°28’63.3198” N 124°30’75.233” W (Figure 1). The 

stand sampled is at a northwest aspect (28 degrees) and at 42° slope. The soil type is 

gravelly loam and belongs to the hydrologic soil type B, which have low runoff potential 

and a water table below 80 cm depth (USDA).  In the 2015 water year, 138.68 cm of 

precipitation fell in this region, compared to 243.99 cm over the 2016 water year.  The 

mean precipitation over a given water year for this region is about 190.5 cm  (NOAA)).  

Temperature and precipitation data were obtained from a station in Honeydew, Ca, 

located about 16.5 km away from the wet site. 
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 The dry site is located at 40°77’11.09” N 123°86’90.81” W (Figure 1).  The stand 

sampled is at a northwest aspect (14 degrees) and also at a 42° slope. The soil type is 

gravelly clay loam, and is typically xeric in nature during summer drought periods with 

high runoff potential year-round (USDA). Over the 2015 water year, 119.23 cm of 

precipitation fell in this region, while 162.2 fell over the 2016 water year.  The average 

rainfall for this area is about 137.16 cm (NOAA). Temperature and precipitation data was 

collected from a station in Blue Lake, Ca, located about 10.5 km away from the dry site. 

 The dry site was experimentally thinned with variable density rentention (VDR) 

treatments in fall of 2014.  Treatments thinned high-density young stands to accelerate 

pre-European forest structure, reduce stand density, increase water dividends, reduce fire 

risk, and promote growth and drought resilience in remaining trees.  Across six 0.1 ac 

plots, basal area retention ranged from 15% to 45%; two control plots (0.1 ac) were left at 

100% retention (Figure 2).  After treatment, the site was reforested with Douglas-fir and 

coast redwood (Sequoia sempervirens) saplings in the spring of 2015.  Although thinning 

treatments were implemented at the wet site in 2009, the local densities (within 6 meters 

of basal area) are still greater than the control plots’ basal areas at the dry site. 

 At each study site, eight sample trees were chosen to represent a wide range of 

sizes and neighborhood competition levels. The trees available for selection were limited 

by the length of cord running from tree to data logger, allowing for a maximum distance 

of 100 feet from centrally placed data loggers.  Design of the variable density thinning 

experiment at the dry site also influenced which trees were chosen in an effort to sample 

trees under varying levels of local competition.  
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The sap flow method using thermal dissipation probes was used to record sap 

flow velocities and quantify water consumption (Granier, 1985, 1986, Lu et al., 2004).  

This method has been tested and verified against other techniques (Lu et al., 2004).  Two 

holes were drilled into each sample tree through the xylem tissue after the bark was 

cleared away from the immediate area.  One probe has a heating element and a 

thermocouple wire, which is cooled in proportion to the amount of sap flowing through 

the sapwood area, while the second probe measures the ambient sap temperature as a 

reference.  The differences in temperatures give corresponding sap flow rates (Davis et 

al. 2012).  Three sample periods were chosen for comparison. From the total collected 

data, three sample periods were chosen for comparison. The first two periods, the 

summers (July 23rd through September 13th) of 2015 and 2016, were the primary focus in 

exploring the relationship between tree water use and drought, with additional analysis of 

a third period (March 1st to April 5th, 2016) to capture wet season trends.  

One breast height (1.37 m) core was taken from each sample tree using an 

increment borer. From these cores, estimates of sapwood thickness were made visually 

by inspecting the wood laid over a light source; translucent wood was deemed sapwood 

and opaque sections were deemed bark or heartwood.  Quantitative descriptions (based 

off metric measurements) of evenness of sapwood thickness taken from the stumps of 

trees cleared from the thinned plots indicated that the sapwood areas were uniform. From 

this observation, we concluded that one core sample was sufficient for estimating total 

cross sectional sapwood area.  DBH was also measured for each tree to obtain tree radius. 
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Bark thickness and heartwood radius were subtracted from the total radius to obtain a 

sapwood radius that was then used to calculate sapwood area: 

 𝑆𝐴 = 𝜋(𝑅𝑡2 − 𝑅ℎ2)    (1) 

where SA is sapwood area, Rt is tree radius (without bark), and Rh is heartwood radius.  

An index of tree vigor (TVI) was calculated as the ratio of total basal area over sapwood 

area for each sample tree to evaluate tree vitality, where a greater TVI is generally 

associated with increased resilience (Oren et al., 1985). 

Probe pairs (heated and reference; Dynamax, Houston, TX), were installed on the 

north side of each sample tree.  Probes were then connected to centrally located data 

loggers with wire cables. To control against external forces, thermal shielding was 

installed and heating elements were turned off for a 48-hour period to ensure that sunlight 

was not influencing probe temperature readings.  Temperature readings were taken every 

60 seconds and recorded by Campbell Scientific (Logan, UT) CR1000 data loggers every 

30 minutes throughout each sample period. 

Average sap flow velocity V (cm s-1) was calculated as follows: 

 𝑉 = 0.0119 ∗ 𝐾1.231    (2) 

where the dimensionless parameter K is calculated as: 

 K = (∆Tm – ∆T)/∆T    (3) 

and ∆T is the measured difference in temperature (°C) between the heated probe and the 

reference probe and ∆Tm is the maximum value of ∆T when sap flow is zero within a 24-

hour period.  Sap flow velocity is converted to sap flow rate (cm3 s-1) by multiplying V by 

tree sapwood area.  The sap flow rate was then calculated by summing rates over the 
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sampling period.  Daily averages and seasonal sums were then made from these readings.  

Finally, sap flux density (liters/cm2/day) was calculated by dividing sap flow (liters/day) 

by sapwood basal area (cm2).  

Monthly soil moisture levels were collected by gravimetric soil sampling methods 

(DeAngelis, 2007) performed by weighing soil samples before and after drying.  The 

samples were taken at roughly 15 cm depth by hand in the field at random locations, but 

always at three different elevations within the study sites.  At the dry site, sample 

collection location fell within three of the VDR plots (Figure 2). At the wet site, 

designated areas for random sample collections were associated with landmarks.  Soil 

moisture probes were also installed, but due to technical difficulties there was insufficient 

data for analysis. 

During the summer sample period of 2016, stream discharge estimations were 

made using the mechanical current-meter method (USGS, 2016) at the closest stream to 

each plot.  Measurements were taken in Maple creek, the watershed of the dry site, and 

Mill Creek, the watershed of the wet site, (Figure 1).  Weather data, including 

precipitation and temperature, was obtained from local weather stations (Honeydew 1 

SW, CA; Blue Lake 0.6 NNW, CA) for the duration of each sample period.   

At the dry site, total coniferous cover was calculated within each VDR plot before 

and after thinning treatments. At both the dry and wet site, total basal area was calculated 

within the surrounding area of each sample tree at variable distances of 6 meters. This 

distance was deemed to encompass roots from neighboring Douglas-fir trees competing 
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for the same water within the soil profile (Mauer and Palatova, 2012), and therefore, an 

appropriate reflection of local density. The results are presented in Table 6.   

Nighttime sap flow was distinguished from daytime sap flow by summing all sap 

flow recordings between sunset and sunrise.  Timing of sunrise and sunset changed 

throughout the sample periods and was determined by the Julian Day and geographical 

coordinates of the study sites (US Naval Observatory, 2016).  The percentage of 

nighttime sap flow was found as the percentage of nocturnal sap flow out of the entire 24-

hour day (Phillips et al., 2010).  Finally, the timing of the peak sap flow rate relative to 

the first and last day of the summer sampling period was determined for each sample tree. 

Regression equations were developed between seasonal water use, DBH, and 

sapwood area.  Multi-regression linear models were run (R Studio, version 3.4.2) in order 

to highlight any significant trends and relationships between sap flux, tree characteristics, 

and stand characteristics. Comparisons were made using paired t-tests and ANOVA.   
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Figure 1. Map of Humboldt County, California.  The triangle indicates the location of the 

dry site and the star indicates the location of the wet site. 
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Figure 2.  Map of the dry study site located in Maple Creek, California, showing the 

locations of each sample tree, as well as other trees within each plot.  The orange dots 

represent the sample trees and are sized by order of DBH, while the green dots represent 

other trees within study plots and are not sized according to DBH.  Plot number and level 

of variable density retention are listed within each corresponding plot.   
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Figure 3.  Map of the wet study site located in Petrolia, California, showing the locations 

of each sample tree, as well as neighboring trees within the plot.  The orange dots 

represent the sample trees and are sized by order of DBH, while the green dots represent 

other trees within study plot and are not sized according to DBH.   
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RESULTS 

Tree characteristics 

Stem diameters (DBH) ranged from 17 to 104 cm for all sample trees at both 

sites, with a mean of 52 cm.  The range was much smaller for the dry site (17 to 61 cm) 

compared to the wet site (32 to 104 cm).  Mean stem diameter (46 cm) was also smaller 

for the dry site compared to the wet site (59 cm).  Stem diameter was a good predictor of 

sapwood area (Figure 4, R2 = 0.92, p < 0.0001). 

Due to the exponential relationship between stem diameter and sapwood area, the 

mean sapwood area of the wet site (1326 cm2) was more than twice that of the dry site 

(620 cm2), despite the mean stem diameter being only about 20% greater at the wet site.  

Mean basal area for the wet site (3142 cm2) was nearly twice that of the dry site (1820 

cm2).  Although the mean tree vigor index (TVI; ratio of basal area to sapwood area) was 

greater for the dry site (2.84) compared to the wet site (2.57) TVI ranges were very 

similar for both sites.  
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Table 1. Individual tree characteristics, including DBH, sapwood area (SA), basal area 

(BA), and tree index (BA/SA) for all sample trees from both sites in Humboldt County, 

California. 

Sample Tree 

DBH 

(cm) 

SA 

(𝒄𝒎𝟐) 

BA 

(𝒄𝒎𝟐) 

Tree Vigor Index 

(BA/SA) 
     

Drier Site:     

S2 17 134 227 1.7 

S33 39 469 1217 2.6 

S38 40 508 1249 2.5 

S4 43 386 1447 3.8 

S3 55 898 2364 2.6 

S35 55 815 2386 2.9 

S9 60 715 2798 3.9 

S43 60 1039 2870 2.8 

Mean 46 620 1820 2.8 
     

Wetter Site:     

P1 32 291 779 2.7 

P2 38 615 1110 1.8 

P3 42 636 1380 2.2 

P5 43 384 1482 3.9 

P7 52 668 2150 3.2 

P9 104 3721 8559 2.3 

P10 78 1994 4838 2.4 

P11 78 2297 4838 2.1 

Mean 59 1326 3142 2.6 
     

2-Site Mean 52 973 2481 2.7 
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Figure 4. Diameter at breast height (DBH) versus sapwood area for sampled Douglas fir 

trees at two sites in Humboldt County, California, USA. 
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248 days.  The dry site declined from a peak mean soil moisture content of 26% to a low 

of 5%, a total decrease of about 80% over 309 days. 

Mill Creek (wet site) and Maple Creek (dry site) stream discharge measurements 

indicate a steady decrease in flow in both streams between late June and late September 

2016 (Figures 7 and 8).  However, the results for Mill Creek may have been affected by 

outside influences other than precipitation events such as water withdrawn by private 

parties. Water may have been withdrawn during the first three sample days, June 17th and 

24th and July 1st, and then stopped before the fourth sample day on July 8th. This would 

explain the rise in flow on July 8th with no precipitation events having taken place, as 

well as the following steady decline that is attributable to natural summer flow regime.    
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Table 2. Percentages of soil moisture gathered from samples taken by hand at 15 cm 

depth at three elevations at the dry site located in Maple Creek, California.     

 Upper Mid Lower  

Date Plot #5 Plot #9 Plot #14 Mean 

7/22/2015 7 8 11 8 

9/2/2015 4 6 6 5 

10/2/2015 13 5 13 10 

11/2/2015 27 20 29 25 

11/17/2015 26 24 28 26 

12/4/2015 14 33 17 21 

1/4/2016 20 16 23 20 

2/4/2016 14 17 16 16 

4/7/2016 16 18 15 17 

4/30/2016 15 18 19 17 

5/11/2016 14 15 15 15 

6/18/2016 11 13 13 12 

7/10/2016 10 12 - 11 

8/4/2016 6 7 6 7 

8/25/2016 2 10 5 6 

9/21/2016 6 6 4 5 

10/5/2016 7 13 9 10 
     

Mean 13 14 14 14 

 

 
Figure 5. Graph showing the percentages of soil moisture content found in each sample 

taken at the dry site located in Maple Creek, California, spanning over the sample period 

lasting from July 22, 2015 through October 5, 2016.  
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Table 3.  Soil moisture data gathered from samples taken by hand at three different 

elevations at the wet site located in Petrolia, California. 

Date 

Upper 

% Moisture 

Mid 

% Moisture 

Lower 

% Moisture Mean 

7/10/2015 17 16 17 17 

8/10/2015 12 15 13 13 

9/5/2015 17 14 13 15 

9/26/2015 17 12 16 15 

11/8/2015 9 14 19 14 

11/30/2015 23 20 24 22 

12/10/2015 34 31 31 32 

1/23/2016 28 28 35 30 

2/19/2016 27 22 28 26 

3/4/2016 29 22 25 25 

3/27/2016 24 26 23 24 

5/1/2016 21 23 21 22 

6/10/2016 26 18 22 22 

6/17/2016 23 22 21 22 

7/7/2016 14 15 15 15 

7/22/2016 16 14 17 16 

8/14/2016 12 14 14 13 

9/27/2016 15 15 15 15 

Mean 21 19 21 20 

 

 

Figure 6.  Graph showing the percentages of soil moisture content found in each sample 

taken at the wet site located in Petrolia, California, spanning over the sample period 

lasting from July 10, 2015 through September 27, 2016. 
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Figure 7.  Stream discharge measurements over the summer sample period of 2016 at 

Mill Creek, California (wetter site). 

 

 

Figure 8.  Stream discharge measurements over the summer sample period of 2016 at 

Maple Creek, California (drier site). 
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Sap Flow 

Weekly Summations 

 

Sap flow decreased throughout the 2015 summer sampling period for all trees at 

both the wet and dry sites (Figures 9 and 10).  Sap flow patterns coincided with those of 

precipitation, decreasing on precipitation days and then distinctly increasing in the days 

following.  This pattern was more prominent in larger trees.  In most cases, the degree to 

which a tree responded to precipitation events increased with DBH.  The duration of 

increased sap flow following a precipitation event also increased with DBH (Figure 10). 

There are a few instances where sap flow showed an increase and decrease without a 

corresponding precipitation event.  Precipitation data was collected from local weather 

stations located at distances of greater than 8 km away from each study site. Therefore, 

we assume that either rainfall took place at our study site and not at the location of the 

weather station, as microclimates are prominent in these regions, or there was heavy 

cloud cover and/or fog that may have caused the sample trees to become less active. 

The wet site, with a mean DBH ~10 cm greater than that of the dry, had much 

more variation in sap flow between trees.  Notably, the drop in sap flow over the season 

was more exaggerated at the dry site and took place at a faster rate compared to the wet 

site. Compared to summer, spring sap flow was much more variable within each site 

(Figures 11 and 12), likely due to the greater and more frequent precipitation events 

during this season.  Sap flow increased slightly during spring as solar radiation increased 

and winter transitioned to summer. 
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In the drought year of 2015, the steep descent in sap flow begins much earlier 

(Figure 13) than in the re-watering year of 2016 (Figure 14). This autumnal descent in 

sap flow occurs at the beginning of August at the dry site and the end of August at the 

wet site.  Exceptionally, in one wet site tree, the largest tree of the study (DBH = 104 

cm), summer sap flow increased all the way to the end of August before starting to 

decrease (Figure 14). 
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Figure 9.  Weekly sap flow summations for all sample trees at the dry site, located in 

Maple Creek, California, over the summer sample period of 2015, lasting from July 23rd 

to November 5th. 
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Figure 10.  Weekly sap flow summations for all sample trees at the wet site, located in 

Petrolia, California, over the summer sample period of 2015, lasting from July 23rd to 

November 5th. 
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Figure 11.  Weekly sap flow summations for all sample trees at the dry site, located in 

Maple Creek, California, over the spring sample period of 2016, lasting from March 1st to 

April 5th.   

 

 

 

Figure 12.  Weekly sap flow summations for all sample trees at the wet site, located in 

Petrolia, California, over the spring sample period of 2016, lasting from March 1st to 

April 5th.  We are missing data P5 for the week March 8th through March 15th. 
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Figure 13.  Weekly sap flow summations for all sample trees at the dry site, located in 

Maple Creek, California, over the summer sample period of 2016, lasting from June 26th 

to September 11th. 
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Figure 14.  Weekly sap flow summations for all sample trees at the wet site, located in 

Petrolia, California, over the summer sample period of 2016, lasting from June 26th to 

September 11th. 
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Diurnal Pattern and Daily Max 

Sap flow rose and fell with a diurnal pattern according to solar radiation levels. 

Daily maximum sap flow (SFmax) declined throughout the growing season (Figures 15 

and 16).  The decline in sap flow across the growing season was most pronounced at the 

dry site. For most trees, SFmax occurred later in the day as the season progressed.  

Between the first (July 23rd) and last (September 13th) day of the summer sampling 

period, the time at which SFmax occurred increased at the dry site in 2015 by a mean of 

about 3 hours and in 2016 by a mean of about 4.6 hours; at the wet site, the time at which 

SFmax occurred increased between the start and end of the summer sampling period in 

2015 by a mean of about 4.1 hours and in 2016 by a mean of about 1.6 hours (Table 4).  

Notably, the smaller trees at both sites experienced the greatest delays in the timing of 

SFmax. 

     

Table 4.  Table containing the mean time increase of daily maximum sap flow (SFmax) in 

hours for sample trees at both sites in 2015 and 2016.  Sample trees are divided into two 

categories, large and small, distinguished by having a DBH greater (large) or less than 

(small) the mean DBH of all the sample trees at that site. 

 2015 2016 

Dry 3.0 4.6 

Small 4.4 7.4 

Large 1.8 1.5 

   

Wet 4.1 1.6 

Small 5.8 2.8 

Large 1.3 -0.3 
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Figure 15.  a. Graph showing the first and last week of mean sap flux for the sample trees 

at the dry site, located in Maple Creek, California, for the summer sample period of 2015.  

b. Graph showing the first and last week of mean sap flux for the sample trees at the dry 

site for the summer sample period of 2016.   
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Figure 16.  a. Graph showing the first and last week of mean sap flux for the sample trees 

at the wet site, located in Petrolia, California, for the summer sample period of 2015. The 

increased sap flow rates for September 7th and 8th are in response to increased 

precipitation in the week prior.  b. Graph showing the first and last week of mean sap flux 

for the sample trees at the wet site, located in Maple Creek, California, for the summer 

sample period of 2016.   
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Inter-Annual and Between Site Trends 

To compare water use between years and between sites (Table 5), a common 

sample period, July 23rd to September 13th, was chosen that overlapped for both sites 

during 2015 and 2016. Between 2015 (a drought year) and 2016 (a wet year), average 

total tree water use decreased at the dry site by about 15% and increased at the wet site by 

about 20%.  Remarkably, at the wet site, the largest study tree (DBH = 104 cm) 

drastically increased water consumption by 240% between 2015 and 2016. We note that 

at the dry site, the wet year immediately followed thinning treatments, so this reduction in 

tree water use during the wet year may be due to understory regeneration water use. 

Between our dry and wet sites, mean daily water consumption (L/day) did not 

significantly differ in 2015 (p > 0.05) or 2016 (p > 0.05). At the wet site, DBH was a 

stronger predictor of water consumption in 2016 (p < 0.01) than in 2015 (p < 0.05). 

During the summer sample period in 2015, mean sap flux density was nearly 

identical at both sites (~ 0.0127 liters cm-2 day-1, Figure 17).  However, in the 2016 

summer sample period, mean sap flux density was about 20% greater at the wet site 

(0.0123 liters cm-2 day-1) compared to the dry site (0.0098 liters cm-2 day-1).  In small 

trees at the wet site, sap flux density was positively correlated with TVI in 2015 (Figure 

18, R2 = 0.97, p = 0.01) and 2016 (R2 = 0.93, p = 0.035).  In large trees at the wet site, sap 

flux density was weakly negatively correlated with TVI in 2015 (Figure 18, R2 = 0.32, p 

> 0.05) and 2016 (R2 = 0.65, p > 0.05).  No strong correlations between water use and 

TVI were observed at the dry site. 
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Table 5.  Table containing values for the total sap flow, liters consumed per day, and sap 

flux density, expressed as liters/cm2/day, for two summer comparison sample periods in 

2015 and 2016, lasting from July 23rd through September 13th, for both sites.  The percent 

change in water consumption from the summer sample period in 2015 to 2016 is listed in 

the last column.   

 

Summer 

2015:   

Summer 

2016:    
Dry 

Site:        

Sample 

Tree 

H2O 

Consumed  

Season 

Total (L) 

H2O 

Consumed 

(L/day) 

Sap Flux 

Density 

(L/cm^2/

day) 

H2O 

Consumed  

Season 

Total (L) 

H2O 

Consumed 

(L/day) 

Sap Flux 

Density 

(L/cm^2

/day) 

% Change in 

𝑯𝟐𝑶  

Consumption  

from '15 to 

'16 

S2 116.05 2.23 0.0098 100.80 1.94 0.0085 -13.14 

S3 1642.20 31.58 0.0134 1015.01 19.52 0.0083 -38.19 

S4 1084.33 20.85 0.0144 673.60 12.95 0.0090 -37.88 

S9 3183.25 61.22 0.0219 2868.59 55.17 0.0197 -9.88 

S33 761.20 14.64 0.0120 713.93 13.73 0.0113 -6.21 

S35 1073.60 20.65 0.0087 1046.73 20.13 0.0084 -2.50 

S38 233.25 4.49 0.0036 307.56 5.91 0.0047 31.86 

S43 2698.78 51.90 0.0181 1327.88 25.54 0.0089 -50.80 

mean 1349.08 25.94 0.0127 1006.76 19.36 0.0098 -15.84 
        

Wet 

Site:        

P1 334.89 6.44 0.0083 297.70 5.72 0.0073 -11.11 

P2 263.34 5.06 0.0046 275.63 5.30 0.0048 4.67 

P3 429.80 8.27 0.0060 514.16 9.89 0.0072 19.63 

P5 1381.53 26.57 0.0179 814.20 15.66 0.0106 -41.06 

P7 708.35 13.62 0.0063 327.23 6.29 0.0029 -53.80 

P9 1425.12 27.41 0.0032 4840.89 93.09 0.0109 239.68 

P10 5421.65 104.26 0.0216 6127.40 117.83 0.0244 13.02 

P11 8532.24 164.08 0.0339 7633.97 146.81 0.0303 -10.53 

mean 2312.11 44.46 0.0127 2603.90 50.07 0.0123 20.06 
        

2-Site  

Mean 1830.60 35.20 0.0127 1805.33 34.72 0.0111 2.11 

 

  



34 

  

 

Figure 17. a. Boxplots of sap flux density in liters/cm2/day for both summer sample 

periods for sample trees at the dry site located in Maple Creek, California.   

b. Boxplots of sap flux density in liters/cm2/day for both summer sample periods for 

sample trees at the wet site located in Petrolia, California.   

  

a. 

b. 
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Figure 18. a. Linear model showing relationship between Sap Flux Density and Tree 

Vigor for small sample trees at the wet site, located in Petrolia, California.  b. Linear 

model showing relationship between Sap Flux Density and Tree Vigor for large sample 

trees also at the wet site. 

 

 

Nighttime Water Use  

Nocturnal sap flow, defined as sap flow taking place between sunset and sunrise 

(sunset and sunrise times were adjusted for latitude and day of year), followed an inverse 

y = -0.0195x + 2.8305

R² = 0.3229

y = -0.0315x + 3.0521

R² = 0.6448

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40

T
re

e 
V

ig
o
r 

(B
A

/S
A

)

Sap Flux Density (Liters/cm^2/day)

2015 2016 Linear (2015) Linear (2016)

y = 0.1464x + 1.283

R² = 0.9751
y = 0.3625x - 0.0779

R² = 0.9311

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

T
re

e 
V

ig
o
r 

(B
A

/S
A

)

Sap Flux Density (Liters/cm^2/day)

2015 2016 Linear (2015) Linear (2016)

a. 

b. 



36 

  

pattern to total sap flow for the same sample periods.  Unlike total sap flow, nighttime 

sap flow increased throughout both summers as water availability decreased (Table 6). 

The percent of nighttime sap flow was determined as the percent of sap flow occurring 

between sunset and sunrise out of the total sap flow for a given 24-hour day.  Mean 

nighttime water use varied greatly between sites and between years (Figures 19 and 20).  

In 2015, a higher percent (35%) of water was consumed during the night at the wet site 

compared to at the dry site (22%).  The opposite was true for 2016, when the dry site 

used a higher mean percent of nighttime water (33%) compared to the wet site (22%).  

The change in percent nighttime water use from 2015 to 2016 was significantly different 

between the two sites (p < 0.05).  On average, trees at the wet site used 36% less 

nighttime water in 2016 compared to 2015, while trees at the dry site used 33% percent 

more nighttime water in 2016 compared to 2015.  There was no significant correlation at 

either site between tree size and percent nighttime water consumption, although a few 

trees showed distinctly different trends.  One small tree (DBH = 40 cm) at the dry site 

consumed more than 50% of its water at night during both summers. At the wet site, the 

largest tree (DBH = 104 cm) consumed almost 70% less nighttime water in 2016 than in 

2015, which was more than twice the difference of most other trees at this site. 

Table 6.  The percent of the total water consumed during nighttime hours in 2015 and 

2016 for each sample tree, as well as the rate of change from 2015 to 2016, represented 

as a positive or negative percent change. 

 

Sample 

Tree 

% of Water Use  

Occuring at 

Night '15 

% of Water Use  

Occuring at 

Night '16 

% Change in  

Nighttime Use 

Dry 

Site: S2 29 34 14 

 S33 30 47 57 

 S38 58 57 -2 



37 

  

 

Sample 

Tree 

% of Water Use  

Occuring at 

Night '15 

% of Water Use  

Occuring at 

Night '16 

% Change in  

Nighttime Use 

 S4 11 18 59 

 S3 13 37 183 

 S35 22 31 43 

 S9 16 16 -2 

 S43 14 25 78 

Mean:  22 33 33 
     

Wet 

Site: P1 15 20 29 

 P2 35 27 -24 

 P3 35 22 -39 

 P5 34 29 -4 

 P7 34 27 -20 

 P9 50 16 -69 

 P10 16 16 -2 

 P11 20 23 14 

Mean:  35 22 -36 
     
2-Site Mean: 27 28 3 
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Figure 19.  Percentage of sap flow occurring during nighttime at the dry site, located in 

Maple Creek, California, during the summer sample period of a. 2015 and b. 2016. 
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Figure 20. Percentage of sap flow occurring during nighttime at the wet site, located in 

Petrolia, California, during the summer sample period of a. 2015 and b. 2016. 
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Local Density 

 

Local tree density was nearly three times greater at the wet site compared to at the 

dry site (Table 7).  At both sites, local density was an insignificant factor in explaining 

sap flow and sap flux density in 2015 and 2016 summer sample periods (p > 0.05).  

This lack of a significant relationship between water consumption and local density 

may be the artifact of a limited sample size. Thus, this relationship warrants further 

investigation with a larger sample. 

Table 7.  Values for local density, defined as cm2 of Douglas-fir basal area at 

breast height within 6 meters of the corresponding sample tree. 

Sample Tree 

 

Local 

Density  

(𝐜𝐦𝟐) 

Dry Site:  

S2 1642 

S33 10956 

S38 1051 

S4 6458 

S3 0 

S35 0 

S9 910 

S43 7394 

Mean 3551 

Wet Site:  
P1 602 

P2               8476 

P3 15834 

P5 8938 

P7 15608 

P9&10 4030 

P11&12 13860 

P13&14 4838 

Mean 9023 

2-Site Mean               6287 

Variable Density Treatments 

At the dry site, although water use was not significantly correlated to VDR or 

coniferous cover (defined as the amount of basal area within each VDR plot) in the 2015 



41 

  

or 2016 summer sampling periods, VDR and coniferous cover were significantly related 

to the change in water use from 2015 to 2016. Trees in high basal area reduction 

treatments had significantly higher water use in 2016 than in 2015 (Table 8, p < 0.05).  

Density retention level was positively correlated with the magnitude of change in tree 

water consumption between the 2015 and 2016 summer sampling periods (Figure 21, R2 

= 0.66, p = .01).  We also found a strong relationship between the inter-annual change in 

water use and post-treatment conifer cover (Figure 21, R2 = 0.82, p = 0.002). 

 

Table 8.  Table listing each sample tree at the dry site with corresponding thinning 

treatments and pre and post coniferous stand composition. 

Sample Tree 

DBH 

(cm) 

VDR 

(%) 

Pre-Conifer 

(%) 

Post-Conifer 

(%) 

S2 17.0 45 74 33 

S3 54.9 30 42 13 

S4 42.9 30 42 13 

S9 59.7 30 94 28 

S33 39.4 100 58 58 

S35 55.1 0 41 0 

S38 39.9 100 58 58 

S43 60.5 15 36 5 

Mean 46.2  55 26 
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Figure 21. a. Linear relationship between the levels of density retention applied in 

thinning treatments and the change in water consumption from 2015 to 2016 at the dry 

site.  b. Linear relationship between the percent of coniferous cover post treatment and 

the change in water consumption from 2015 to 2016 at the dry site.    
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DISCUSSION 

General Water-use Trends 

Mean diurnal sap flow peak decreased over both summer sample periods at both 

sites. These decreases are correlated with similar decreases in soil moisture levels and 

stream discharge in their associated watersheds. The rate of decrease was more prominent 

during the most water limiting sample periods (occurring in 2016 at the dry site and 2015 

at the wet site).  Sap flow velocity values were within a reasonable range and seem 

credible when compared to other studies (Link et al., 2014). The wet site, having 

undergone thinning treatments in 2009, displayed the expected response to a drought year 

followed by a rewatering year, with mean water consumption increasing by about 20% 

from 2015 to 2016. At the recently thinned (fall 2014) dry site however, sap flow 

decreased by almost 16% between the drought year and the rewatering year. This pattern 

starkly contrasts the expected typical positive correlation between sap flow and 

precipitation. At this recently treated site, increased understory and regeneration growth 

in the wake of thinning treatments and in response to a post-drought re-watering period 

likely decreased tree water availability, thereby explaining the observed decrease in sap 

flow between 2015 and 2016 (McDowell et al. 2008). In 2016, DBH was a good 

predictor of water use for sample trees at the wet site, while DBH was a far worse 

indicator in 2015 when the trees were still experiencing stress from long-term drought. 



44 

  

DBH was not a good predictor for either years for sample trees at the dry site, where we 

assume there was increased water stress during both years, as stated above. 

Signs of Water Stress 

Nighttime Water Use 

Our late summer sap flow measurements from the fourth year of a 1,000-year 

drought (Asner et al., 2016) coupled with measurements from the following re-watering 

year highlight poorly understood tree responses to extreme water stress.  For example, 

our findings show that nighttime sap flow contributes significantly (11-58%) to total sap 

flow at both sites.  While previous studies that have reported substantial (up to 25%) 

amounts of nighttime sap flow in Douglas-fir trees (Phillips et al., 2003, Cermak et al., 

2006), none have demonstrated such high percentages as found here.  Our findings are 

within a believable range, as nighttime sap flow percentages up to 70% have been 

reported in pines (Klein 2016). 

Nighttime transpiration may occur due to a coupling of incompletely closed 

stomata and high vapor pressure deficit (Fisher, 2007), defined as the difference between 

the amount of water vapor pressure the air can hold and how much it is actually holding. 

However, both study sites are influenced by fog and therefore not likely to have high 

overnight vapor pressure deficit. Alternatively, it is possible that the observed overnight 

water flux reflects a refilling period where stored water within the tree bole fills cavitated 

xylem conduits.  Cavitation occurs as a result of low water availability (McDowell et al., 

2008). Consequently, the observed increase in nighttime water use could reflect the 
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refilling of increasing xylem cavitation as the historical summer drought progressed.  

This positive correlation between nighttime sap flow and water stress is further supported 

by the observation that mean percent nighttime sap flow was higher during summer 

sample periods of lowest water availability, as quantified by the lowest mean tree water 

consumption (2015 at the wet site due to the fourth year of drought and 2016 at the dry 

site due to post-thinning effects). 

Delayed Timing of Peak Sap Flow 

Another factor suggesting the presence of cavitation and re-filling is the delayed 

timing of daily peak sap flow throughout both summer sample periods, a phenomenon 

known as hysteresis where sap flow response to solar radiation is delayed due to depleted 

stem water storage (O’Grady et al., 1998).  In low stress environments where water is 

non-limiting, sap flow directly responds to solar radiation levels and, incidentally, 

photosynthetic rates.  However, when water is limiting but solar radiation is high, tree 

transpiration and cavitation refilling draw on water stored predominantly in the lower 

portion of the bole (Domec and Gartner 2001).  In extreme drought circumstances, water 

storage supplementation is inadequate, and as a result, a decoupling occurs between solar 

radiation and bole sap flow (Klein 2016): although transpiration may have slowed or 

stopped in the leaves, breast height sap flow measurements do not reflect this (as 

exemplified in this study).  Instead, due to xylem conduit refilling, sap flow responds to 

cavitation frequency, thereby delaying peak sap flow relative to peak transpiration rate.  

As drought severity increases throughout summer, transpiration increasingly relies on 

internally stored water rather than soil water.  Our observed delay in peak sap flow timing 
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between the beginning and end of the sample period was about 1.6 hours in the lower 

stress summer and up to 4.6 hours in the higher stress summer. This increased delay in 

the more stressful summer could be due to prolonged sap flow as bole-stored water was 

used to refill cavitated xylem conduits. 

Cavitation and Relationship to Tree Size 

Old growth Douglas-fir trees are more vulnerable to cavitation than younger trees, 

and older sapwood lower in the bole is more vulnerable than younger sapwood near 

treetops (Phillips et al., 2003, Cermak et al., 2006, Domec and Gartner, 2001). Due to this 

greater vulnerability and subsequent refilling of cavitated conduits, mean nighttime sap 

flow for large Douglas-fir trees can be about 20% of total sap flow, while in small trees it 

is typically only about 10% (Domec and Gartner, 2001).  Thus, our finding of nighttime 

sap flow constituting a mean of 22% of total sap flow  during the re-watering year seems 

within the known range for this species.  

However, in our study mean nighttime sap flow was generally higher in smaller 

trees than in larger trees. In our smallest tree (DBH = 17 cm), nighttime sap flow 

accounted for 32% of total sap flow during both summers.  In contrast to this finding, 

other studies have observed lower nighttime sap flow percentages in small trees 

compared to larger trees (Domec and Gartner, 2001) and relatively low (10%) and 

consistent nighttime sap flow percentages during drought (Phillips et al., 2003).  We 

speculate that our observed high nighttime water use at the dry site likely reflects 

increased stress related to increased post-thinning competition, but there may be other 

factors influencing high nighttime water use in small trees at the wet site, and possibly at 
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the dry site as well.  Our largest tree (DBH = 104 cm) consumed about 50% of its total 

water use at night in 2015 but less than 16% of its total water use in 2016. A similar shift 

in nighttime consumption as a response to and release from drought by the larger trees 

was also observed in the Phillips et al. study (2003). 

Old-Growth Adaptive Response to Water Stress 

Observations of our largest study tree, a likely remnant of the pre-logging old-

growth forest structure, indicate an alteration of typical water use patterns to overcome 

drought-related stress. Compared to smaller trees, taller, old-growth trees are more 

susceptible to cavitation due to increased gravitational tension on the water column 

(Woodruff et al. 2007, Phillips et al. 2003) and likely to have greater water storage 

capacity. The water stored may have diminished water potential, and thus be more easily 

transported upwards (Domec and Gartner, 2001). Despite this implied occurrence of 

cavitation and compensation, we also found that the largest tree consumed nearly 2.4 

times more water during the re-watering year than it did during the previous drought 

year. This increased water consumption during the first post-drought year suggests that 

the observed low water consumption during drought was due to stomatal closure to 

minimize water loss under dry conditions. Thus, the ability to reduce sap flow and use 

bole-stored water (reflected as nighttime sap flow) during drought appears to confer in 

large trees a notable resilience against unfavorable conditions. 

Predicting Water Use in Periods of Low Water Availability 

Our results suggest that drought-related stress increases variability in Douglas-fir 

water use patterns.  In 2016, DBH was a good predictor of water use for sample trees at 
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the wet site, while DBH was a far worse indicator in 2015 when the trees were still 

experiencing stress from long-term drought.  DBH was not a good predictor for either 

years for sample trees at the dry site, where we assume there was increased water stress 

during both years, attributed to drought during 2015 and increased competition from 

applied treatments during 2016.  There was no correlation found between local density 

and water use.  Although, this may be due to the small sample size in this study, and thus 

requires further investigation to be ruled out as an important factor in water-use response 

to drought.  When under stress, it appears that factors other than size may play an 

important role in determining water consumption for small trees, most notably access to 

solar radiation.   

Water Use in Relation to Spatial Distribution 

There was no correlation found between local density and water use, however, 

spatial distribution in relation solar radiation did appear to have an impact on water use. 

At the wet site, trees with the highest levels of sap flux density in 2015 are located within 

the southern portion of the stand near a bordering meadow (Figure 3), and, therefore, 

were likely exposed to greater solar radiation than other trees at this site. While larger 

sample trees that had higher water use also had the advantage of height, the smaller 

sample trees showing high water use during the drought year did not, clarifying the 

importance of their spatial distribution. When under stress, it appears that factors other 

than size may play an important role in determining water consumption for small trees, 

most notably access to solar radiation. Typical stand water-balance models do not 
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consider spatial distribution, which may result in an underestimation of tree water use 

(Kostner et al. 1998), particularly when concerning drought constraints.   

Drought Response to Thinning Treatments 

Following thinning, reduced competition due to basal area removal and canopy 

opening strongly influences stand water use.  Our findings suggest that competition has a 

stronger influence on water use than soil water availability: dry site trees consumed 

~16% more water during the fourth consecutive drought year than during the rewatering, 

year when there was high competition from the regenerating understory. As sap flow 

measurements were not taken prior to the 2014 thinning treatments, we assume that the 

observed higher water use in 2015 is a direct response to treatment.  This assumption is 

supported by past studies that found a spike in conifer stand water consumption directly 

following treatment (Morikawa et al., 1986).  Post-treatment increases in water 

consumption are attributed to greater solar radiation and water availability due to initially 

reduced competition.  However, our observed rapid decrease in tree water use in the 

second post-treatment year contrasts with other studies that report initial increases in 

water use lasting at least three years before stand water use returns to pre-treatment levels 

(Aussenac et al., 1988). 

 One possible explanation for this rapid decrease in tree water use following 

thinning could be the timing of treatments relative to the drought and rewatering years.  

During a post-drought rewatering year, vegetative growth can be greater than normal 

(Horst and Nelson, 1979, Fekedulegn et al., 2003).  In this scenario, the abnormally 
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productive period then corresponds to the second year post treatment of 2016, where it 

was combined with increased solar radiation from the opening of the canopy layer, 

ultimately resulting in a truncated period of increased stand-level sap flow as a result of 

increased competition for water resources from regeneration and understory growth.  This 

conclusion is further backed by the strong positive correlation (R2 = 0.82) between post-

treatment conifer cover and the change in water consumption between 2015 and 2016 

summers.  In areas retaining greater conifer cover, trees consumed more water than trees 

in areas with high conifer removal, indicating that a factor related to conifer removal 

decreased tree water consumption between 2015 and 2016. 

Conclusions 

Our findings provide building blocks for future evaluations of water use by PNW 

coniferous forests.  We demonstrate the importance of spatial distribution relative to solar 

radiation in determining water consumption in small trees (DBH < 104 cm) and 

ultimately could provide a more accurate evaluation of water balance predictions during 

future drought periods when paired with existing methods (DBH, height, relative 

extractable soil water, leaf area index).  We also show that large trees appear to have a 

great capacity for resilience by decreasing water consumption during periods of severe 

drought, thereby potentially increasing water availability to smaller trees (Van Mantgem 

and Stephenson, 2007). Nighttime sap flow levels in this study exceeded those previously 

published for Douglas-fir, highlighting the immense impact of water stress on stand water 

use patterns and the intriguing potential for nighttime sap flow as a tool to gauge stand 
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resilience.  Due to our small sample size, further research is needed to confirm these 

findings and further assess stand and individual water use in relation to stand and local 

density.  When under stress from low water availability, the amount and timing of 

Douglas-fir water consumption diverges from normal patterns such that further study will 

be needed to accurately predict forest responses to increased temperatures projected in 

the Pacific Northwest. 
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