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TECHNICAL MEMORANDUM 
 

Date: 21 March 2016 

 

To: Hank Seemann 

Deputy Director - Environmental Services 

Humboldt County Public Works Dept. 

1106 Second Street 

Eureka, CA  95501 

 

 

From: Jeffrey K. Anderson, P.E., C50713 

 Corin Pilkington 

 

 

 
  21 March 2016 

 

Re: Jacobs Avenue Levee Bathymetric, Hydrologic and Hydraulic Study, Humboldt County, 

CA 

 

INTRODUCTION AND BACKGROUND 

This technical memorandum describes a Hydrologic and Hydraulic Study (H&H Study) for the Jacobs 

Avenue Levee, conducted by Northern Hydrology & Engineering (NHE) for Humboldt County Public 

Works (County).  The Jacobs Avenue Levee Project Area consists of the entire length of the Jacobs 

Avenue Levee and a portion of the Murray Field Levee, both located within a slough complex draining to 

Humboldt Bay (Figure 1).  The purpose of the H&H Study is to provide water surface elevations along 

the Levee within the Project Area for 1% annual chance (100-yr) flood conditions, in support of the 

geotechnical evaluation of the Levee system.  

The work products were developed under an agreement with the County, and include:  

1. Collect bathymetric data in Eureka Slough.  This task was conducted by GMA Hydrology, Inc., a 

subconsultant to NHE. 

2. Estimate the 1% annual change peak fluvial discharge for Eureka Slough.  

3. Determine water surface elevations for the 1% annual chance flood at five designated 

geotechnical cross-section locations for the following conditions: 

a. Develop a HEC-RAS hydraulic model to characterize fluvial flood conditions within the 

Project Area.  

b. Use an existing EFDC hydrodynamic model developed for Humboldt Bay by NHE to 

determine tidally driving flood levels.  

4. Perform a general analysis of locally-generated wind waves to semi-quantitatively assess the 

effects of wind on 1% chance flood levels, to assist with freeboard analysis.  

5. Compare results to the most recent readily available work products from FEMA’s Open Pacific 

Coast Study.  

All water surface elevations are in feet or meters referenced to NAVD88, unless noted otherwise.  

Engineering – Hydrology – Stream Restoration – Water Resources 

P.O. Box 2515, McKinleyville, CA 95519 

Telephone: (707) 839-2195; email: Jeff@northernhydrology.com 

Northern Hydrology and Engineering 
 

mailto:Jeff@northernhydrology.com
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Figure 1. Location map of Jacobs Avenue Levee Project Area, and Freshwater Slough and Fay Slough 
drainage basin extents.   
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PROJECT AREA 

The general Jacobs Avenue Levee Project Area (Project Area) is located within Eureka Slough, and 

consists of the Jacobs Avenue Levee Reach located along the northern edge of Eureka Slough, a portion 

of the Murray Field Levee, and the lower portions of Freshwater Slough and Fay Slough (Figure 2).  

Eureka Slough is a relatively short slough channel beginning at the confluence of Freshwater Slough and 

Fay Slough, and ending at its confluence with Humboldt Bay.  Five geotechnical borings are located 

along the Levee as indicated on Figure 2.  All cross-sections in the HEC-RAS model are located in 

Eureka Slough, and the lower portions of Freshwater and Fay Sloughs.   

 

 

Figure 2. Map showing key features of Jacobs Avenue Levee Project Area.   

 

DISCLAIMER 

This study provides estimates of the 1% annual chance (100-yr) flood for both fluvial and coastal flood 

conditions for the Jacobs Avenue Levee Project Area.  The 1% chance fluvial flood estimates were 

determined using methodologies such that the fluvial estimates are consistent with what FEMA defines as 
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the 1% annual base flood elevation.  However, the 1% chance coastal flood estimates do not represent 

what FEMA would define as the 1% annual base flood elevation for coastal flooding.  FEMA’s 

methodology (FEMA, 2004) includes analysis of wave setup and runup when determining the 1% annual 

base flood elevation for coastal flood conditions.  In this study, the 1% chance coastal flood level was 

determined for both stillwater conditions (no wave effects) and conditions with locally generated wind 

waves (wave crest elevation).  The wave crest elevation does not include the effects of wave setup and 

runup, which was beyond the available scope and budget for this study.   

 

DATA SOURCES 

This section summarizes the available existing data sources used for this study.   

Topographic and Bathymetric data 

Project Area topography consisted of four sources (Figure 3).  In 2011, Humboldt County retained Sousa 

Land Surveys, Inc. to conduct a LiDAR based topographic survey of the general Jacobs Avenue Levee 

Project Area (Jacobs Avenue LiDAR), which was the primary upland topographic source.  Humboldt 

County provided NHE a TIN surface of the Jacobs Avenue LiDAR topography.  It was necessary to 

extend the aerial coverage of the Jacobs Avenue LiDAR with the 2009-2011 California Coastal 

Conservancy Coastal LiDAR project: Hydro-flattened Bare Earth Digital Elevation Model (Coastal 

LiDAR) downloaded from the NOAA Coastal Services Center Digital Coast website 

(http://csc.noaa.gov/digitalcoast/).   

As part of this work, NHE subcontracted to GMA Hydrology, Inc. to conduct bathymetric surveys of 

Eureka, Freshwater and Fay Sloughs at approximately 30 cross-section locations.  The bathymetric survey 

was conducted in December 2015 using a single beam sonar and utilizing the same geodetic control as the 

Jacobs Avenue LiDAR survey.  Appendix A contains the GMA Hydrology, Inc. Bathymetric Survey 

Report.   

To better define the crown elevation of the Jacobs Avenue and Murray Field Levees, the County 

conducted a topographic survey along the top of the Jacobs Avenue Levee and a portion of the Murray 

Field Levee in February 2016.  The County survey used the same geodetic control as the Jacobs Avenue 

LiDAR survey.   

The project topography and bathymetry are referenced to California State Plane Zone 1, NAD83 

horizontal datum, and NAVD88 vertical datum.   

Wind Data 

To conduct the wind wave analysis, wind speed and direction data are required for the general Project 

Area.  A focus for this assessment was to use wind data sources that better represented open water wind 

conditions, which minimized the need to adjust land-based wind data to open water conditions.  Wind 

speed and direction data were obtained for two stations: (1) Buoy Station 46022 (Buoy 22), National Data 

Buoy Center, located approximately 20 miles west-southwest of Humboldt Bay; and (2) North Spit Tide 

Gauge (North Spit), National Oceanic and Atmospheric Administration (NOAA) Center for Operational 

Oceanographic Products and Services (CO-OPS), located interior to Humboldt Bay just north of the inlet 

(Figure 1).  Information summarizing both stations are in Table 1.   

Buoy 22 has a 34-yr record of hourly wind observations, and represents offshore wind speed and 

direction.  The North Spit wind data represents wind conditions interior to Humboldt Bay.  However, the 
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North Spit wind data only has an 8-yr record length.  The dominant wind direction for both stations is 

from the north and north-northwest direction, which is the typical direction of spring, summer and early 

fall winds (Figure 4).  Winter storms are generally from the south, and typically associated with the 

maximum/peak wind velocities (Figure 4).   

The selected wind speeds and directions for the wind wave analysis are described in the wind wave 

analysis section of this memo.   

 

 

Figure 3. Extent of topographic and bathymetric data sources.   
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Table 1. Summary information for wind data sources.  

Station 
Period of 

Record Used 
Anemometer 

height 

Sampling 
Frequency 

Used Data Source (Download Link) 

Buoy 22 
34-yrs; 1982 to 

2015 
16.4 ft (5 m) 1-hr 

National Data Buoy Center 
(http://www.ndbc.noaa.gov) 

North Spit 
8-yrs; 2008 to 

2015 
44.6 ft (13.6 m) 1-hr 

National Oceanic Atmospheric 
Administration 

(https://tidesandcurrents.noaa.gov) 

 

 

 

  

 
Figure 4. Wind rose plots for the Buoy 22 (A) and North Spit (B) wind data.   

 

Humboldt Bay Coastal Stillwater Flood Elevations 

The coastal stillwater flood elevations for the Project Area were taken from the recently completed 

Humboldt Bay sea level rise (SLR) modeling and inundation vulnerability mapping project conducted by 

NHE (NHE, 2015).  As part of the NHE (2015) work, a two-dimensional hydrodynamic model (2D 

model) was developed and used to predict water levels within the existing shoreline of Humboldt Bay for 

five SLR scenarios: year 2012 existing sea levels and half-meter SLR increments of 0.5, 1.0, 1.5 and 2.0 

m.  The 2D model was forced by a 100-yr long stationary hourly sea level height series developed for the 

Crescent City tide gauge.  The 100-yr hourly series accounts for astronomical tides, and varying effects 

including wind, sea level pressure, and El Niño variability, and represents ocean stillwater levels.  The 

100-yr series was incrementally adjusted for each half-meter SLR scenario.  Each hydrodynamic model 

simulation produced 100 years of predicted water levels throughout the bay.  Estimates of average high 

(A) (B) 
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water levels and annual exceedance probabilities of extreme high water levels were determined bay-wide 

for each of the five SLR scenarios.   

For this work, results for the Year 2012 existing sea level simulations were used to represent existing 1% 

chance coastal stillwater flood elevations at the project area.  The 1% chance flood levels were extracted 

for the model grids adjacent to the Jacobs Avenue Levee and the Murray Field Levee.   

The Humboldt Bay 2D model developed for the SLR modeling and mapping project was used for 

conducting the wind wave analysis in this work.  Details of the wind wave analysis methods are provided 

in a later section of this memo.  Reference to the NHE (2015) report can be made for a detailed discussion 

of the hydrodynamic model development, boundary conditions, and results of the SLR modeling and 

analysis for Humboldt Bay.   

 

HYDROLOGIC ANALYSIS 

This section describes the hydrologic analysis conducted for determining the fluvial flood-frequency 

estimates for the Project Area.   

Methods 

Streamflow data for Freshwater Creek above the Project Area are limited (primarily focused on 

supporting suspended sediment yield estimates) and were not used in this study.  For this analysis, flood 

flow estimates for Eureka Slough at the Project Area were determined immediately downstream of the 

Freshwater Sough and Fay Slough confluence (Figure 2) using the regional flood-frequency equations for 

California (Gotvald et al., 2012).   

These regional flood-frequency estimates were scaled for Freshwater Slough above the confluence with 

Eureka Slough using the methodology (Eq. 1) for scaling T-year peak discharge estimates from a gaged 

station to an ungaged site based on the flow per unit area of the gaged and ungaged stations:  

 𝑄𝑇(𝑈) = 𝑄𝑇(𝐺) [
𝐴𝑢

𝐴𝑔
]
𝑏

 (Eq. 1) 

where 

 𝑄𝑇(𝑈) is the T-year peak-flood estimate for the ungaged site based on the flow per unit area of 

the gaged stream,  

 𝑄𝑇(𝐺) is the T-year peak-flood estimate for the upstream or downstream gaged station,  

 𝐴𝑢 is the drainage area for the ungaged site,  

 𝐴𝑔 is the drainage area for the upstream or downstream gaged station, and 

 𝑏 is an exponent, which can be taken from the regional flood-frequency equations.   

 

The Fay Slough flood frequency estimates were determined by differencing the Eureka Slough and scaled 

Freshwater Slough peak flows.   

Results 

Regional-equation parameters for Eureka Slough below the confluence with Freshwater Slough and Fay 

Slough (Table 2) were determined from the USGS online StreamStats program 
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(http://water.usgs.gov/osw/streamstats/).  Table 3 provides a summary of the flood-frequency estimates 

for the Jacobs Avenue Levee Project Area (Eureka Slough below the confluence with Freshwater Slough 

and Fay Slough).   

 

Table 2. Regional flood-frequency equation parameters and watershed areas for 
the Jacobs Avenue Levee Project Area.   

Parameter Unit 

Eureka Slough below the 
confluence with Freshwater 

Slough and Fay Slough 

Basin area mi2 53.169 

Annual Precipitation in 52.3 

 

 

Table 3. Summary of flood-frequency estimates for Eureka Slough below confluence with 
Freshwater Slough and Fay Slough (Eureka Slough at Project Area).  

Return Interval (yr) Chance Exceedance (%) 

Peak Discharge Estimates 
Eureka Slough below the 

confluence with Freshwater 
Slough and Fay Slough (cfs) 

2 50 3,230 

5 20 5,840 

10 10 7,680 

25 4 10,100 

50 2 11,800 

100 1 13,700 

500 0.2 17,700 

 

Watershed areas for Freshwater Slough above the confluence with Eureka Slough were also determined 

using StreamStats.  Table 4 lists the ratio between the drainage areas for Freshwater Slough and Fay 

Slough to Eureka Slough below the confluence.  Table 5 summarizes results of the T-year flood flow 

estimates for Freshwater Slough and Fay Slough above the confluence with Eureka Slough.  The 

exponent (b) used in Eq. 1 are the appropriate California regional flood-frequency equation area 

exponents (Gotvald et al., 2012).   

 

  

http://water.usgs.gov/osw/streamstats/
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Table 4. Drainage basin area and ratios for Freshwater Slough and Fay Slough above the 
confluence with Eureka Slough.   

Location Drainage Area (mi2) Ratio of Au/Ag 

Freshwater Slough above confluence with 
Eureka Slough 

  

Eureka Slough below the confluence with 
Freshwater Slough and Fay Slough (Ag) 

53.169 

0.922 
Freshwater Slough above the confluence with 

Eureka Slough (Au) 
49.024 

 

 

Table 5. Scaled flood-frequency estimates for Freshwater Slough and Fay Slough above the confluence 
with Eureka Slough.  

Return 
Interval (yr) 

Eureka Slough below 
the confluence with 
Freshwater Slough 

and Fay Slough 
Annual-Peak 

Discharge (Qg) (cfs) 

Regional Eq. 
Area 

Exponent (b) 

Freshwater Slough 
above the confluence 
with Eureka Slough 

Annual Peak 
Discharge (Qu) (cfs) 

Fay Slough above the 
confluence with 

Eureka Slough Annual 
Peak Discharge (Qu) 

(cfs) 

2 3,230 0.904 3,001 229 

5 5,840 0.887 5,434 406 

10 7,680 0.880 7,151 529 

25 10,100 0.874 9,408 692 

50 11,800 0.870 10,995 805 

100 13,700 0.866 12,770 930 

500 17,700 0.860 16,507 1,193 

 

 

HYDRAULIC ANALYSIS 

This section describes the hydraulic analysis conducting for determining water surface elevations for the 

1% annual chance (100-yr) flood conditions within the Project Area.  The hydraulic analysis consisted of 

three conditions: (1) fluvial flooding from upstream sources, (2) coastal flooding based on stillwater 

elevations, and (3) the potential increased coastal flooding from locally generated wind waves.   

Fluvial Flooding 

Methods 

One-Dimensional Hydraulic Model 
The U.S. Army Corps of Engineers (COE) HEC-RAS modeling system (COE, 2010) was used to develop 

a one-dimensional hydraulic model (1D model) of the Jacobs Avenue Levee Project Area.  The HEC-

RAS model calculates one-dimensional water surface profiles and average channel velocities for both 

steady gradually varied flow and unsteady flow through a channel.  For this analysis, steady flow 
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modeling was used to predict flood levels within the project reach for the Project Area.  Reference can be 

made to the HEC-RAS manual (COE, 2010) for information specific to steady state modeling.    

Model Extent and Setup 
The 1D model reach includes Eureka Slough from Humboldt Bay to the confluence with Freshwater 

Slough and Fay Slough, and the lower portions of Freshwater and Fay Sloughs (Figure 2).   

To generate the 1D model geometry, a geo-referenced HEC-RAS geometry file was created using 

ArcGIS.  The centerline alignments were digitized from the LiDAR surface and ESRI imagery.  The 

bathymetry points from the 30 surveyed cross-sections (Figure 3) were input into ArcGIS.  Cross-section 

lines were drawn between the points perpendicular to the channel flow, and the surveyed ground 

elevations were snapped along a perpendicular line to the drawn cross-section line.  The Jacobs Avenue 

LiDAR TIN surface data (Figure 3) within the channel were removed and replaced with the snapped 

cross-section data.  Cross-section lines where extended into the floodplain, and dog-legged perpendicular 

to the expected flood flow direction based on floodplain contours and professional judgment.  Similarly, 

overbank flow lines were generated based on floodplain contours and professional judgment, and bank 

lines were determined based on the ESRI imagery.  

The HEC-GeoRAS extension was used to create the HEC-RAS geometry file from the surveyed cross-

section bathymetric data, the Jacobs Avenue and Coastal LiDAR data, and the cross-section lines, 

centerline, bank lines, and overbank lines.  The geometry file was imported into HEC-RAS and checked 

for consistency.  Final model editing was conducted within HEC-RAS.  Figure 5 shows the geometric 

layout of the developed HEC-RAS model.  

A discrepancy was discovered between the LiDAR elevations and the County topography along the levee 

crown, presumably due to the presence of vegetation, with the LiDAR having elevations 1-foot or greater 

than the County elevations.  To accommodate this difference, all elevations along the Jacobs Avenue 

Levee and Murray Field Levee above the County surveyed levee crown elevations were truncated within 

the HEC-RAS model to the crown elevation at each cross-section.   

Levees were set at the top of all levee structures, and ineffective flow areas were set in obvious non-

conveyance floodplain backwater areas.   

For this analysis, the Highway 101 Bridge and Railroad Bridge were not incorporated into the 1D model.  

Due to the wide, slow velocity nature of Eureka Slough it was assumed that the bridge structures would 

not have a significant effect on predicted water surface elevations.  Furthermore, the skewed bathymetric 

cross-sections at the Highway 101 Bridge and Railroad Bridge were also not incorporated into the 1D 

model.  A sensitivity analysis showed that water surface elevations varied by only 0.01 ft when the 

skewed cross-sections were included into the 1D model.  

Model Parameters 
Manning's roughness coefficients (n values) were determined based on prior modeling experience, 

professional judgment and field observations.  Model n values were 0.03 for the slough channels, and 

0.05 for the tidal wetland, levee and pasture surfaces.  Contraction and expansion energy loss coefficients 

were set at 0.1 and 0.3, respectively, for all cross-sections.  
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Figure 5. Geometric configuration of 1D model for the Jacobs Avenue Levee Project Area. 

 

Boundary Conditions 
The upstream boundary conditions were the 1% chance flood estimates for Freshwater Slough and Fay 

Slough (Table 5).   

The downstream boundary condition consisted of known or estimated water surface elevations at the 

downstream cross-section (Station 0) of the 1D model (Figure 5).  Initially it was assumed that the 

downstream boundary conditions would be the mean higher high water (MHHW) tide level.  However, an 

evaluation of coincident annual peak flood flows to maximum daily tide levels showed that the likely tidal 

elevation during a peak flood ranged from MHHW to the 2-yr annual extreme high stillwater level 

(Figure 6).  This evaluation used the Little River annual peak discharge data, and the maximum daily tide 

level that occurred on the same day as the peak discharge for North Spit and Crescent City tide gauges on 

station datum (STND).   

Based on this evaluation, and discussions with County staff (Hank Seemann, personal communication), it 

was decided to use mean high water (MHW), MHHW, and the 2-yr annual extreme high stillwater level 

as downstream boundary conditions for the 1% chance fluvial flood estimate.  The MHHW and 2-yr 

extreme stillwater level downstream boundary conditions were extracted from the HBSLR 2D model 
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results for the Year 2012 simulation (NHE, 2015) at the grid cell coinciding with the downstream cross-

section (Station 0) of the 1D model.  The MHW estimate was determined by subtracting the average 

difference of 0.71 ft (0.217 m) between MHHW and MHW for all NOAA tide gauges in Humboldt Bay 

(NHE, 2015), from the MHHW estimate.  Table 6 summarizes the downstream boundary conditions used 

for the 1% chance fluvial flood estimate.    

 

 

Figure 6. Comparison of Little River near Trinidad (USGS 11481200) annual peak flows and coincident 
maximum daily tide levels for the North Spit (NOAA 9418767) and Crescent City (NOAA 94119750) 
tide gauges.  Tide gauge data reported on station datum (STND).  

 

 

Table 6. One-dimensional model (HECRAS) downstream boundary conditions extracted from 
Humboldt Bay Sea Level Rise 2D model results for Year 2012 (NHE, 2015).   

1D model downstream boundary 
condition 

Water surface elevation (EFDC Grid (L) = 1031) 

(ft, NAVD88) (m, NAVD88) 

Mean High Water 6.29 1.916 

Mean Higher High Water 7.00 2.133 

2-yr annual extreme water level 9.30 2.836 
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Results 

The developed 1D model (HEC-RAS) for the Project Area was used to predict 1% chance flood water 

surface elevations from upstream fluvial flooding for three downstream boundary conditions of MHW, 

MHHW and 2-yr annual extreme high water (Figure 7).  Results indicate that the downstream boundary 

condition has a significant backwater effect on predicted 1% chance fluvial flood water surface elevations 

along the Jacobs Avenue Levee and Murray Field Levee Reaches.  Due to the backwater effects, results 

for all three boundary conditions were used to represent a range of 1% chance fluvial flood levels for this 

study.   

 

 

Figure 7. 1% chance fluvial flood profiles for Jacobs Avenue Levee Project Area.  Flood profiles are for the 
1% chance flood with a mean high water (MHW DSBC), mean higher high water downstream 
boundary condition (MHHW DSBC), and for the 1% chance flood with a 2-yr annual extreme high 
water downstream boundary condition (2-yr DSBC).   
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Coastal Stillwater Level Flooding 

Methods 

Model results from the Humboldt Bay SLR modeling and mapping project (NHE, 2015) for Year 2012 

were used to represent 1% chance coastal stillwater flood levels within the Project Area.  The 100-yr 

annual extreme high water predictions were extracted from approximately sixteen grid cells along the 

Jacobs Avenue Levee and Murray Field Levee Reaches.   

Results 

Figure 8 shows the 1% chance coastal stillwater flood elevations within the Project Area.  As mentioned 

earlier, the coastal stillwater flood levels are water surface elevations from open ocean conditions, which 

include astronomical tides and nontidal sea levels, but exclude the effects of riverine flooding and locally 

generated wind waves.  Figure 8 also shows the estimated 1% chance coastal wave crest flood elevation, 

which is the combined 1% chance stillwater elevation and the estimated total wave crest height change.  

The estimated 1% chance coastal wave crest flood level is discussed in more detail below.  

 

 

Figure 8. 1% chance coastal flood profiles for Jacobs Avenue Levee Project Area.  Flood profiles are for the 
1% chance coastal stillwater flood with no wind wave effects, and the 1% chance coastal wave 
crest flood level, which is the stillwater level plus estimated total wave crest height change.     
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Coastal Wave Crest Flood Level 

Methods 

Two-Dimensional Hydrodynamic Model 
A general wind wave analysis was conducted for the Project area using the existing 2D model developed 

in the SLR modeling and mapping project (NHE, 2015), and a basic wind wave sub-model.  The 2D 

model was developed using the Environmental Fluids Dynamics Code (EFDC) modeling platform 

(Hamrick, 1992), which is a public domain model supported by the U.S. Environmental Protection 

Agency.  EFDC is a multifunctional surface water modeling system for simulating three-dimensional or 

two-dimensional flow, transport and biogeochemical processes in surface waters including rivers, lakes, 

wetlands, estuaries and coastal regions.  The full documentation of the EFDC model can be found in 

Hamrick (1992) and Tetra Tech (2007a, 2007b and 2007c).   

Dynamic Solutions-International, LLC (DSI) has made a number of enhancements to the EFDC code, and 

has its own open source version of EFDC (EFDC_DSI).  The primary enhancements of EFDC_DSI 

include (1) dynamic memory allocation, (2) enhanced heat exchange modeling options, (3) Lagrangian 

particle tracking sub-model, (4) internal wind wave generation sub-model, and (5) the development of a 

multi-threaded version of EFDC (EFDC_DSI_OMP) that significantly decreases computational time.  

DSI has also developed EFDC_Explorer7.3 (EE7.3), a windows-based GUI for pre- and post-processing 

of the various EFDC models (Craig, 2015).  EE7.3, EFDC_DSI_OMP, and the DSI wind wave sub-model 

were used in this study.  

The DSI wind wave sub-model (Chung and Craig (2011) is dynamically linked to EFDC_DSI_OMP, and 

estimates wind wave parameters at each model grid using the Sverdrup, Munk and Bretschneider 

empirical equations (SMP model) for shallow waters.  The SMP model determines wave height, direction 

and period using wind speed, average water depth over the entire model domain, and wind fetch length 

from the model boundary to each grid cell over 16 directions.  A key assumption of the SMP model is that 

the wave direction is the same as the wind direction.  Consequently, the DSI wind wave sub-model does 

not account for the effects of wave refraction, diffraction and reflection.  A full description of DSI wind 

wave model and formulation can be found in Chung and Craig (2011).   

Besides providing estimates of wind wave height and period over the entire model domain, another 

advantage of using the 2D hydrodynamic model linked to a wind wave model is that the effects of wind 

stress on the water levels (wind setup) are directly accounted for in the simulation.   

Model Extent and Setup 
The same general 2D model grid used in the SLR modeling project was used for the general wind wave 

analysis work (Figure 9).  The original 2D model was coarsely gridded in the general Jacobs Avenue 

Levee Project Area.  To support the wind wave modeling and provide more resolution in the Project Area, 

the model grid was refined in Eureka Slough and lower Fay Slough (Figure 10).  To preserve the original 

2D model grid formulation and results, the original model grid elevations were interpolated to the refined 

model grid elevations.   
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Figure 9. Humboldt Bay sea level rise modeling and mapping project 2D hydrodynamic model grid and 
bottom elevations (m) referenced to NAVD88 (NHE, 2015).     

 

 

Figure 10. Refined 2D model grid in the Jacobs Avenue Levee Project Area.    
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Model Parameters 
The same 2D model parameters used in the SLR modeling project (NHE, 2015) were used for the wind 

wave analysis, with the total effective roughness height (Z0) set to 0.005 m.  Since wave data were not 

available to calibrate the wind wave sub-model, the simpler wave model option that does not account for 

radiation stresses was used.  The only wave parameter required for the simpler option was the Nikuradse 

sand roughness height (Ks).  Assuming the Project Area consists of fine-grained bed materials, a 

conservative Ks value of 2.5E-5 was used for all wind wave simulations.   

Boundary Conditions 
Boundary conditions for the wind wave analysis consisted of open ocean water levels, wind speed and 

wind direction.  The purpose of the wind wave analysis was to understand how wind and wave conditions 

could affect extreme coastal stillwater flood levels.  This was accomplished by running the modified 2D 

model over a range of wind conditions and directions for a 7-day period that had produced the highest 

stillwater levels.  

Ocean Water Levels 
The ocean boundary condition for the wind wave analysis consisted of a 7-day period from the 100-yr 

hourly sea level height series that contained the maximum observed water level for the Crescent City tide 

station.  The 7-day period spanned 19 to 26 January 1983, which was during the 1982-83 El Niño.  

During this 7-day period a large El Niño driven storm coincided with higher than normal astronomical 

high tides producing the highest water level of record at the Crescent City tide gauge on 29 January 1983 

that exceeded the 100-yr extreme exceedance probability event (NHE, 2015).  The highest predicted 

stillwater levels in Humboldt Bay for the SLR modeling project were also generated on 29 January 1983 

(NHE, 2015).   

Wind Speed 
To better understand the likelihood that peak water levels and maximum wind events occur 

simultaneously, the Buoy 22 hourly wind speeds greater than or equal to 33.6 mph (15 m/s) were 

compared to the hourly tide levels for North Spit and Crescent City occurring at the same time (Figure 

11).  A similar comparison was not conducted for the North Spit wind data due to the short 8-yr period of 

record.   

Results of this assessment show that North Spit water levels do not exceed the 2-yr annual extreme water 

level (50% chance) for wind speeds at Buoy 22 greater than or equal to 33.6 mph.  However, the North 

Spit tide gauge hourly water level record only begins in 1993, and does not cover the 1982-83 El Niño.  

Results for Crescent City water levels and Buoy 22 winds (Figure 11), which covers the 1982-83 El Niño 

period, show that a number of extreme water levels greater than the 2-yr (50% chance) event occurred 

during periods when the wind was greater than or equal to 33.6 mph.  In fact, the 29 January 1983 

extreme water level event occurred when winds exceeded 33.6 mph.  Based on this assessment, extreme 

coastal water levels can and do occur during peak wind events.   

The maximum hourly wind speed for the 34-yr Buoy 22 wind record was 55.9 mph (25.0 m/s) and was 

from the south.  The shorter 8-yr North Spit wind record had a maximum hourly wind speed of 49.0 mph 

(21.9 m/s) which blew from the north.   
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Figure 11. Comparison of Buoy 22 hourly wind data greater than or equal to 33.6 mph (15 m/s) and coincident 
hourly tide levels for the North Spit (NOAA 9418767) and Crescent City (NOAA 94119750) tide 
gauges.  Tide gauge data reported on station datum (STND).  

 

Maximum Fetch Lengths 
At a given location and wind speed, the SMP wind model generally produces maximum wind wave 

heights and periods for the wind direction with the maximum fetch length.  The 2D model and wind wave 

sub-model automatically determines fetch lengths for each model grid cell for 16 wind directions at 22.5° 

increments.  Within the Project Area, maximum fetch lengths are for winds blowing from westerly and 

easterly directions, due to the configuration of Eureka Slough.  However, maximum wind speeds in the 

Project Area are generally from northerly and southerly directions, with much lower maximum wind 

speeds for winds from easterly and westerly directions (Figure 4).  The Buoy 22 and North Spit wind 

records indicate that no wind greater than or equal to 44.7 mph (20.0 m/s) has come from a westerly or 

easterly direction, and only a few hourly records are greater than equal to 33.6 mph (15 m/s).    

Wind Analysis Approach 
For the wind analysis conducted in this study, the 2D model was run over a range of constant wind speeds 

and directions for the 7-day period of 19 to 26 January 1983, to see how wind and wave conditions could 

affect maximum predicted stillwater levels.  The wind speed ranged from 11.2 to 55.9 mph (5 to 25 m/s) 

at 11.2 mph (5 m/s) increments, and was applied over 16 wind directions at 22.5° increments.   
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Results 

The 2D model and wind wave sub-model was used to estimate how wind and waves could increase 

extreme stillwater elevations at the Jacobs Avenue Levee Project Area for a range of wind speeds and 

directions.  Since five wind speeds were simulated over 16 directions, the wind analysis produced a large 

amount of data and results.  Only summary results of the wind analysis are provided below.   

Results were evaluated at each grid cell adjacent to the Jacobs Avenue and Murray Field Levee Reach for 

the following:  

1. Water level change compared to the stillwater results (no wind condition), which represents the 

wind setup effect.   

2. Wind wave height, which is the total wave height from wave trough to crest.   

3. Total wave crest height change, which is the sum of the water level change and one-half the wind 

wave height.   

 

Table 7 presents results for the grid cell that produced the largest wind wave height and total wave crest 

height change along the Jacobs Avenue Levee Reach compared to the stillwater condition for three wind 

directions; east-southeast (ESE), west (w), and west-northwest (wnw).  For comparison purposes, results 

are also provided for the maximum grid cell along the entire Jacobs Avenue and Murray Field Levee 

Reach for a west wind.   

Results indicate that maximum wind wave heights along the Jacobs Avenue Levee Reach occur for winds 

from the east-southeast direction.  However, the dynamics of an east-southeast wind reduces the water 

level along Jacobs Avenue Levee compared to the no wind condition, which results in the lowest total 

wave crest height change for the wind directions reported in Table 7 (Figure 12(A)).  The maximum total 

wave crest height change along the Jacobs Avenue Levee occurs for a west-northwest wind direction 

(Figure 12(B)).  These results demonstrate the advantage, and perhaps need, of using a coupled 2D 

hydrodynamic model and wind wave model when extreme water levels occur during maximum or peak 

wind events.   

Wind wave results for a 44.7 mph (20 m/s) wind from the west-northwest direction were used to represent 

the total wave crest height change (0.72 ft) for the Jacobs Avenue Levee Project Reach.  The 0.72 ft total 

wave crest height change was added to the stillwater levels along the entire Jacobs Avenue and Murray 

Field Levee Reach. (Figure 8).   
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Table 7. Wind wave analysis summary results for wind directions producing maximum wave heights and 
water level changes for the Jacobs Avenue Levee Project Area. Water level change compared to 
no wind column is the difference between predicted water level with wind and predicted water 
level without wind, and represents wind setup. Wind wave height column is the total wave height 
from trough to crest. Total wave crest height change column is the sum of water level change and 
one-half wind wave height.  

Wind Speed 

Wind 
Direction 

From Levee Reach 

Water Level 
Change 

Compared to 
No Wind (ft) 

Wind Wave 
Height (ft) 

Total Wave 
Crest Height 
Change (ft) 

11.2 mph (5 m/s) ESE Jacobs Ave -0.01 0.00 -0.01 

 W Jacobs Ave 0.01 0.00 0.01 

 WNW Jacobs Ave 0.01 0.00 0.01 

 W Jacobs Ave and Murray 0.01 0.00 0.01 

22.4 mph (10 m/s) ESE Jacobs Ave -0.04 0.48 0.20 

 W Jacobs Ave 0.06 0.35 0.24 

 WNW Jacobs Ave 0.05 0.40 0.25 

 W Jacobs Ave and Murray 0.07 0.52 0.33 

33.6 mph (15 m/s) ESE Jacobs Ave -0.11 0.75 0.27 

 W Jacobs Ave 0.16 0.56 0.44 

 WNW Jacobs Ave 0.14 0.63 0.46 

 W Jacobs Ave and Murray 0.17 0.82 0.58 

44.7 mph (20 m/s) ESE Jacobs Ave -0.22 1.03 0.29 

 W Jacobs Ave 0.32 0.77 0.70 

 WNW Jacobs Ave 0.28 0.87 0.72 

 W Jacobs Ave and Murray 0.34 1.12 0.90 

55.9 mph (25 m/s) ESE Jacobs Ave -0.40 1.30 0.25 

 W Jacobs Ave 0.53 0.99 1.02 

 WNW Jacobs Ave 0.48 1.12 1.04 

 W Jacobs Ave and Murray 0.57 1.42 1.28 
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Figure 12. Wind wave results for wind from the east-southeast direction (A), and west-northwest direction (B).  

 

 

1% Chance Flood Elevations  

This section summarizes the final 1% chance flood elevations for the Jacobs Avenue Levee, and at the 

five geotechnical boring locations.  

Jacobs Avenue Levee Reach 

Figure 13 shows the final estimated 1% chance flood elevations along the Jacobs Avenue Levee Project 

Area for a fluvial flood, coastal stillwater flood, and coastal wave crest flood (stillwater plus wave crest 
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height change), and the Levee crown elevations from the County survey.  Coastal flood elevations are 

greater in the Jacobs Avenue Levee Reach than fluvial flooding, with the effects of wind waves 

increasing coastal stillwater levels.  Results indicate that the 1% chance flood for both coastal stillwater 

and coastal wave crest flood conditions can produce water levels that overtop the Jacobs Avenue Levee.  

Table 8 summarizes the difference between 1% chance flood levels and the Levee crown elevation for the 

Jacobs Avenue Levee Reach.  Positive numbers indicate available freeboard, and negative numbers 

indicate no freeboard is available.   

 

 

Figure 13. Final 1% chance flood profiles for Jacobs Avenue Levee Project Area. Flood profiles are for the 1% 
chance fluvial flood, 1% chance coastal stillwater flood with no wind wave effects, and the 1% 
chance coastal wave crest flood (stillwater plus wave crest height change).   
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Table 8. Summary of levee freeboard for 1% chance flood levels along the 
Jacobs Avenue Levee (positive numbers indicate levee freeboard, 
negative numbers indicate no freeboard).   

Statistic 

Difference between crown elevation and 1% Chance Flood 
Water Surface Elevation (ft) 

Fluvial Flood 
Coastal Stillwater 

Flood 
Coastal Wave 
Crest Flood 

Average 1.70 1.02 0.44 

Minimum 0.52 -0.24 -0.81 

Maximum 3.66 3.34 2.76 

 

 

Geotechnical Boring Locations 

Table 9 summarizes the 1% chance flood levels at the five geotechnical boring locations.  Based on 

conversations with County staff (Hank Seemann, personal communication), water surface elevations are 

only provided for the 1% chance fluvial flood, and 1% chance coastal stillwater flood.  For the 1% chance 

fluvial flood, results are provided for the MHW, MHHW, and 2-yr extreme stillwater level downstream 

boundary conditions.  For the coastal stillwater flood condition, results are provided for the 50-, 20-, 10-, 

2-, and 1% chance levels.   

 

Table 9. Summary of fluvial and coastal stillwater flood elevations (ft, NAVD88) at the five geotechnical 
boring locations within the Jacobs Avenue Levee Project Area.  

Geotech 
Boring 
Number 

1% Chance Fluvial Flood 
(Downstream boundary 

condition) 
Coastal Stillwater Flood (% Chance Level) 

MHW MHHW 2-yr 50 20 10 2 1 

1 7.41 7.86 9.66 9.34 9.73 9.97 10.45 10.63 

2 7.92 8.29 9.88 9.34 9.74 9.98 10.46 10.63 

3 8.22 8.54 10.03 9.35 9.74 9.99 10.46 10.64 

4 8.48 8.78 10.15 9.36 9.75 9.99 10.47 10.65 

5 8.80 9.04 10.31 9.36 9.76 10.00 10.47 10.65 
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COMPARISON WITH RESULTS FROM FEMA’S OPEN PACIFIC COAST 
STUDY   

In 2015, BakerAECOM completed a coastal engineering study of the Open Pacific Coast (OPC) along 

northern and central California on behalf of FEMA Region IX as part of the California Coastal Analysis 

and Mapping Project.  The results of the OPC study were used by FEMA to prepare preliminary Flood 

Insurance Rate Map (FIRM) panels.  The preliminary FIRM panels were released on October 27, 2015, 

and are expected to become effective in 2017.  The OPC study used different data sets, methodologies, 

and models compared to NHE (2015) and this Jacobs Avenue Levee study.  This section is intended only 

to present the OPC study results and mapping information on the associated preliminary FIRM panel 

relevant for the Project Area, and does not discuss the different approaches in detail. 

The 1% chance stillwater elevation at the North Spit gauge site was calculated to be 10.2 feet (NAVD88) 

(BakerAECOM, 2012).  BakerAECOM elected to apply a uniform stillwater elevation throughout the 

bay.  BakerAECOM evaluated locally generated wind waves at 20 transects within Humboldt Bay 

(BakerAECOM, 2014); however, the wind wave analysis was only conducted for Arcata Bay and did not 

extend into Eureka Slough. 

On the preliminary FIRM panel (Map No. 06023C0845G) depicting the Project Area (Figure 14), Eureka 

Slough and the land behind the Jacobs Avenue Levee are mapped as a special flood hazard zone without a 

designated base flood elevation (i.e., an unnumbered Zone A).  Highway 101 and the North Coast 

Railroad Authority railroad corridor serve as a boundary between flood zones on the preliminary FIRM 

panel.  The area within Arcata Bay near the Project Area on the north side of the highway and railroad 

corridor is mapped with a base flood elevation of 11 feet (i.e., Zone AE 11).  This base flood elevation 

reflects a total water level of 10.73 feet (10.16 feet stillwater elevation plus 0.57 feet wave runup), 

rounded to the nearest foot. 

For comparison, this study calculated a 1% annual chance stillwater elevation of 10.63 to 10.65 feet, and 

a coastal wave crest flood level of 11.35 to 11.37 feet, along the Jacobs Avenue Levee.   
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Figure 14. Portion of the preliminary FIRM panel (Map No. 06023C0845G) and legend information for the 

Jacobs Avenue Levee Project Area.   
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INTRODUCTION 
In November 2015, GMA Hydrology, Inc. (GMA) was contracted by Northern Hydrology and 
Engineering (NHE) to collect bathymetric cross sectional data on Eureka Slough within the 
vicinity of Jacobs Avenue in Eureka, CA.  The project is located on the north side of Eureka, 
CA, extending up and downstream of the Highway 101 bridge over Eureka Slough.  Cross 
sections for data collection are located within an area 1.7 miles upstream of the Highway 101 
bridge, into Freshwater Slough and Fay Slough, and half a mile downstream of the Highway 101 
bridge (Figure 1).  NHE requested that the survey be consistent with the datum and projection 
used by Sousa Land Surveying Inc. during the Humboldt County LiDAR Survey Project 

 
Figure 1: Project Location Map 
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GEODETIC CONTROL 

GMA requested the survey control coordinates for the Humboldt County LiDAR Survey Project 
from NHE so that the sonar data could be tied directly to the LiDAR datum.  Review of data 
indicated that the horizontal datum is based on NAD83 (2007.00) and the vertical datum is based 
on NAVD88, Geoid 09.  Data are projected in California State Plane Zone 1 and units are US 
Survey Feet (us ft).   

METHODOLOGY 

GNSS Reference Station 
GMA established a Trimble R8 Model 3 Real Time Kinematic (RTK) Global Navigation 
Satellite System (GNSS) base receiver on LV1180.  LV1180 is located at Murray Field and is a 
standard survey disk that is set in the top of a 10-inch concrete post.  The NAD83 (2007.00) 
coordinates were held by Brian L. Sousa (CAPLS#7917) as part of the Humboldt County LiDAR 
Survey Project.  In addition to monument LV1180, GMA utilized two other monuments, points 
102 and 1045, in order to verify antenna heights and to check the relative stability of the control 
provided. 

Single Beam Sonar Survey 
NHE provided cross section data collection locations in shapefile format (Figure 1).  The 
bathymetric sonar survey was performed using a SonarMite MILSpec Single Beam Echosounder 
and a Trimble R8 Model 3 GNSS receiver deployed from an inflatable kayak.  Sonar data and 
RTK GNSS data were recorded in a Trimble TSC 3 Data Collector.  Data were collected at the 
30 designated cross sections, at one second intervals, on December 11, 2015, during an 8.0 foot, 
high tide event at the Eureka Slough Bridge.  In addition to the sonar data, sound velocity 
measurements were collected in the project reach using a Sontek CastAway-CTD.   

Post-Processing 
RTK observations collected over known control points 102 and 1045 were reviewed in Trimble 
Business Center v3.61 and enabled as checks against the provided coordinates. 

Sonar data were edited in CARIS Hips and Sips v8.1.13 and in ArcMap v10.1 using the LP360 
v2014.1.51.1 extension.  Processing in CARIS included: defining vessel configurations, 
converting raw ASCII data files to HIPS format, applying sound velocity corrections, reviewing 
and correcting attitude and navigation data, review and editing of raw sounding data, manual and 
automated filtering as well as merging the attitude, navigation and raw sounding data.  Due to the 
limitations of the instrumentation and the draft of the sensor (0.40 feet), data collected in areas 
with depths less than 1.50 feet or in areas with thick vegetation were removed.  Final inspection 
and visualization of data occurred in ArcMap using the LP360 extension. 
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Generally, points with a position dilution of precision (PDOP) value greater than 3.0 are filtered 
from the dataset.  This dataset did not have any PDOP values greater than 3.0 with exception of 
points collected at the railroad trestle cross section; downstream of the highway 101 bridge. Due 
to the large number of points with PDOPs greater than 3.0 at the railroad cross section, points 
were not filtered using PDOP values. 

Results 
Table 1 displays the control points and the check shots performed by GMA.   

Table 2 presents the statistics associated with the check shots made.  Point 102, being a rebar 
with a cap, should be considered a more reliable check than point 1045, which is a spike set in an 
area that is subject to disturbance.   

With the exceptions of areas that were too shallow to survey or that contained vegetation, sonar 
survey density was adequate to define cross section geometry.  The number of sonar points per 
cross section ranged from 34 to 251 points depending on cross section width and surveyable 
area. 

As expected, sound velocity profiles indicated increases in the speed of sound as temperature and 
conductivity increased.  The lowest sound velocities were observed in Freshwater and Fay 
Slough, the locations with the most freshwater influence, and in general increased in the 
downstream direction. 

GMA’s professional land surveyor, David Edson (CAPLS#4974) provided professional 
oversight for all field and office tasks conducted during the course of this project. 
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Table 1: Eureka Slough Control Coordinates Check Shots 
  

Point ID Northing Easting Elevation Description 

1045 2184338.62 5968377.87 9.08 Set by CAPLS7917 

1045 (V6765) 2184338.61 5968377.90 9.13 Measured by GMA 

∆ Values 0.01 -0.03 -0.05   

1045 (V6766) 2184338.61 5968377.90 9.13 Measured by GMA 

∆ Values 0.01 -0.03 -0.05   

          

102 2183422.40 5974686.24 10.83 Set by CAPLS7917 

102 (V6767) 2183422.40 5974686.26 10.82 Measured by GMA 

∆ Values 0.00 -0.02 0.01   

102 (V6768) 2183422.40 5974686.26 10.83 Measured by GMA 

∆ Values 0.00 -0.02 0.00   

Horizontal Datum: NAD83 (2007.00) 
Vertical Datum: NAVD88, Geoid 09 
Projection: California State Plane Zone 1 
Units: US Survey Feet 
 

Table 2: Eureka Slough Check Shot Statistics 
            

Point ID Vector 
Max 

PDOP RMS 
H Prec 
(95%) 

V Prec 
(95%) 

1045 V6765 1.26 0.01 0.03 0.04 

1045 V6766 1.08 0.01 0.03 0.03 

102 V6767 1.07 0.01 0.03 0.02 

102 V6768 0.86 0.01 0.02 0.02 
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