Cal Poly Humboldt Digital Commons @ Cal Poly Humboldt

IdeaFest 2024

IdeaFest

2024

Efficacy of Blood Flow Restriction Training on Muscle Growth and Pain Management Post-ACL Reconstructive Surgery

Abby Borg ab610@humboldt.edu

Follow this and additional works at: https://digitalcommons.humboldt.edu/ideafest2024

Recommended Citation

Borg, Abby, "Efficacy of Blood Flow Restriction Training on Muscle Growth and Pain Management Post-ACL Reconstructive Surgery" (2024). *IdeaFest 2024*. 23. https://digitalcommons.humboldt.edu/ideafest2024/23

This Article is brought to you for free and open access by the IdeaFest at Digital Commons @ Cal Poly Humboldt. It has been accepted for inclusion in IdeaFest 2024 by an authorized administrator of Digital Commons @ Cal Poly Humboldt. For more information, please contact kyle.morgan@humboldt.edu.

Efficacy of Blood Flow Restriction Training on Muscle Growth and Pain Management Post-ACL Reconstructive Surgery

Introduction

- The anterior cruciate ligament (ACL) maintains the stability of the knee during sudden stops, changes in direction, and pivoting movements
- 400,000 ACL reconstruction (ACLR) surgeries take place in the United States each year [3]
- Females are especially susceptible to ACL tears and there is a high rate of re-rupture among those who return to their sport after surgery [4]
- Decrease in muscle mass post-operation can be as high as 33% [1]
- Blood flow restriction training (BFRT) is a proposed intervention to promote muscle hypertrophy like a heavy load resistance program
- The purpose of this review was to determine the outcomes of **BFRT** on muscle hypertrophy and pain management post-ACL reconstruction

Methods

- Research was found using the Google Scholar database
- Aimed to use the newest research with most sources published from 2019-2024
- Keywords: blood flow restriction training & ACL rehabilitation, BFRT & hypertrophy, BFRT & injury & athlete, ACL & reinjury & female athletes, and ACL & return to sport
- Additional literature was found through cross-referencing
- bibliographies of the primary articles found from these search engines Specific populations searched for included ACL rehabilitation patients, especially female soccer players

Topic 1: Quadriceps Atrophy Following ACLR

•Cross sectional area (CSA) and peak quadriceps strength significantly smaller in the injured limb versus the non-injured limb following ACLR surgery [11]

•Poor muscle function has been shown to be linked to higher rates of rerupture when athletes return to sport (RTS) [5] •Quadriceps function is a predictor of psychological readiness to RTS

[2]

Test	Limb	Mean ± SD	Range	р	d
Knee extensors eccentric peak torque (N·m·kg ⁻¹)	ACLR	3.28 ± 0.79	1.89–4.72	0.0001	0.84
	Noninjured	3.97 ± 0.83	2.48-5.5		
Knee extensors concentric peak torque (N·m·kg ⁻¹)	ACLR	2.76 ± 0.55	1.76-4.31	0.0001	0.99
	Noninjured	3.37 ± 0.68	2.15-5.0		
Knee extensors isometric peak force (N·m·kg ⁻¹)	ACLR	2.9 ± 0.2	2.6-3.7	0.0001	2.53
	Noninjured	3.7 ± 0.4	3.0-4.8		
Central activation ratio (%)	ACLR	18.8 ± 7.9	11.1–32	0.0038	2.14
	Noninjured	4.6 ± 5.1	0–13		
Single hop for distance (% leg length)	ACLR	183.9 ± 26.1	141–226	0.0001	0.53
	Noninjured	197.7 ± 26.1	145–247		
Cross-over hop for distance (% leg length)	ACLR	692.0 ± 128.7	550-974	0.0002	0.38
	Noninjured	741.1 ± 129.6	560–1,012		

*ACLR = anterior cruciate ligament reconstruction

Table 1. Strength differences in ALCR and non-injured limb among a group of professional soccer players at time of RTS [5]

Abby Borg Cal Poly Humboldt

Fopic 2	2: BFRT	Effects of	on Quac
Study	Sample	Method	Results
(Roman et al., 2023) (Lambert et al., 2019)	N=32 ACLR Age 12-18 BFRT n=16 Control n=16 N= 14 ACLR	12 week training program: 3 BFRT exercises per session/ 2x week	 Isometric knee extension strength Isometric knee extension strength Isometric knee extension strength Isometric knee extension strength Peak torque Self-Report Function Bone mass loss
	Age 16-30 BFRT n=7 Control n=7	program: 2x/ week 80% LOP for BFRT group	Lean mass loss
(Hughes et al., 2019)	N= 24 ACLR HL-RT n=12 BFR-RT n=12	8 week training program: 2x/ week unilateral leg press HL-RT: 70% 1RM BFR-RT: 30% 1RM	Comparable skeletal muscle hypertrophy in both groups Physical function and ROM for BFR-RT

Table 2. Summary of studies related to BFRT and muscle function [10] [9] [8]

Topic 3: BFRT & Pain Management

- Effects of exercise-induced hypoalgesia (EIH) were found in participants who did BFRT [6]
- BFRT at 80% limb occlusion pressure (LOP) resulted in greatest increase in pressure pain threshold (PPT) by 48% when compared to 40% LOP, HL-RE, and LL-RE [7]
- Beta-endorphin levels significantly increased in BFRT groups [6]
- Higher muscle discomfort in BFRT group, but this had no impact on exercise adherence [6] [7]
- Knee joint pain immediately and 24hours post training was significantly lower than HL-RE [7]

riceps Muscle Growth

- 30-15-15-15 repetition scheme with 30 sec rest between each set [8] [9] [10]
- Types of exercises: quadriceps set (isometric), side-lying hip abduction, prone hip extension, long-arc quadriceps, single-leg press, hip bridge, step-ups, split squat, medial step-down [10]
- BFRT in early phases of rehabilitation can show strength improvements at both 3 months and RTS after ACLR [10]
- BFRT seems to have protective effects on bone [9]

Image from Mike Reinold

Figure 1. Knee joint pain in the injured limb during session and 24-hours post-session over 8-week training period [7]

- especially in early-stages

Limitations:

- Small sample sizes

ACLR

https://doi.org/10.26603/ijspt202008

- http://www.ncbi.nlm.nih.gov/books/NBK49984

- Service trial. Physical Therapy in Sport, 39, 90–98. https://doi.org/10.1016/j.ptsp.2019.06.014

- 23259671231213034. https://doi.org/10.1177/23259671231213034

Conclusions

• Improving quadriceps function is an important factor for RTS • The combined effects of muscle growth and reduced pain makes BFRT a promising rehabilitation tool among ACLR population

• BFRT creates a hypoxic environment that mimics heavy load conditions which stimulates muscle growth

• Similar strength benefits can be achieved through BFRT with lighter loads than traditional training

• High pressure (80% LOP) BFRT is effective in reducing pain which may increase exercise adherence

• BFRT is not a stand-alone rehabilitation tool

Future Research

• What is the optimal frequency and duration of BFRT after

• How does BFRT impact athletes psychologically • Interactions between perceived training intensity, motivation, and psychological readiness among the population of athletes • More attention for research on female athletes since they are disproportionally affected by this injury

References

[1] Charles, D., White, R., Reyes, C., & Palmer, D. (2020). A SYSTEMATIC REVIEW OF THE EFFECTS OF BLOOD FLOW RESTRICTION TRAINING ON OUADRICEPS MUSCLE ATROPHY AND CIRCUMFERENCE POST ACL RECONSTRUCTION. International Journal of Sports Physical Therapy, 15(6), 882–891. [2] Della Villa, F., Straub, R. K., Mandelbaum, B., & Powers, C. M. (2021). Confidence to Return to Play After Anterior Cruciate Ligament Reconstruction Is Influenced by Quadriceps Strength Symmetry and Injury Mechanism. Sports Health, 13(3), 304–309. https://doi.org/10.1177/1941738120976377 [3] Evans, J., Mabrouk, A., & Nielson, J. I. (2024). Anterior Cruciate Ligament Knee Injury. In StatPearls. StatPearls Publishing.

[4] Fältström, A., Kvist, J., & Hägglund, M. (2021). High Risk of New Knee Injuries in Female Soccer Players After Primary Anterior Cruciate Ligament Reconstruction at 5- to 10-Year Follow-up. The American Journal of Sports Medicine, 49(13), 3479-3487. [5] Herrington, L., Ghulam, H., & Comfort, P. (2021). Quadriceps Strength and Functional Performance After Anterior Cruciate Ligament Reconstruction in Professional Soccer players at Time of Return to Sport. The Journal of Strength & Conditioning Research, 35(3), 769. https://doi.org/10.1519/JSC.0000000002749 [6] Hughes, L., & Patterson, S. D. (2020). The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. Journal of Applied Physiology, 128(4), 914-924. https://doi.org/10.1152/japplphysiol.00768.2019 [7] Hughes, L., Patterson, S. D., Haddad, F., Rosenblatt, B., Gissane, C., McCarthy, D., Clarke, T., Ferris, G., Dawes, J., & Paton, B. (2019). Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK National Health

[8].Hughes, L., Rosenblatt, B., Haddad, F., Gissane, C., McCarthy, D., Clarke, T., Ferris, G., Dawes, J., Paton, B., & Patterson, S. D. (2019). Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Medicine, 49(11), 1787-1805. [9] Lambert, B., Hedt, C. A., Jack, R. A., Moreno, M., Delgado, D., Harris, J. D., & McCulloch, P. C. (2019). Blood Flow Restriction Therapy Preserves Whole Limb Bone

and Muscle Following ACL Reconstruction. Orthopaedic Journal of Sports Medicine, 7(3 suppl2), 2325967119S00196. https://doi.org/10.1177/2325967119S00196 [10] Roman, D. P., Burland, J. P., Fredericks, A., Giampetruzzi, N., Prue, J., Lolic, A., Pace, J. L., Crepeau, A. E., & Weaver, A. P. (2023). Early- and Late-Stage Benefits of Blood Flow Restriction Training on Knee Strength in Adolescents After Anterior Cruciate Ligament Reconstruction. Orthopaedic Journal of Sports Medicine, 11(11), [11] Thomas, A. C., Wojtys, E. M., Brandon, C., & Palmieri-Smith, R. M. (2016). Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. Journal of Science and Medicine in Sport, 19(1), 7–11. https://doi.org/10.1016/j.jsams.2014.12.009

Humboldt.