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ABSTRACT

ASSESSMENT OF INDIVIDUAL PHOTOVOLTAIC MODULE PERFORMANCE
AFTER 26 YEARS OF FIELD EXPOSURE AT THE TELONICHER MARINE LAB
IN TRINIDAD, CALIFORNIA

Jake Rada

In 1990, 192 ARCO MT75 photovoltaic (PV) modules were installed as a part of
the Schatz Solar Hydrogen Project at the Humboldt State University (HSU) Telonicher
Marine Lab in Trinidad, California, within 150 m of the Pacific Ocean. This 9.2 kW-rated
PV array was used to power the marine laboratory air compressor and an electrolyzer.
Individual current-voltage (V) curve tests were performed on each of the PV modules
prior to the array’s construction in 1990 and again in 2001, 2010, and, most recently, in
2016, following decommissioning of the array. After 25.5 years of use, 188 of the
original 192 modules were operational, significantly outliving their 10-year warranties.

Based on the previous testing results and the 2016 results, the lifetime decline in
the maximum power output, at the normal operating cell temperature (NOCT) testing
conditions of 1000 W/m? of solar insolation and 47°C module temperature, of the
modules averaged 21.6%, or 8.6 W, with 47% of the modules still producing at least 80%
of their original (1990) measured maximum power. The average rate of the power output
degradation grew from 0.4%/year in the first decade to 1.4%/year in the second decade,

and the average degradation rate over the 25.5 years of exposure came to 0.85%/year.
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INTRODUCTION

The reduction of photovoltaic system equipment and installation costs and
policies in key markets supporting installation of grid-connected systems are primarily
responsible for the growth of solar photovoltaic (PV) market (Silvestre et al., 2009). As
PV-generated power becomes more popular in the electrical grid, accurate projections of
power degradation are necessary to predict the return on investments (ROI) that investors
use to determine which projects to finance (Jordan and Kurtz, 2011). Historically, PV
technologies have been hindered by high up-front capital costs (Bazilian et al., 2013), and
the Telonicher Marine Lab array had a total installed cost of $6/W with a module retail
cost of $4.80/W (Humboldt State University Foundation, 1989). For reference, these are
equivalent to an installed cost $11.61/W and a module cost of $9.29/W in 2016 dollars
(U.S. Bureau of Labor Statistics, 2017), both of which are significantly more expensive
than those respective costs in the present solar market. Crystalline-silicon (c-Si) solar
module retail prices dropped to $4/W by 2008 ($4.46 in 2016 dollars), to $2/W by 2009
($2.24 in 2016 dollars), and to $1/W as a benchmark price in the 2012 market ($1.05 in
2016 dollars) (Bazilian et al., 2013, U.S. Bureau of Labor Statistics, 2017).

From 2000 to 2010, global PV capacity increased significantly, with an average
annual growth rate of 41%, from 0.26 GW to 16.1 GW (Branker et al., 2011). Figure 1
shows the actual and projected growth of installed PV capacity in the world. According
to International Energy Agency, solar technology could produce 20% of the total global

energy generation by 2050 (Peters et al., 2011). As highlighted in the graph, 85% of the



234 GW installed PV capacity as of 2015 has been operational for five years or less,
indicating that field-proven, lifetime, degradation analysis is reliant upon projects
constructed more than five years ago when prices were not nearly as competitive as they

are today (Meydbray and Dross, 2016).
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Figure 1: Global PV capacity exponential growth projection (Meydbray and Dross, 2016)

Long-term array field exposure data can help determine expected module
lifetimes, failure rates, and failure mechanisms (Wohlgemuth et al., 2006), as well as
support reliable and utility-friendly integration of PV generation (Zhang, 2013). The
analysis of the 25.5-year-old PV modules from the Telonicher Marine Lab array in
Trinidad, California, with the benefit of three previous sets of measurements in 1990,

2001, and 2010 provides a good platform to assess how mono-crystalline PV modules
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age physically and perform as they approach and exceed their warranty periods. The fact
that the array was positioned only 150 meters inland from the ocean also offers the
opportunity to identify any quantifiable affects that a coastal climate, high in humidity,
wind, and salinity in the air, has on the aging process of PV modules. Figure 2 helps set
the bearings of where this project took place on the Pacific coast of California in northern

Humboldt County, and Figure 3 is a view of the ocean from this solar array.

Figure 2: Location of the solar array; Humboldt County, CA (Benbennick, 2006)



Figure 3: View of the Pacific Ocean from the Trinidad solar array (Lehman et al., 2011)

Two important cost drivers for solar PV applications are the efficiency at which
solar energy is converted into electricity and how that efficiency changes as the modules
and array ages (Jordan and Kurtz, 2011). Warranties for the power production of the solar
modules help define the expectations of the operating period, and the typical PV module
warranty has grown from 5 years, for modules prior to 1987, to the more currently used
warranty of 25 years that arose in 1999. In the near future, PV module warranties could
be designated for up to 30 years (Vazquez and Rey-Stolle, 2008). The current standard
for a 25-year warranty limits the power loss of modules to 3% in the first year, to account
for immediate light induced degradation (LID), and then allows for a linear degradation
down to 80% of the original power output (Meydbray and Dross, 2016).

In order to satisfy the warranty commitment of 80% of the original power
performance after 25 years, Vazquez and Rey-Stolle (2008) used a reliability function to

determine that an average degradation rate of 0.5%/year is required. After testing over



2000 solar modules, Jordan and Kurtz (2011) from the National Renewable Energy
Laboratory (NREL) determined that the median and mean degradation rates are
0.5%/year and 0.8%/year, respectively. The economic losses due to degradation at a rate
of 0.5%/year are more substantial in large utility-scale projects, as opposed to the much
smaller residential arrays, and studies on solar projects such as the Telonicher Marine
Lab array can help quantify degradation expectations and identify degradation sources
and prevention methods.

The 2016 round of testing completes the lifetime analysis of the modules from the
Trinidad solar array and provides insight into the characteristics of the degradation
process that any PV array around the world might experience. Even though modern solar
modules have benefited from advances in technology and in materials that can result in
better and longer lasting modules, accurate portrayals of the aging process of PV modules
can be very useful to enable further technical advances and accurate analyses of the

economics of solar PV power generation.

Project Objective

The purpose of this Master’s degree project is to analyze the patterns in the causes
and effects of power degradation in field-aged solar PV modules. This thesis includes:
e Completing testing and analysis of the performance of the 192 individual solar

modules (188 from the original 1990 testing and four newer modules that were



used as replacements when necessary during the life of the array) that made up
the 9.2 KWhominal PV array at the Telonicher Marine Lab

e Comparing results of all four testing cycles covering the 25.5-year lifetime of the
array in regards to the current, voltage, and power output as well as the other key
parameters used in solar module analyses

e Assessing the causes and effects of physical and chemical degradation

e Assessing the effect of bypass diodes on performance in older modules

Background

The Humboldt State University (HSU) Telonicher Marine Lab “Schatz Solar
Hydrogen Project” began in 1989 and was led by a group with the same name as the
project, now known as the Schatz Energy Research Center (SERC), with aid from
Teledyne Brown Engineering. Figure 4 shows an image of a school tour soon after the
construction of the energy generation system was completed. As shown in the schematic
Figure 5, the energy generation set-up included a solar photovoltaic (PV) array, an
electrolyzer, and a hydrogen fuel cell. The oxygen tank in this schematic was replaced
early on in the project with an air-hydrogen fuel cell due to the hazard of storing and
handling the oxygen gas (Chamberlin, 2016). These components worked together to
power an air compressor in the attempt to operate the facility with 100% off-grid

renewable energy.
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Figure 4: Telonicher Marine Lab, including the solar array and a building that housed the
electrolyzer, fuel cell, control system, and other system components (Reis et al., 2002)

The solar array was originally constructed as a 24 Vpc system with 12 subarrays
of 16 modules each (8 series pairs), but in 2005 the wiring was reconfigured in the
attempt to eliminate a portion of the mismatch loss among the modules. This new
configuration lasted the rest of the project’s life and consisted of six subarrays operating

at 48 Vpc with maximum power point trackers (Lehman et al., 2011).
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Figure 5: Schematic of the original energy generation system at the Telonicher Marine
Lab (Lehman and Chamberlin, 1992)

There was not an economic or energy-value side to the scope of the project. Had it
been grid-tied, the offset of greenhouse gas (GHG) and the value of the electricity could
have been more closely and accurately evaluated based on data from the utility.
Unfortunately, between issues with the electrolyzer, the hydrogen fuel cell, and the air
compressor, the system as a whole operated for 43,273 hours, or roughly 5 years, of the
25.5-year project (Chamberlin, 2016). However, this project provided invaluable
knowledge and learning opportunities pertaining to the operation of electrolyzers and

hydrogen fuel cells in off-grid applications.
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Luckily, the focus of this thesis is based up the operation and aging process of the
solar PV modules, which were functional for the entire lifespan of the project even
though they had a manufacturer’s warranty of only 10 years. Of the original 192 ARCO
M75 mono-crystalline silicon (c-Si) solar electric modules, 188 survived the whole 25.5
years. These modules were originally rated at 48 W, under standard testing conditions
(STC) (1000 W/m?, 25°C), which was used as the basis for the nameplate 9.2 kW
capacity of the total array, and 46.4 W, at normal operating cell temperature conditions
(NOCT) (1000W/m?, 47°C).

The IV curve, or the relationship between the current and the voltage in the
module, is the primary tool for assessing the performance of the ARCO modules of this
array. Solar modules are often tested and analyzed at STC and NOCT. Both of these
methods normalize the solar insolation to 1000 W/m? and the air-mass ratio (AM) to 1.5,
but they differ in the temperature of the module, as STC tests use 25°C and NOCT tests
use 50°C (Lighting Global, 2012). The AM quantifies the decrease of energy in sunlight
that is available, due to air and dust particles in Earth’s atmosphere, based on the light’s
path length to Earth’s surface. An AM of 1.0 occurs at solar noon when the sun is directly
overhead, and an AM of 2.0 appears when the sun is 60° from the sun’s position at solar
noon, also known as the zenith angle (Honsberg and Bowden, 2017 and Solar Energy
International, 2013). For consistency, this report utilizes the specific version of NOCT
adopted by Zoellick (1990) in the initial round of testing: an insolation of 1000 W/m?

(tests performed with at least 800 W/m?), a 1.5 AM, and a module temperature of 47°C.



10
Table 1 highlights the original manufacturer provided STC specifications of the modules
in 1989, Figure 6 shows the STC and NOCT IV curves from the ARCO M75 brochure,
and Figure 7 shows what the modules looked like when they were new. Siemens Solar
Industries acquired ARCO Solar in 1990. So for the purposes of this report, ARCO and
Siemens are synonymous. The four modules that were used as the replacements for the
original ARCO M75 modules that had to be removed due to failures were Siemens c-Si
SM50-H modules that were rated at 50 W, (Reis et al., 2002). The first module failure
happened early in the project when a passing truck kicked up a rock that cracked the
module’s glass face. The other three replacements were due to various performance and
wiring issues.

These newer Siemens modules came with 25-year warranties, a major
improvement from the 10-year warranties of the ARCO modules. Both types of modules
are designed the same way, as the ARCO M75 and Siemens SM50-H are each comprised
of 33 mono-crystalline silicon cells in series (Specification sheets for these modules are
presented in Appendix A in Figure A - 1 to Figure A - 3). A comparison of the aging
process between the older original and newer replacement modules is included later in

this report.
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Table 1: ARCO M75 solar electric module specifications (ARCO, 1989)

Electrical Characteristics (STC = 1000 W/m?, 25°C) | ARCO M75 Model
Rated Power, Watts 48
Typical Open-Circuit Voltage, Volts 19.8
Typical Short-Circuit Current, Amps 3.35
Voltage at Typical Load, Volts 15.9
Current at Typical Load, Amps 3.02
Number of Cell in Series 33
Max Short-Circuit Current at 1000 W/m? and 47°C, Amps 3.72
Open-Circuit Voltage at 0°C, Volts 22
A AMPS | | ,g
1000W/ M2 @ 25°C
; S,
1000 W/M2 @ 47°C
2
)
1 500 W/M2 @ 25°C
0
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Figure 6: IV curve of the M75 ARCO modules used in the Schatz Solar Hydrogen Project

solar array as presented in the original specifications sheet (Siemens Solar Industries,
1990)
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Figure 7: New ARCO M75 solar electric module (Siemens Solar Industries, 1990)

These ARCO M75 modules came equipped with a laminate, also known as an
encapsulant, of ethylene vinyl acetate (EVA) around the solar cells and their associated
circuits for increased moisture resistance, ultraviolet (UV) stability, and electrical
isolation. They also used a strong, low-iron tempered glass glazing for its superior light
transmission, and their backsheets were made of a tough, multi-layered polymer that is
resistant to abrasion, punctures and tears. Lastly, each module has two Motorola bypass
diodes, one in the positive junction port and one in the negative junction port. Figure 8
shows a bypass diode installed in the junction box and in a close-up photo after it has
been removed. Bypass diodes are used to reduce potential losses of power resulting from
partial shading (Siemens Solar Industries, 1990). The total project cost of roughly $6/W
and was paid for through a $275,000 donation from Dr. Louis Schatz (Chamberlin,

2016), but the ARCO modules themselves cost $230.40/each, or about $4.80/W in 1989.
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Figure 8: Bypass diode in one of the module junction ports and then‘after removal (2016)

Tests and analyses were performed on the individual ARCO modules during the
construction of the array in 1990 and again in 2001 and 2010. This report is the fourth
round of testing and effectively completes the life-cycle assessment (LCA) of the 25.5-
year old, now decommissioned, solar array. An outline of the procedures and results of

the three previous rounds of testing are in the sections below.

Original Testing (1990 and preliminary data collection)

The Zoellick (1990) report had multiple objectives, but the principal goal was the
analysis of the solar modules that were going to make up the HSU Telonicher Marine
Lab array. This included developing a testing procedure, choosing and assembling testing
equipment, standardizing the results, and comparing the power generation results to the

nameplate rating of the modules. The testing procedure, testing equipment, and
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formatting of the results were replicated as closely as possible by all the subsequent
testing cycles for these PV modules.

Zoellick chose to base his testing procedure and analysis on the American Society
for Testing and Materials (ASTM), as its standards are accepted both domestically and
internationally. Additionally, the decision was made to analyze the modules using NOCT
conditions, instead of the STC that the modules’ nameplate ratings used, because the
modules typically operated closer to the 47°C of NOCT than the 25°C of the STC. The
testing hardware included a curve tracer with a capacitive load connected to a computer
interactive data acquisition system, a type-E thermocouple to measure the module
temperature, and an Eppley Precision Pyranometer Model PSP to measure incident
irradiation with a resolution less than 1 W/m?. A schematic of his testing setup is
reproduced in Figure 9. The tests involved use of a capacitive load, and the capacitor was
discharged before each test. A current shunt resistor was used to measure the module
current, and a voltage divider was used to measure the module voltage. Each test only

took about three seconds to trace the IV curve.
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Figure 9: Original round of testing setup (Zoellick, 1990)

Zoellick performed the tests on all 192 ARCO M75 modules at steady state
conditions on the HSU campus between June 8, 1990 and July 24, 1990 within two hours
of solar noon. To minimize errors resulting from spectral reddening or surface reflection,
he attempted to test the modules as close to direct normal to the sun as possible by using
an adjustable rack. This goal was not achieved for all his tests, but they all were
conducted with the sun-to-module angle of 30° or less from direct normal. Zoellick’s
testing condition ranges for temperature were 36.7 - 63°C and 861 - 1086 W/m? for solar
insolation (Zoellick, 1990), which is consistent with the current Lighting Global (2012)

testing specifications.
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Nonlinear regression was used to determine the IV curve parameters for a lumped
parameter equivalent circuit model based on a Schottky diode model applied to the
module electrical schematic in Figure 10. In this image, E is the solar insolation, I is the
light induced cell current, I¢ is the cell current, and V. is the cell voltage. Equation 1
describes this model. The variable describing the degree of the IV curve knee curvature,
Ekt, concerns the number of electron-hole pair recombinations, and I, is essentially equal
to the short circuit current (lsc) due to a negligible reverse current and sufficiently large
parallel resistance (Rp) (Zoellick, 1990). The best-fit IV curve model was also
programmed to clean the data by eliminating any voltage-current pairs that changed by
0.01 A or less, turning 300 data points into 100 points. As the modules aged, this cutoff

grew so as to not discard too much of the data.

L

O

Figure 10: Solar cell equivalent circuit based on an image from Zoellick (1990)
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Voc
L2 V+Rg+]
1= IL‘[W*V‘;H]*[exp(ekt*<V+Rs*D)‘1]‘[ o 3
where
_ q 1
ekt - nxk*T [V ]

I = module current; initial guess [A]

V = module voltage [V]

IL = light induced module current [A]

Voc = 0pen circuit module voltage [V]
s = module series resistance [Q]

Rp = module parallel resistance [Q]

g = electronic charge [coulomb]

n = ideality factor per cell [unitless]

k = Boltzmann’s constant [Joule/K]

T = temperature [K]

To assess the separate effects of module temperature and incident irradiation on
individual module performance, Zoellick tested three random modules from the array and
varied one of these primary factors while holding the other constant during the tests. This
isolated the effects of each, showing how either module temperature or solar insolation or
a combination affects the module’s power production. The insolation and module
temperature ranges were kept between 800 W/m? and 1000 W/m? and 35°C and 55°C,

respectively, which are purposely close to the NOCT testing conditions. The temperature
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study was achieved by keeping modules in the shade before testing with a constant
insolation, and the incident irradiation was varied when needed by changing the module
tilt with the rack. The results of these tests showed that 1. and Vo were the two primary
module parameters that were significantly affected by insolation and module temperature.

The limiting current, 1., had a positive linear relationship with the insolation on
the module, and the open circuit voltage, Vo, had a negative linear relationship with the
module temperature. The variation of Vo was determined to be dependent on both
temperature and insolation (where I was solely responsive to insolation), so Zoellick
(1990) used a multiple linear regression analysis, shown in NOCT format in Equation 2,
to prove that Vo also relied on insolation at the 5% significance level. Table 2 highlights
the correction factor findings from this analysis, and the respective signs with the

correction factors indicate Vo decreases with temperature and increases with insolation.

A v

CNOCT — Vocraw

— @ % (47°C—T) + w * (1000 Wy - G) 2)
where:

V,

ocnoct = NOCT-corrected open circuit module voltage [V]

V,

OCraw

= field-measured open circuit module voltage [V]

T = field-measured module temperature [°C]

G = field-measured solar insolation [W/m?]

® = open circuit voltage temperature correction factor [V/°C]

® = open circuit voltage irradiance correction factor [V/(W/m?)]
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Table 2: Open circuit voltage correction factors (Zoellick, 1990)

Correction Factor, variable 95% Confidence Level [units]
Open circuit voltage temperature, ® -0.60291 + 0.000534 [V/°C]
Open circuit voltage irradiance, ® 0.0009296 + 0.0000511  [V/(W/m?)]

Since the sample modules were tested with the previously stated limits (800-1000
W/m? and 35-55°C), Zoellick notes that these correction factors for Ve are only
applicable in those testing ranges. These correction factors for the ARCO M75 modules
were used in every round of testing, including Zoellick’s, even though every cycle
performed some tests in conditions that created usable data (based on the original
assertion that stated that tests must be done in clear sky conditions with an AM of 1.5 and
insolation above 800 W/m?) but fell outside of those narrowed ranges from the sensitivity
analysis.

This introduces a source of error in the analyses performed throughout the
lifetime of these solar modules. As seen in the table, the correction factor for the effect of
insolation on the Vo is small, but the factor for the module temperature is large enough to
possibly create a noticeable change in module performance. Therefore, a module
temperature analysis was conducted on a subset of seven modules in this 2016 round of
testing to determine how applicable the original correction factor from Zoellick (1990)
remains after 25.5 years of field-exposure for these particular modules. A similar analysis
was completed on 30 modules in the 2001 round of testing, and it found that the two

correction factors were still valid after only 10 years of operation (Reis et al., 2002). The
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correction factor analysis from the 2016 testing is outlined and discussed in a later section
of this report.

Equations 3 and 4 incorporate the information acquired from Equations 1 and 2 to
determine the standardized NOCT voltage (Vnoct) and current (Inoct) for the
approximately 300 voltage-current pairs from each IV test of each module. Equation 3
utilizes the open circuit voltage that has been corrected in terms of insolation and module

temperature to manipulate the raw module voltage measurements.

VnocT = Vraw * % 3)
OCraw
where:
VyocT = NOCT-corrected module voltage [V]
Vraw = field-measured module voltage [V]
Voenocr = NOCT-corrected open circuit module voltage [V]
Vocraw = field-measured open circuit module voltage [V]

Equation 4 can be used to correct either the raw measured current or the best
initial guess current (1), the result of Equation 1, into comparable and reproducible NOCT
data. Simply multiplying the current (I or lraw) by the comparison of the NOCT insolation
(1000 W/m?) and the measured insolation, as 1. showed no dependence on temperature at

the 5% significance level, produces a NOCT-corrected current for analysis.
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1000 W/
InocT = lraw * Tm 4)

where:
Inoct = module NOCT-corrected current [A]
lraw = field-measured module current; or first guess current from Equation 1 [A]

G = field-measured solar insolation [W/m?]

Zoellick (1990) used the module 1V curve parameters (I, Voe, Rs, Rp, and ekt)
and Imp, Vmp, and Pmax at NOCT conditions to analyze module performance. The module
and average cell efficiencies were determined with Equation 5 in STC format, along with

the fill factor (FF) and Pmax, to compare to the STC nameplate ratings of these modules.

Pmax
n="c 5)

where:
n = efficiency [unitless]
Pmax = maximum module power [W]
A = planar surface area [m?] (See Figure A - 1 in Appendix A)

G = total irradiance [W/m?]

The FF in Equation 6 is the percentage that the measured IV curve maximum

power is of the ideal 1V curve maximum power, where an ideal 1V curve is a rectangle
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connecting the Voc and lsc, with Rs equal to zero and R, equal to infinity. The higher the

FF, the more ideal the IV curve is in terms of PV module performance (Jacobson, 2016).

FF = e ®)

Vocrlse
where:
FF = fill factor [unitless]
Pmax = maximum module power [W]
Voc = open circuit module voltage [V]

Isc = short circuit module current [A]

Table 3 highlights the average NOCT results of the array from 1990, and Table 4
provides a summary of the STC criteria. These data are used as the point of comparison
for all subsequent testing, and they are included as the original test results in the lifetime
assessment of the individual solar modules. With the average tested STC Pmax 0f 43.705
W and the ARCO nameplate STC rating for Pmax of 48 W, Zoellick expressed, based on a
99% confidence interval, that the modules did not meet their nameplate ratings.
Surprisingly, almost 20% of the modules tested at less than 90% their nameplate power
rating. Previous contemporary research suggested that new photovoltaic modules often
performed 10% lower than their manufacturer nameplate ratings with regards to power
generation (Jennings, 1987, Russell and Bergman, 1985). The Literature Review portion

of this thesis delves further into the research on the possible causes of this shortcoming.



Table 3: 1990 results for NOCT testing at 47°C (Zoellick, 1990)
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Parameter 95% Confidence Interval [units]

I 3.30+£0.006 [A]

Voc 18.19+0.019 [V]
Rs 0.346 £ 0.017  [Q]

Rp 171.036 + 9.422 [Q]

ekt 0.708 +0.017  [1/V]

Prmax 39.872£0.120 [W]

Vimp 13.860 + 0.034 [V]

lmp 2.877+0.004 [A]

Table 4: 1990 results for STC testing at 25°C (Zoellick, 1990)

Parameter 95% Confidence Interval [units]
Prmax 43705+0.123  [W]
e (cell) 11.471+0.032 [%]
nm (module) 10.235+£0.029 [%]
FF

0.679 £0.002  [unitless]

The narrow confidence intervals from Zoellick’s precise measurements and

analysis for most of the parameters indicate that the modules tested in 1990 were

generating power to the best of their abilities, meaning the manufacturer ratings were

most likely overestimations.
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After testing all the 192 ARCO M75 modules, Zoellick (1990) concluded that,
based on the IV curves, module 124 (where Zoellick labeled the modules 1-192, for
easier identification in future analyses, in the order that he tested them without any
correlation to their manufacturer serial numbers) had the highest maximum power
performance, module 031 produced the median power output among the modules, and
module 161 had the lowest maximum power. Figure 11 shows the comparison between
the IV curves of these three modules and the ARCO M75 nameplate IV curve at the same
testing conditions. At 47°C and 1000 W/m?, Zoellick (1990) found that the array power
output, made up of the sum of the individual module Pmax values, came to 7,655 W. This
is 14% less than the rated array output of 8,900 W, and at the NOCT conditions this

production equates to a sunlight-to-electricity efficiency of 9.9% for the total array.

= Median
©  Rated
= Best
* Worst

2
Amps

Volts

Figure 11: Here are the best, median, and worst 1V curves from 1990 versus the
manufacturer nameplate rating 1V curve (Zoellick, 1990). The worst curve is already
showing signs of a second hump at low voltages, a feature present in all of the IV curves
from 2016 that will be discussed later in this report.
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After construction was completed, preliminary tests were conducted on the entire
energy system from 1990-1995, and the results were published in six periodical reports.
The fourth report, published in September 1994, focused on the PV array. Jacobson et al.
(1994) discovered that the efficiency of the entire array on a typical day averaged around
8.0% and rarely reached above 8.5%. This was partially attributed to the fact that the span
of a day covers a range of insolation and module temperature conditions, and there was
shading in the mornings and evenings that adversely affected the daily production and
efficiency average. Also, the electrolyzer ran at a higher voltage that caused the subarrays
to operate further from their maximum power points. Models had predicted that after four
years of operation the PV efficiency would drop from 9.9% to 9.0%, but tests performed
on a sample subarray found that the average efficiency had dropped to 8.0%, which is an
additional 11% drop from the model prediction (Jacobson et al., 1994).

The next analysis on the PV array at the Telonicher Marine Lab was performed on
every individual solar module, whereas the preliminary studies were based on the total
array, and was conducted in 2001 after 11 years of operation. The summaries and results
of this round of testing and the subsequent round of testing completed in 2011, after 20

years of operation, are detailed in the following section.

Subsequent Complete Testing (2001 and 2010)

Reis et al. (2002) headlined the analysis of the modules after 11 years of field
exposure, and Lehman et al. (2011) repeated the analysis after 20 years of field exposure.

Of the original 192 modules, 191 of them survived the first 11 years of operations. Two
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more modules had to be replaced between 2001-2010, and the fourth and final
replacement module was added between 2010-2016.

The 2001 and 2010 rounds of testing analyzed each module without removing
them from the array, so the modules were tested at a 30° tilt instead of direct normal to
the sun as was done in the 1990 testing. These subsequent rounds of testing compared the
key results to the Zoellick (1990) NOCT findings, instead of the over-estimated and
optimistic manufacturer-advertised specifications, that included a maximum power (Pmax)
of 39.87 W, a short-circuit current (lsc) of 3.30 A, and an open-circuit voltage (Vo) of
18.20 V. Abiding by the NOCT test methods, the tests in 2001 and 2010 were performed
twice per module within two hours of solar noon, when the sun and insolation were at
their highest, with a module temperature range between 26.5°C to 62.5°C and a solar
insolation that was always above 800 W/m?. All tests used an Eppley PSP pyranometer to
measure the insolation in the plane of the module (Reis et al., 2002, Lehman et al., 2011).
The 2001 testing differed from the 1990 testing in that Reis et al. (2002) tested the
modules in the plane of the array, while Zoellick (1990) tested them on a portable frame.
Moreover, newer equipment was used to perform the data acquisition in 2001. Reis et al.
(2002) collected IV curves using a “LabVIEW™ 5 0-based program on a
PowerComputing PowerCenter 150 computer with a National Instruments PCI-MIO-
16XE-50 data acquisition board installed” and used an Omega CO1-T fast response type-

T thermocouple to record the module temperature. Figure 12 shows the appearance and
growth of module physical degradation over the first two decades of operation, and
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Table 5 summarizes the results and relative changes in the three key results for each
decade of operation individually, as well as together, for a then-up-to-date account of the

performance abilities of the solar modules.
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The 2001 and 2010 testing cycles witnessed the same signs of module
degradation, which included discoloration and browning of the EVA encapsulant over
most of the cells in the modules, delamination of the EVA encapsulant at the silicon cell-
EVA interface, and extreme browning of the EVA above individual cells, most likely

caused by localized hot spots (Reis et al., 2002, Lehman et al., 2011).



28

Table 5: 20-year analysis of the key NOCT results of the analysis

Parameter Year Pmax (W) Isc (A) Voc (V)
Original Rating 46.4 3.72

Mean 1990 39.87 3.30 18.20

2001 38.13 3.15 18.15

2010 33.43 2.86 18.04

% Change 1990 v. 2001 -4.36% -4.44% -0.27%

2001 v. 2010 -12.3% -9.13% -0.61%

1990 v. 2010 -16.2% -13.2% -0.89%

Later in this report, additional statistical and graphical comparisons are performed
using the 2016 testing cycle to create a full summary of the lifetime changes of these
modules. But first, there were a few observations in the past rounds of testing that are
worth noting. As it can be seen in Table 5, there were much larger changes in Pmax and lsc
measurements than the in Voc. This indicates that the majority of the power loss in the
modules is due to decreased current producing capability. Reis et al. (2002) noticed that
the Pmax point had shifted further down the IV curve by observing the current and voltage
at the maximum power point, Imp and Vmp, respectively. The increase in the series
resistance (Rs), causing a greater amount of the generated power to be lost as heat, and
the decrease in the parallel resistance (Rp), producing an increase in current leakage
around the cells, also pointed towards the decrease in the available current and the

module performance.
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The drop in power production in the second decade of operation was almost three
times higher than that in the first decade. As discussed in the literature review of solar
module degradation of this report, this degradation trend is in fact the opposite of what
should happen theoretically because degradation rates typically level out and normalize
to a smaller, linear rate after a few years of field exposure with more rapid degradation
rates (Quintana et al., 2002, Meydbray and Dross, 2016). In this case, the first decade had
a power loss rate of 0.4%/year, when compared to the Zoellick (1990) results, and the
second decade experienced a 1.4%/year degradation rate. Over the first twenty years of
the Trinidad array, the average degradation rate came to 0.8%/year, which is slightly
higher than the rate of degradation in power production reported in the literature for c-Si
modules. (Osterwald et al., 2002, Quintana et al., 2002, Jordan and Kurtz, 2011).

Machida et al. (1997) reported degradation statistics for individual single c-Si PV
modules after five years of field exposure with declines in Pmax of 4.8%, in lsc of 5.3%,
and a minimal change in V.. These findings are similar to the results from the first 11
years of operation with the ARCO M75 modules. Because these ARCO M75 modules
were not tested before 11 years of exposure, it is possible, yet unverifiable, that they
experienced comparable losses to the Machida et al. (1997) study in the first five project
years. This would correlate to a PV power loss phenomena called light induced
degradation (LID), which is described further in the Literature Review of this report.
Reis et al. (2002) suggested that the slightly lower degradation rates in the Trinidad array
relative to those reported in some literature could be attributed to the coastal climate, as

the array was located only 150 m inland from the coast. The lower ambient temperatures



30
and windier weather could result in better performance of the modules, and modules tend
to degrade faster at higher ambient and module temperatures (Czanderna and Pern, 1996).

Using the Reis et al. (2002) data, Reis and Coleman (2002) identified four types
of IV curves observed after 11 years of field exposure. These four curves, simply named
Type 0-3, are shown in Figure 13 to Figure 16. Type 0 curves show very little to no
degradation from initial testing, Type 1 curves express a decline in the current generated,
Type 2 curves show the bypass diodes beginning to activate, indicating negative bias, and
Type 3 1V curves have the largest visible effect from the bypass diodes as the series
resistance plummets. Type 3 curves became increasingly prevalent by 2016. The captions
of the following graphs indicate the test year that each dataset represents for four
different modules that provided samples of all four types of curves just defined, and the

“X’s” on the curves highlight the maximum power point for that module.
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Figure 13: Type 0 IV curve example from 2001 (BLUE) compared to the original 1990

curve (RED) for the same specific module (Reis and Coleman, 2002)
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Figure 14: Type 1 IV curve from 2001 (BLUE) compared to the original 1990 curve

(RED) for the same specific module (Reis and Coleman, 2002)
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Figure 16: Type 3 IV curve with large knee from 2001 (BLUE) compared to the original

1990 curve (RED) for the same specific module (Reis and Coleman, 2002)

Lehman et al. (2011) concluded from 20 years of data that, as the modules aged,
the mean power decreases, the distribution becomes more skewed from normal, and the
distribution expands while following the trend of decreasing power. Cumulative
distribution curves plotted on normal probability scales were used for analysis in past
testing cycles, as shown in Figure 17, and they are utilized in this 2016 study. If the
cumulative distribution approximates a straight line in these plots, then the distribution is
at least approximately normal. The lower distribution lines indicate a decline in the mean
power generation, the steeper slopes mean larger standard deviations, and the less-linear

lines have distributions that deviate further from a normal distribution (Lehman at al.,

2011).
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Figure 17: Cumulative probability distribution curves comparing the maximum power for
the modules for testing in 1990, 2001, and 2010 plotted on normal probability scales
(Lehman et al., 2011)

All rounds of testing—1990, 2001, 2010, and 2016—-attempted to test the modules
in a consistent manner to accurately depict the power degradation trend over the 25.5-
year period. Using a 5-parameter model with a modified version of the non-linear
Levenberg-Marquardt algorithm (Reis at al, 2002), IV curves using NOCT are best fit
(i.e., minimizing the sum of the squared residuals) to create comparable data and curves.

This round of testing (2016) continues this effort and produces a full lifetime account of

the effects of 25.5 years of field exposure in a coastal climate on mono-crystalline silicon
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PV modules. If past trends continue, the large decline in Isc would be expected to

continue to be responsible for whatever 1oss in Pmax occurs.

Literature Review

This section includes a broad investigation into the causes that produce PV solar
module power generation declines over time, as “identification of the origin of
degradation and failure modes and how they affect the photovoltaic modules is necessary
to improve the reliability of photovoltaic installations” (Kahoul et al., 2014). A
quantitative estimate of this loss of power production over time helps aid the economic
evaluation of PV-related projects, as the amount of power produced for a given amount
of input solar irradiance is not constant over time. This review focuses on the causes and

effects of PV degradation and includes statistical analysis based on past case studies.

Degradation Causes and Effects

Due to the growth of the PV solar industry, there is high demand for early
detection of degradation and hidden defects in modules based on visual inspections,
current-voltage (V) curve field measurements of the entire array, thermal evaluations
using infrared (IR) imaging, and measurements of the IV and thermal behaviors of
selected individual modules from the array (Munoz et al., 2011).

Degradation is typically gradual, baring the instantaneous influence of an object,
such as a rock, hitting and cracking the glass encasing the front of the module, and

therefore is typically expected in older, field-aged modules. It generally occurs through
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either chemical or material processes associated with weathering, thermal stresses,
corrosion, or oxidation (Branker et al., 2011). Power performance losses outside of the
crystalline cell are typically due to broken solder joints, encapsulant browning,
delamination, and interconnection problems (Vazquez and Rey-Stolle, 2008). Figure 18
depicts the layers of a c-Si solar module. The reliability of solar modules is directly
linked to the adhesion and cohesion of all the interlayers; loss of adhesion and cohesion is

referred to as delamination (Jorgensen and McMahon, 2008).
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Figure 18: Layers of a ¢c-Si PV module (Meydbray and Dross, 2016)

Ethylene vinyl acetate (EVA) has been used as an encapsulant on PV modules for
over 30 years due to its low cost and ability to protect the crystalline cells from the
harmful UV rays that accelerate the aging process. There have been great improvements
made in the EVA material and the process by which it is applied since the ARCO
modules from this project were manufactured. EVA deterioration is prevalent on the front

of the module but not on the back (Jorgensen and McMahon, 2008). Adding cerium to
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the glass creates an effective barrier to protect the EVA from the UV rays that can
expedite the formation of acetic acid, which accelerates the degradation of the polymer in
the module (Vazquez and Rey-Stolle, 2008).

Figure 19 shows the various causes of PV module degradation and when they
typically occur over a module’s productive lifetime, including EVA discoloring,
delamination and cracked cells, corrosion, and light induced degradation (LID). The LID
effect can occur quickly in the first hours that the module is exposed to sunlight and can
create 1-5% loss in the short circuit current (Quintana et al., 2002). Vazquez and Rey-
Stolle (2008) concluded that within the first year of field exposure modules show rapid
average power degradation of 1-3%, but after that the degradation rate slows to a linear
rate of 0.5-1.0%/year. These data and conclusions are considered to represent the
expected results of testing modern PV modules. Vazquez and Rey-Stolle (2008) analyzed
individual modules that ranged in age from 1-22 years from eight different PV arrays
located around the world in various climate settings, including deserts, mountains, and
coastal regions. The analysis of the first 11 years of operation of the Trinidad solar
project that is the subject of this thesis was even one the arrays in the Vazquez and Rey-

Stolle (2008) study.
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Figure 19: Contributors to performance degradation based on aging/mechanical failures
throughout the useful life of the module, where the width of the section represents the
percent power output lost from the original power output (Meydbray and Dross, 2016)
Delamination is defined as “the breakdown of the bonds between material layers
that constitute a module laminate” (Quintana et al., 2002), and examples of delamination
are shown in Figure 20. Hot spots can occur when a cell in a series string of cells is
negatively biased (i.e., the voltage drops across the cell instead of increasing), which
causes the cell to dissipate power as heat instead of delivering it as electrical power.
Prolonged localized heating on a cell can eventually create a permanent open circuit on
that cell, leading to a loss in the module’s power output abilities. Hot spots, shown with
infrared imaging in Figure 21, can be avoided using bypass diodes—discussed later in this
report—and strategic solar array design that minimizes dust/snow collection and, most
importantly, avoid obstructions that project shadows on the cells of the modules

(Molenbroek et al., 1991, Silvestre et al., 2009).
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Figure 20: Stages of delamination, including yellowing, browning, and dark browning
(Dechthummarong et al., 2010)
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Figure 21: Infrared imaging of a hot spot occurring in a PV module (King et al., 2000)
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Figure 22, Figure 23, and Figure 24 show examples of the most prevalent physical
signs of degradation—EV A discoloration, delamination, and hot spots, respectively—that

were present in the 2001 round of testing after 11 years of field exposure.
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Figure 24: Localized hot spot and EVA rowning on a ARCO module from the array
(Reis et al., 2002)

The climate and environment at the location of a solar PV array has a large effect
on the durability of the productivity of the array. Studies performed on both single and
multi-crystalline field-aged modules by Sandia National Laboratories (SNL) and National
Renewable Energy Laboratories (NREL) found that higher operating cell temperatures
cause accelerated PV performance degradation (Quintana et al., 2002). This is due to the
open circuit voltage decreasing as temperature increases while the Isc increases from UV
absorption at the top of the silicon surface (Kahoul et al., 2014). Also, high relative
humidity in the environment can cause encapsulant delamination through accelerated
rusting when the moisture seeps through the seals and gains access to the area that
contains the crystalline cells. Dew on the face of the modules collects additional dust,

decreasing the module’s surface area and therefore access to solar insolation.
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Higher velocities of wind can help cool down the modules in particularly hot and
humid environments, effectively increasing the efficiency of the cells in the modules
(Meknhilef et al., 2012). Mechanical properties are also affected by the weather, as
decreases in the productive longevity of a solar module are heavily correlated with
delamination (Jorgensen and McMahon, 2008).

Deserts represent the combination of the best average solar resource in the world
with poor climate conditions for solar projects. The effect of high operating temperatures
and dust on PV modules can counteract the draw of the elevated solar insolation. When
operating cell temperatures are above 40°C, modules can lose up to 7% of their STC
power generation ratings (Gxashekaa et al., 2004). While it was previously stated that
wind could help cool down solar modules to create higher electrical efficiencies, wind in
the desert can also increase the dust cover on the surface area of the modules, leading to
temporary energy production loss and the long-term possibility of scratched modules.

As it is explored with the case studies later in this report, the reasons for the
success and/or failure of a solar project are dependent on local climate, economic, and
political atmospheres. Module performance degradation rates range widely and can be
influenced by chemical and mechanical reactions. Only increased implementation and
further analyses will be able to highlight and effectively address the pertinent causes so
that PV solar power can continue its growth in reliability and durability as it competes

with other energy generation sources.
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Degradation Statistics and Case Studies

This section is used to provide general insight into degradation rates over time, as
well as to highlight case studies and results from field experience. Degradation rates are
needed to predict power generation for the long term. Modern module manufacturers
typically guarantee that their modules will produce at least 80% of the rated maximum
power when consistently compared to the original manufacturer ratings in either STC or
NOCT conditions over a warranty of 25 years (Swift, 2013).

Jordan and Kurtz (2011) of NREL consider a solar module experiencing a 20%
decline in power production to be a failure. This same report found that after testing 2000
different modules and entire arrays, the median and mean degradation rates were
0.5%/year and 0.8%/year, respectively, based on the original rating and testing. For
example, a solar module that had lost 10% of its original power production capabilities
after 10 years of use would have a degradation rate of 1.0%/year.

A separate study performed on over 200 silicon modules found that 70% of 19—
23-year-old field-aged modules had an average annual degradation rate of no more than
0.75% (Skoczek et al., 2008; Branker et al., 2011), which generally agrees with the
previous NREL report. However, it must be acknowledged that testing 19-23-year-old
modules means that the technology may have advanced a great deal since those modules
were produced, and this is evident in the current 2016 degradation benchmark rate of
0.5%l/year (Branker et al., 2011, Jordan and Kurtz, 2011). Nevertheless, these degradation
rates depend on the sample size and the scatter of the datasets. Osterwald et al. (2002) of

NREL tested four different types of commercial c-Si modules using an accelerated solar
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weathering program and up to 3.5 years of monthly outdoor testing and found an average
degradation rate of 0.7%/year. Data from the LEEE-TISO, CH-Testing Centre for
Photovoltaic Modules found that degradation rates for c-Si modules have ranged from
0.7%-9.8% in the first year of exposure to 0.7%- 4.9% in the second year of exposure
(Quintana et al., 2002). These ranges have since been narrowed and collectively lowered
as solar technology has improved.

Technologies in the solar energy sector after the year 2000 are categorized as
significantly more advanced than the technologies available before 2000, essentially
creating a split between “old” technology and more currently applicable technology and
statistics. In the late 1980’s and early 1990’s, 10-year old modules were found to have an
average degradation rate of 1-2%/year (Quintana et al., 2002). Figure 25 highlights this
by showing the reported degradation rates for pre-2000 and post-2000 of long-term field
observations of c-Si modules from the four major solar energy regions prior to the year
2000: USA, Europe, Japan, and Australia. The grouping of the post-2000 degradation
rates, based on many fewer example case studies due to the data availability for this
particular study, appear to be lower than the pre-2000’s consistent rate of 0.6%/year.
Modules from before 2000 had degradation rates significantly less than the rates of the
PV solar array systems as a whole, but there has been an improvement in the stability of
the balance-of-system components within the solar engineering field since these case
studies from the early 2000’s that have brought those respective rates closer together

(Jordan and Kurtz, 2011).
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Figure 25: Pre-/Post-2000 degradation data for c-Si modules (Jordan and Kurtz, 2011)

Case Studies.
The following five case studies, noted in Table 6 and detailed further in the
proceeding sections, are used here to show examples of both low and high degradation

rates, as well as the causes for the associated results.
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Table 6: Summary of PV degradation case studies presented in this analysis

Location Most Important Takeaway

Excessive solar insolation and heat can
New Delhi, India increase power output while also
expediting degradation affects.

Hot climate and high humidity create

Thailand 2
accelerated corrosion in PV modules.

High operating temperatures, even with
Sahara Desert ideal solar insolation access, can shorten
PV modules’ lifespans.

Tests on this 22-year old array show the

Ispra, Italy importance of quality encapsulant material.

A 20-year old array produced smaller
degradation rates than expected.

Lugano, Switzerland

New Delhi, India.

This study used sixteen Siemens 75 W modules, which are similar to the modules
used in the Trinidad Marine Lab Array, to analyze degradation rates in modules with the
consistent excellent solar insolation access that is present in New Delhi. The study stated
that, while increased solar radiation can increase a module’s short circuit current,
maximum power output, and energy conversion efficiency, extended outdoor exposure in
such environments, 15 years for this study, can decrease a module’s power output by
about 20-50% depending on the subarray structure and the location’s surrounding climate
(Sharma and Tiwari, 2011).

Thailand.

Using the available solar insolation of up to 6.5 kWh/m?/day, this study analyzed
39 silicon-based modules, originally rated at 47 W and 60 W, over 15 years in a hotter

than average (ambient temperature up to 40°C) and extremely humid (90%+ in monsoon




46
season) environment. The EVA samples from these modules had become opague from
exposure to the elements. Dechthummarong et al. (2010), focused on the creation and
existence of physical degradation in solar modules in the Thailand climate, reported
“87% of the PV modules had a little corrosion on the busbar, detachment of the backsheet
at the corner of the module, and brittle or fracture of seal edge.”

Sahara Desert.

This study, performed in the Saharan Desert, found that the cells in the modules
degraded by 12% over 11 years of exposure. These modules were very similar to the
ARCO M75 modules used in the Trinidad Marine Lab Array project in that they had two
bypass diodes in parallel, tempered glass plate, EVA resin, impermeable PV back sheet,
and an aluminum frame. At peak air temperatures as high as 63°C in July, average
ambient temperatures around 40°C, and an annual average solar insolation above 7
kWh/m?/day, this study provides an excellent case for analyzing solar array performance
in a desert setting. With a degradation rate of roughly 1%/year, the analysis concluded
that deserts create negative impacts on the performance of PV modules, essentially
saying that the higher temperature counteracted the increased insolation and shortened
the expected lifespan from 20 years to 11 years (Kahoul et al., 2014).

Ispra, Italy.

The Institute for Environment and Sustainability tested a 20 to 22-year old array
in Ispra, Italy, which is one of the oldest arrays to be analyzed for degradation effects.
Forty silicon-based modules from six different manufacturers were involved in this study,

and their differences revolved around the type of encapsulant (Dunlop and Halton, 2005).



47
Modules encapsulated with silicone exhibited an average power degradation rate of
0.3%/year based on the original in-lab tests, while modules encapsulated with EVA and a
Tedlar aluminum back sheet had a 0.67%/year mean power degradation (Vazquez and
Rey-Stolle, 2008). Either way, both types of encapsulants involved had yearly
degradation rates well below 1%/year, and the degradation rate for the modules using the
silicon encapsulant were as low as 0.25%/year.

Lugano, Switzerland.

The MTBF Project analyzed the performance of a 20-year old 10 kW PV system
installed in Lugano, Switzerland. The 252 Arco Solar, ASI 16-2300, c-Si modules had a
10.5% average power degradation from exposure (Realini et al., 2001). While 59% of the
modules exhibited a power reduction of less than 10% (<0.5%/year), 35% of the modules
displayed a power reduction of 10-20%. The remaining 6% of the modules showed power
reduction levels above 20%, or 1%/year of degradation (Vazquez and Rey-Stolle, 2008).

All these case studies derived their conclusions from examining the performance
of the PV modules with IV curves, which is the most common method of analysis for this
energy generation technology. The next section in this Literature Review describes what

aspects of the IV curves are the most crucial to these types of analyses.

IV Curves

In keeping with past research performed on the Telonicher Marine Lab solar array
over the last 25.5 years, the current-voltage operational relationship for each module is

expressed in the form of an IV curve, exemplified in Figure 26, to determine the
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modules’ lifetime degradation information by identifying their maximum power output
(Pmax) in 2016 and comparing it to the initial results from 1990. Along with Pmax, Figure
26 also highlights many of the primary metrics used to analyze the performance of these
solar PV modules. These performance parameters include the open circuit voltage (Voc),
short circuit current (lsc), series resistance (Rs), parallel resistance (Rp), a lumped
parameter describing the degree of knee curvature (ekt), maximum power point voltage
(Vmp), and maximum power point current (Imp).

Vo is the voltage and Isc (sometimes referred to as I, for limiting current) is the
current at which there is no current or voltage, respectively; therefore, they are found at
the beginning and the end of the IV curve. The current in the module is most affected by
the solar insolation, just as the module voltage is most sensitive to the module operating
temperature (Jacobson, 2016). Rs, whose inverse is the steep slope of the IV curve to the
right of Pmax, is the product of bulk resistance of the semiconductors and contacts, and the
contact resistance between the semiconductor and metal. Ry, as parallel resistance,
represents current leakage across the p-n junction diode-where p and n are the two silicon
semiconductors in a p-n junction diode of solar modules such as the ARCO M75 models.

The inverse of Ry is the slope of the of the IV curve to the left of Pmax (Zoellick, 1990).
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Figure 26: 1V curve with all key parameters labeled (Reis et al., 2002)

The equations used to analyze, and the measured correlations between, the
parameters described in this section is explored in later portions of this report. This 5-
parameter analysis, using the previously defined Equation 1, only involves the second
quadrant of a full IV curve analysis. If this project wanted to focus on the on the leakage
current experienced in a solar cell with avalanche multiplication, then the first quadrant
would also need to be included in the analysis (Pauletto, 1996). Figure 27 shows all four
quadrants of a complete IV curve, and quadrant one is the subject of this analysis and is

dependent on the module temperature and solar insolation.
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Figure 27: Complete four-quadrant IV curve (Pauletto, 1996)

Bypass Diodes

Losses of power generation in PV arrays typically depend on bypass diodes,
inverter voltage limits on the DC side, the layout of the modules, the electrical
configuration of the array, and the various types of module degradation (Diaz-Durado et
al., 2010). However, as this thesis focuses solely on the PV module and not the array, the
bypass diode is the source of power loss that can be quantified. Therefore, the theory of
the effect of bypass diodes is explored later in this section, and the measured effect of
bypass diodes from a sample of the 188 surviving ARCO modules is covered in the

Results and Discussion sections of this report.
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As mentioned earlier in this report, bypass diodes can be used to help avoid

localized hot spots, caused by shading and unequal electrical currents, from appearing in
solar modules. Without a bypass diode, a shaded cell causes the voltage and current to
drop in the module, and causes un-shaded cells to operate at a lower current on their
associated operation curves. This causes the voltage to fall across the shaded cell, which
is referred to as reverse bias, leading to hot spots and dissipated power. Bypass diodes
restrict this reverse bias and therefore the power that can be dissipated (Hasyim et al.,
1986, Diaz-Durado et al., 2010). The leakage current, covered in the first quadrant of the
complete 1V curve shown in Figure 27, is a function of the junction voltage and controls
these reversing characteristics in the crystalline solar cells (Pauletto, 1996). Figure 28
shows how a bypass diode can be implemented to allow a module to maintain some
partial operation when only one cell, or string of cells, is compromised. In this figure, the
dotted yellow lines represent current flow. This ability to effectively avoid the damaged
or shaded cells reduces power consumption, which can help prolong the module’s

lifetime (Singh, 2011).
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Figure 28: How bypass diodes handle shading (Solar Energy International, 2013)

Hasyim et al. (1986) tested two nominally 24-volt arrays consisting of four and
two PV modules with 64 and 72 series-connected cells, respectively, and concluded that
bypass diodes did not produce any noticeable benefit in the presence of 10% or less
shading on a single cell. However, at 100% shading of one cell, the power generation loss
in the array with bypass diodes was 1/20" of the loss experienced by the cell in the array
without any bypass diodes. Figure 29 and Figure 30 show how including a bypass diode
in a solar module can heavily reduce the effect of shading on a single cell. The module
represented by the IV curve in Figure 29 has no bypass diodes and therefore loses more

generation abilities as the shading increases. Figure 30, which shows the performance of
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the module with bypass diodes, hardly loses any generation as the shading of the one cell

in the module is increased.
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Figure 29: IV curves for a PV module that does not utilize bypass diodes under a range of
cell shading conditions (Hasyim et al., 1986)
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Figure 30: IV curves for a PV module that utilizes bypass diodes to prevent generation
losses under a range of cell shading conditions (Hasyim et al., 1986)

The use of bypass diodes also introduces peaks, or knees, in the solar module’s IV
curve, and as the modules age and more hot spots occur, the momentary influences of the
bypass diodes become permanent (Singh, 2011). This involves the current’s path
consistently directing itself around perceived problem areas (solar cells) that grow in
number and size overtime, limiting the module’s power output as fewer and fewer cells
generate current to create power. This occurrence causes the second knees in the
module’s IV curve to also grow larger, which is evident for the ARCO M75 modules that

are the subject of this Master’s project. Figure 31 shows the IV curves from 1990, 2001,
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and 2010 for an ARCO module that experienced this type of degradation. The bypass

diodes, once a source of over-current protection, became another source of power loss.

4.0
;ﬂ 2010
. |_ - ﬁQ'JO'
; . o = 1990
M ‘ :1-'I:[B‘ﬂl-.r-_1'3:~E|=|=,—._u_f_EEE E -"°'f"~;- .
25 [ ‘
2 O F L A IR EEHI
: L
§ 20/
=
=
3 A
1.5 [
: Pmax =30.2W, 2010
L : Pmax = 40.9W, 2001
I Pmax =41.0W, 1990
0.5
o0l “
L - 15 20

10
Voltage (V)

Figure 31: IV curve of ARCO module 184 from the array where the bypass diodes have
created a large second knee after 20 years of field exposure (Lehman et al., 2011)
The negative effect of the bypass diodes was already becoming apparent in the

2001 round of analysis, as Reis et al. (2002) noticed that about a third of the modules that
experienced the activation of at least one bypass diode during the IV curve testing had a
rise in their Isc values when compared to the original 1990 tests. Most of the modules saw
the expected decrease in this value, but Figure 32 shows how some modules’ Isc increased
in a frequency histogram of the 1990 and 2001 cycle results. When one bypass diode is

activated, the current bypasses two of the three 11-cell strings based on the design of the
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ARCO M75 module circuitry. Therefore, if a single problem-cell is in one of those
bypassed strings and is the cell that typically limits the current, the one remaining string
would have a cell that would act as the new limit to the current (Reis et al., 2002). This
could allow a larger short circuit current, as one string of cells acting alone can produce a
smaller voltage than an uninhibited module. Later sections in this report investigate the
power loss due to bypass diodes present in the ARCO module after the decommissioning

of the Trinidad array.
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Figure 32: Frequency histogram for the ARCO M75 modules tested in 1990 and 2001
showing their collective drop in average Isc and increased distribution (Reis et at, 2002)
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METHODS

This section outlines and highlights the methods used in the collection and the
analysis of the data for each of the 192 PV solar modules. This includes methods
associated with testing setup, equipment, and procedure. It also includes the equations
and software utilized to organize and analyze the data to create comparable results to the
previous years of testing. The data in the Results section in this report, following this
Methods section, were obtained using these described methods and primarily focus on the

power degradation of the modules based on 1V curves as exhibited earlier in Figure 26.

PV Module Testing

Reproducibility and consistency are the cornerstones of performing scientific
analyses, and, therefore, whenever possible, the procedures and methods of testing the
192 PV modules (188 original ARCO M75 models and four younger Siemens SM50-H
models) in this study were performed in similar fashions as the previous rounds of testing
in 1990, 2001, and 2010. However, circumstances created situations where some
adjustments to the process had to be made. Previously, the analyses were performed on
the operating array, which required the testing to take place at the location of the project
150 m off the coast in Trinidad, California. During the current round of testing, the array
had been decommissioned and deconstructed in early 2016, and the testing was

performed over the following summer. Once decommissioned, the 192 modules were
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kept in storage temporarily, and the 2016 testing was performed in the driveway of

SERC.

Telonicher
Marine Lab

13.3 miles

SERC

Figure 33 highlights the location of the Telonicher Marine Laboratory in Trinidad and
SERC in the city of Arcata. The solar access of these two locations is very similar, and
testing a little further off the coast allowed for more testing day opportunities without
cloud and fog cover, which is more prevalent closer to the ocean. While there is some
tree cover and shade around the SERC building, the tests were all performed within two
hours of solar noon just like the previous tests (Lehman et al., 2011, Reis et al., 2002,
Zoellick, 1990), and during this timeframe the SERC driveway was free of any shading

affects.
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Figure 33: Modules were tested at the site of the array in Trinidad, CA in 2001 and 2010
and were tested at the SERC facility in 1990 and 2016. These sites are roughly 13.3 miles
apart, as shown on this map. (Google Maps, 2017)

Using past procedures as a guide, the 2016 tests were performed in clear sky
conditions with at least 800 W/m? of available solar insolation with an AM close to 1.5.
Since the data are adjusted to NOCT conditions of 1000 W/m? insolation and 47°C
module temperature using the same methods that Zoellick (1990) employed, the tests
were completed as close to those conditions as possible. The ranges of insolation values
and module temperatures in this 2016 round of testing, performed over 17 days of testing
from June 22" to October 19", were 920-1035 W/m? and 37.1-59.5°C (excluding the

sensitivity analysis testing that purposely widened the temperature testing range),

respectively, which are very similar to the reported ranges in the Reis et al. (2002) study.
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Testing close to the specified NOCT conditions reduces the amount of error associated
with applying the correction factors to normalize the results. The Lighting Global (2012)
IV curve testing procedure states that the insolation must be between 850-1150 W/m?, the
ambient temperature should be 15-35°C, and the AM should be less than 2.0, and all
these conditions were met in the 2016 round of testing. While the ambient temperature
was not recorded, the NOCT method concerns itself with the module temperature, not the
ambient temperature, so keeping the module temperature close to 47°C was important
criterion for this analysis.

The physical setup, equipment used, and the procedure for testing these PV solar
modules are just as important as the data analysis, and it was necessary to pay meticulous
attention to detail to create insightful and reproducible results. All the equipment is
described below, but Table 7 highlights the primary output of each unit. All the
equipment in this experiment was either bought or already owned by SERC or the
Environmental Resources Engineering (ERE) department at HSU. ERE purchased the IV
curve tester that came with the PV reference cell. The associated specification sheets for
the equipment can be found in Appendix A (Figure A - 4 to Figure A - 9).

Table 7: PV testing equipment

Equipment Company; Product Primary Purpose
Pyranometer Eppley; PSP Thermo-based solar insolation
Ingenieurburo Mencke &
IV Curve Tester Tegtmeyer GmbH; Mini- Produces IV curve and records
KLA reference cell data

Ingenieurburo Mencke &

PV Reference Cell Tegtmeyer GmbH; sensor

PV irradiance and temperature
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Equipment Company; Product Primary Purpose
Si-01TC-T
Thermometer Omega; Omegaette Read thermocouple for
HH303 Type K module temperature
Multimeter Fluke; 287 True RMS Read Eppley PSP mV output

The physical setup, shown in Figure 34, includes a metallic frame built by

SERC’s Mark Rocheleau. This frame also has a frame plate in the plane of the frame

where the PV reference cell was attached, and there is a metallic tube attached here that

allows the user to adjust the frame and the module to be direct normal to the sun, aptly

labeled in the figure as the “Direct Normal Sight Tube.” Previous rounds of testing

performed their tests at the same angle as the operating array at 30° (Lehman et al., 2011,

Reis et al., 2002, Zoellick, 1990), but with the array now decommissioned testing the

modules perpendicular to the sun provides the best data closest to the NOCT solar

insolation of 1000 W/m? and matches the method used in the original 1990 testing.
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Figure 34: PV module testing schematic

The Mini-KLA PV IV Curve Analyzer (Figure 35), from Ingenieurburo Mencke

& Tegtmeyer GmbH, is at the center of this experiment. It can be used to test modules

with a Voc as high as 120 V and an Iscas high as 8 A, which is well above the

requirements for the ARCO M75 modules. This device can sense the voltage and current

capabilities of a module before testing and apply the applicable testing range. For this

procedure, the Mini-KLA applied an upper limit of 30 V and 4 A for the Voc and lsc,

respectively. The Mini-KLA uses a very simple interface, as there are only two buttons

on the device: “Select” and “Change.” The “Change” button is only used to put the Mini-
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KLA in sleep mode to extract the data. The Mini-KLA samples up to 500 data pairs of
currents and voltages to a create a comprehensive 1V curve for each individual module
curve, and the internal LMBit memory can hold up to 100 IV curves at a time before the
data need to be cleared (Ingenieurburo Mencke & Tegtmeyer GmbH, 2011). The Mini-
KLA receives connecting wires from the positive and negative ports of the module
(connected to the module with 4 mm-diameter multi-contact (MC4) connectors), as well
as one cable from the irradiance reference sensor, for a total of three input wires (Figure
34).

After each test is complete, the Mini-KLA produces the IV curve on its graphical
liquid-crystal display (LCD) screen along with the pertinent data that it has recorded.
These data are a combination of the module performance details and the information
received from the irradiance reference sensor Si-01TC-T, also made by Ingenieurburo
Mencke & Tegtmeyer GmbH. The data include Vmp, Imp, Pmax, Voc, Isc, Solar insolation
(G), reference cell temperature, and the IV fill factor (FF).

The Mini-KLA advertises 0.4% full-scale range accuracy on its specifications
sheet (Appendix A). This means that at the applicable ranges of 30 V, 4 A, 100°C, and
1300 W/m?, the maximum range of error is £0.12 V, +0.016 A, +0.4°C, and +5.2 W/m?
for those respectively categories. The irradiance reference sensor also has associated
calibration values for its temperature and insolation readings, which are 10 mV for every
degree Kelvin (0°C is 1.235 V) and 1 V for every 1000 W/m?, respectively
(Ingenieurburo Mencke & Tegtmeyer GmbH, 2011). This information is applied in the

analysis portion of this report.
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Figure 35: Version of the Mini-KLA 1V Curve Analyzer with five ports (where the model
used in the 2016 testing had only three ports, as indicated in Figure 34) and reference PV
cell sensor (Ingenieurburo Mencke & Tegtmeyer GmbH, 2011)

Due to the associated uncertainty with the irradiance reference sensor, additional
high quality third-party instruments were used to act as either verification or
supplementary data for the solar insolation and module temperature measurements. A
newly calibrated Eppley PSP, or Precision Spectral Pyranometer, was used to measure
the solar insolation in the plane of the module. Just like the reference cell, it was attached
to the testing frame with a frame board fabricated by Mark Rocheleau. As noted in the
schematic of Figure 34, the wiring configuration of this Eppley PSP differs from typical
color code conventions. In this case, the white wire is the positive lead, the black wire is
the negative lead, and the green and red wires are not used. This pyranometer is a

thermopile-based insolation measurement instrument, as opposed to a PV-based device
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like the Mini-KLA reference cell, and its output signal is in the form of millivolts.
Therefore, a Fluke 287 True RMS multimeter is used to read the Eppley mV output with
accuracy of 0.025%, or roughly 0.0125 mV while testing over a 50-mV range (Fluke,
2009). The Eppley PSP reports the insolation with a resolution of 1 W/m? (The Eppley
Laboratory, Inc., 2016). The project-specific Eppley PSP’s calibration sheet (Appendix
A\ states that its sensitivity is 8.78 uV/Wm2, which means that a reading on the Fluke
287 of 8.78 mV corresponds to a solar insolation of 1000 W/m?2. This also means that the
Fluke 287’s accuracy of 0.0125 mV is equivalent to an uncertainty in the insolation value
of 1.42 W/mZ. In accordance with the past test procedures, 800 W/m?, or a 7.024 mV
reading from the PSP, is the lowest insolation during which tests can be performed. Also
included in the calibration sheet is the PSP’s uncertainty of 0.91% at a 95% confidence
interval and the advertised 650 Q resistance at 23°C.

Surface mount thermocouples are often used to measure a PV module’s
temperature. Due to the mild climate in northern California, a thermocouple with a wide
temperature measurement range is not necessary. A type-K surface mount thermocouple,
with a wider than necessary operational temperature range of -250°C to 1250°C, was
used to measure the temperature of the modules during testing with an accuracy of
+2.2°C or £0.75% (whichever of the two is greater). This thermocouple is attached to the
backsheet of the module with insulation tape, and the Omegaette HH303 thermometer is
used to read the type-K thermocouple with a resolution of 0.1°C. This thermometer can
record either type K or J thermocouples, and its specification sheet (Appendix A) claims

an accuracy of 0.1% of the reading plus an additional 0.7°C (Omega, 2016). The use of
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the thermocouple attached directly to the tested module provides a better estimate of the
module temperatures than the Mini-KLA reference cell temperature, as each module can
be slightly different than the last.

Now that the measurement equipment has been fully described, the step-by-step
process of performing the IV curve tests on the solar modules will be described. In order
to help the modules reach steady state temperature conditions similar to what would be
expected in the field at an operational array, the modules that were being tested on a
given day were laid out in the sun. This is done as a first step in the setup process so that
IV curve tests can begin soon after the equipment is ready. These modules are then wiped
down with a cloth and Windex to eliminate any lingering dust or dirt particles from
storage and transportation. Next, the test rack was assembled and equipped with the
frame boards that hold the reference sensor and Eppley PSP, as shown in Figure 36. A
similar digital image was taken for each of the 192 tested modules to document the
physical signs of degradation like delamination, hot spots, and discoloration that
appeared over their 25.5 years of field exposure (See Appendix C Figure C - 1 to Figure
C - 12). These images can be compared to the image of the new ARCO M75 module in

Figure 7 to show the severity of the cell deterioration.
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Figure 36: Testing setup with the PV module, test rack, Eppley PSP, and reference cell.
The number (044) is used to identify the particular PV module that is being tested.

Once the modules reached steady state temperature, the sensors were
appropriately wired to their associated measuring instruments, and, if the sky was still
clear of clouds, then the testing was begun. It was important to wait to test until the
module temperature had reached steady state, where the temperature was no longer
climbing or falling, to get the best results. Also, the direct normal site tube needed
constant attention as the sun moved very quickly across the sky, so that the test rack
required frequent adjustment to maintain direct normal conditions. The Mini-KLA saves

all its data internally, but additional information about the test and the data from the
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external sensors must also be recorded. To facilitate documentation of this information, a
clipboard-ready data-entry table was created and used (examples as Figure D - 1 and
Figure D - 2 in Appendix D). The information included each test’s date, module number
(001-192), module serial number, test time, module temperature, and the Eppley mV
reading. In addition, it was necessary to note the number of visible knees on the Mini-
KLA produced IV curve to immediately see the presence of bypass diode issues. Also
included was a checkbox to ensure a photo of that module has been taken, the run of that
module (each test involved two replicates), the IV curve number (as explained below),
and, if necessary, comments about the module or test results. In the effort to identify and
address errors in the testing process, two replicate IV curves, or runs (a and b), were
performed on each module. As is discussed in the PV Module Analysis section, these
runs are averaged to produce a better image of the module’s performance abilities. The
IV curve number is assigned by the Mini-KLA in the order of the tests until the memory
is cleared. Therefore, these numbers are recorded to enable matching the Mini-KLA
output file with the other information that was recorded for that IV curve test.

With only two button options, it is very easy to operate the Mini-KLA. Pushing
the “Select” button twice maneuvers to the option to start a test. One more push of
“Select” begins the test, which only takes 1-3 seconds. During this time, the Eppley
reading (via the Fluke 287 multimeter) and the thermocouple reading (via the Omegaette
HH303 thermometer) are recorded on the clipboard sheet. This process is repeated for
each module, and the Mini-KLA and clipboard data are digitally recorded and saved.

When that day’s testing is done the modules are put back into storage. The four
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replacement Siemens SM50-H modules were tested with the same procedure as the
ARCO M75 modules, and their difference in size and nomenclature are addressed in the
analysis section of this report.

To represent the relationship between power output and the operating
temperature, seven selected modules, including one Siemens module, were tested twice at
three different times during a single day to generate IV curves over a range of
temperature. Two of the curves were measured at relatively low temperatures, two at
close to ambient temperature, and two at a higher temperature that corresponded to the
steady state temperature for each module. These seven modules have runs labeled a, b, c,
d, e, and f. Other than the process associated with ensuring that the module temperature
falls within the appropriate temperature range as described, there is no difference in the
testing procedure or data collection process. Outside of this temperature analysis, runs e
and f, or the steady state temperature runs, are used for those modules to compare their
power degradation compared to past test cycles. Lastly, a small sample of six modules
was tested with their bypass diodes removed, shown earlier in Figure 8, to determine if
the bypass diodes are now causing more issues than they are solving regarding power
generation. This could be true (as investigated in the Results section) because multiple
cells may be bypassed by these diodes, which could lead to significant power loss. As
with testing of the replacement Siemens modules, the temperature relationship testing,
and all the other module tests, the IV curve testing procedure remains the same for

consistency’s sake.
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The next section covers the data collection and organization for activities not
discussed above, along with the statistical methods and software used to normalize,
organize, and produce the final results that are used to compare the modules’

performance over a lifetime of coastal environment exposure.

PV Module Analysis

The primary purpose of this thesis is to complete the 25.5-year analysis of power
degradation in the ARCO M75 modules. To carry out this work, the data collected both
by the Mini-KLA and by third party instrumentation must be normalized and organized
so that the 2016 results can be compared to results from earlier tests. The first step
involves recording the clipboard data in an Excel spreadsheet and uploading the Mini-
KLA data into its associated software program called MiniLes. MiniLes creates a text file
(in .asc form) that reports the raw Vmp, Imp, Pmax, Voc, Isc, G, T, and FF results along with
the associated string of current and voltage pairs recorded by the Mini-KLA for each
tested module. The Mini-KLA data are uploaded and saved after each day of testing to
clear the memory of the device and make room for the next day’s testing. MiniLes is only
a means to save the data from the Mini-KLA, as it does not normalize the data to NOCT
conditions. A coding program written in Scilab, used in the 2010 round of testing, is
utilized at this point in the data analysis. Due to progress in technology, the modern
software, just like the hardware, is subject to advance past the tools and resources used in

earlier stages of the analysis of these solar modules; therefore, the strategy and methods
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used to analyze the data may differ even while the equations and normalization
procedures remain consistent.

This Scilab code (Appendix B) pulls data from the raw MiniLes and clipboard
files and combines their information, including the 1V curve data from MiniLes and the
module information and third party insolation and module temperature data from the
clipboard, to develop for each module test a regression analysis table and a summary
table of the pertinent parameters and results, and related standard deviations of the results
(Appendix E shows examples of a summary table, as Table E - 1 to Table E - 4, and a
regression table, as Table E - 5). The 2016 summary table is used in conjunction with the
previous testing cycles’ summary tables to create a full depiction of the performance
degradation and changes in the parameters of the solar modules, especially with respect
to their power generation abilities.

The Scilab code applies Equations 1-4, defined earlier in this report, to normalize
the IV curves and data to NOCT conditions through an iterative process. This procedure
uses a Gauss-Newton method and least squares to create a best fit for the parameters. The
program can produce graphical representations of the observed and predicted IV curves
for each module (Figure 37). These curves (examples as Figure E - 1 to Figure E - 4 in
Appendix E) can be compared to the original 1990 IV curves to determine the changes in

a module’s performance.
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Figure 37: Example of Scilab IV curve in NOCT (Scilab Enterprises, 2016)

Due to the adverse effect of the bypass diodes in many of the modules and the
secondary knees in the IV curve that they have created, certain adjustments were made
for the power performance results to be comparable to past IV curves. In the code, any
current-voltage pair with a voltage below 5 V was clipped from the data, save for a small
sample of modules that are used to analyze the quantifiable influence of the bypass
diodes. The module temperature and solar irradiance correction factors determined by
Zoellick (1990) with multiple linear regression (Equation 2) are used in all the testing
cycles for consistency and because they are specific to these exact modules. This 2016

round of analysis investigates and reports the degree to which those correction factors are



still applicable 26 years later, as it is reasonable to assume that the modules may have
changed enough to require updated correction factors.

There are other areas outside of the bypass diodes that also require closer
attention and small adjustments. One small issue that arose in this round of testing was
that for two testing days, June 24" and August 12", the Mini-KLA file did not input a
number in the “comment” space. All other testing days had a number in this area;
therefore, a slight change in the code was needed for those two test days. As it can be
seen in in Appendix B, line 124 calls for two inputs to account for “comment” and the
number following it. For those two days of data without a number after “comment,” the
second input is removed to avoid an error that prevents the code from executing the
analysis procedure.

In addition, lines 231-232 deal with limit constraints for the five key IV curve
module parameters: lsc, Voc, €kt, Rs, and Rp. These exist so that the program’s iterative
process does not vary too far from seemingly reasonable results. Between testing every
module twice, the temperature correction verification, and the bypass diode evaluation,
424 1V curve tests were performed, and 151 runs, or 35.6% of the total runs, hit one of
the limits. The range of limits for Isc and Vo are set at 2-4 A and 15-25 V, respectively,
and no modules reached these limits during the analysis. However, the same cannot be
said for the limits pertaining to the other three parameters. Table 8 summarizes the
original upper and lower limits for ekt, Rs, and R as well as the limits that were

ultimately applied.
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Table 8: Modeling constraints for key parameters ekt, Rs, and Rp

Sﬁéi‘inﬁﬁe[cfvli;ir'.?n.LtLéiLeeZIf’viTye) Original Limit Final Limit
ekt (LL) 0.1 0.1
ekt (UL) 20 5.5
Rs (LL) 0.05 0.05
Rs (UL) 20 40
Re (LL) 50 15
Re (UL) 1000 3500

Eight IV curve test runs contained data that could not be analyzed adequately by
the Scilab software program because their current-voltage relationships differed
significantly from the expected curve shape. To address this, an implementation of the
analysis algorithm is Excel was used to carry out the necessary analyses. Of these eight
runs, four of them came from the two tests on modules 044 and 078, which produced so
little power (each under 10 W) that the Scilab code could not interpret their data. The IV
curves for the two runs of module 051 produced an unexpected and unusual bump in the
high voltage area of the IV curve, and the code could also not interpret that bump from
run “a”. The first runs (run “a”) of modules 023 and 111 produced an r? value above 1.0,
which is theoretically impossible. Finally, the eighth problematic run occurred with
module 118 (run “a”) with the bypass diode removed.

Once those eight runs were removed from the primary analysis and the new

updated parameter limits were generated, only eight out of the remaining total 416 tests
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exceeded a limit. This procedure reduced the percent of tests reaching one of the limits
from 35.6% to 1.9%. The eight runs that continued to surpass the limits included seven
modules exceeding the Ry upper limit and one module meeting the upper limit of ekt. The
tests that resulted in the ekt limit breach and two of the seven that still had issues with the
Rp parameter were from the tests with the bypass diodes removed. The final constraint
ranges successfully involved the true results for over 98% of the tests, and this provides
useful and comparable data for the analysis.

The Excel spreadsheet that is used on the eight modules that had results that could
not be managed with the Scilab software performs an iterative process, based on user-
defined initial guesses, with the cleaned current-voltage pairs (no pairs below 5 V and
pairs with current changes below 0.05 A thrown out) from the Scilab regression file. The
end-result is a file containing the same information that the Scilab summary file contains,
and therefore the Excel data can be successfully compared to the rest of the results. An
example set of results from this Excel spreadsheet is shown in Appendix F in Figure F - 1
and Table F - 1.

This section has outlined how the solar module 1V curve data were acquired and
then how they were organized for analyses. The following section covers the results from
this 2016 round of testing and an examination of the progressive decline of the modules’
capabilities over their 25.5-year lifetime in the coastal town of Trinidad, California using
the results from the 1990, 2001, and 2010 testing cycles. The majority of the graphs were
created in a software package called Kaleidagraph (KaleidaGraph: Graphing and Data

Analysis, 2017).
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RESULTS

The following section presents the primary findings of this analysis of the
performance of the Trinidad PV array modules. Each table and figure is introduced and
briefly explained, and the analysis pertaining to the results shown here can be found in
the subsequent Discussion section. As noted earlier in this report, the number of modules
tested in each cycle (i.e. 1990, 2001, 2010, 2016) varies due to the failure of four
modules over time (these modules were replaced with Siemens modules); therefore, the
probability curves, histograms, and any other form of results shown in this section
unavoidably contain unequal number of modules. Parameter outliers that occurred in

now-failed modules are also removed from the following results for comparability.

Equipment Verification

As discussed previously, the Mini-KLA, with its advertised 0.4% full-scale
accuracy, came equipped with a PV reference cell with a temperature sensor. However,
an Eppley PSP pyranometer was used in the testing for the insolation readings, and a
type-K thermocouple was used to measure the module temperature, as detailed in the
Methods section. Table 9 shows the comparison between the insolation and temperature
recordings from the Mini-KLA and the third-party instruments. The fact that the third-
party thermocouple could be attached directly to the module being tested provided more

accurate data for the modules’ temperatures, and the Eppley PSP is more accurate than
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the Mini-KLA. The Mini-KLA consistently reported an insolation 36 W/m? higher than
the Eppley PSP, or 3.7% more solar energy, and the Mini-KLA temperature sensor
under-represented the true module temperature by roughly 4.5°C, or 8.3%. Figure 38 and
Figure 39 show the reading comparisons graphically for all the tests performed. The
temperature figure has 42 fewer tests, as the temperature sensitivity analysis involved
exposing the modules, and not the Mini-KLA reference cell, to adverse conditions.
Figure 40 and Figure 41 tell a slightly different story, as they show that the direct
relationship of the Eppley PSP and the Mini-KLA reference cell results are generally
linear but that there is much less predictability among the temperature readings,
respectively. The improved accuracy of the third-party instruments for insolation and
module temperature measurements allows the findings presented in this thesis to be more
accurate. The Mini-KLA’s over estimation of solar insolation would result in tests
indicating that the modules generated less power than they did, and the lower module
temperatures would lead to incorrect IV curves, calculations, and performance reviews.

Table 9: Comparison of results between Mini-KLA and third-party instruments

Difference between Difference between type-K
Eppley and Mini-KLA | thermocouple and Mini-KLA

Average 36.3 W/m? 45°C
Standard Deviation 9.25 W/m? 3.4°C
Average (%) 3.7% 8.3%

Standard Deviation (%) 1.0% 6.4%
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Figure 38: Eppley readings versus the Mini-KLA reference cell insolation output
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Individual Module Maximum Power Output

The most important metric used to compare the 192 ARCO modules over the
testing cycles of this project is the maximum power output in NOCT conditions. While
many other parameters provide useful insight into the operation and aging of these PV
solar modules, such as the fact that the average module NOCT efficiency fell from
10.016% + 0.063% with a 95% confidence interval in 1990 to 7.915% * 0.156% with a
95% confidence interval in 2016 using Equation 5, the power output truly represents their
remaining viable worth. How these modules degraded and lost their production abilities
is the main focus of this thesis, and, therefore, the following two graphics may be the
most important results. Figure 42 is a probability curve, or distribution curve, of the Pmax
for the individual modules at NOCT during each of the four testing cycles. As the
variability among the modules grows, so does the steepness of the curve’s slope and the
space between each representative dot. The lower tail of the distributions becomes
increasingly long as the modules age. Probability curves for Vo, Isc, Vimp, and Imp can be

found in Appendix G (Figure G - 1 to Figure G - 4).
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Figure 42: This is a probability distribution curve for the modules’ NOCT maximum
power showing the drop in the maximum power as the array aged. The steeper slopes
indicate a growing variation in the generation abilities among the modules.

Figure 43 expresses the average Pmax Of the modules based on their age, which
ranges from zero years old when they were brand new during Zoellick’s testing in 1990
to over 25 years old when they were permanently removed from the array in 2016. The
accompanying basic linear trend line indicates that, on average, these ARCO modules
lost roughly 0.35 W per year of field exposure. Based on Zoellick’s original findings with

the average Pmax being equal to 39.87 W, this represents a yearly power degradation rate

of 0.82%/year. This is only an estimate, since the degradation experienced by these
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modules was not truly linear. Comparing the 2016 average power of 31.25 W after 25.5
years of field exposure to the original average power of 39.87 W in 1990 is consistent

with a lifetime degradation rate of 0.85%/year for these ARCO M75 solar modules.
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Figure 43: Average module Pmax based on module age

Table 10 provides summary information for the histogram plots for each test cycle
for the averages of the Pmax and the five key 1V curve parameters (lsc, Voc, Rp, ekt, and Rs)
that were used to analyze the ARCO modules throughout the lifecycle of this project
broken down by testing year. The lower portion of the table compares each of the
parameters to the other testing cycle results to develop degradation analyses. The primary

results include the 21.6% drop in Pmax Over 25.5 years, the higher drop in Isc than Vo that



83

lead to this power decline, and the increases in average 1V curve related criteria (Rp, ekt,

and Rs) as the IV curves physically changed with the modules’ performance.

Table 10: Summary of changes in average of Pmax and the 5-parameters of the IV curve

Year Pmax (W) Isc (A) Voc (V) Rp (€2) ekt (V1) Rs (£2)
1990 39.87 3.30 18.20 171.04 0.71 0.35
2001 38.13 3.15 18.15 95.67 0.89 0.22
2010 33.43 2.86 18.04 80.49 0.85 0.44
2016 31.25 2.77 18.06 96.81 1.54 1.06
‘90 v. ‘01 -4.36% -4.55% -0.27% -44.1% 25.4% -37.1%
‘0lv. ‘10 -12.3% -9.21% -0.61% -15.9% -4.49% 100%
‘90 v. ‘10 -16.2% -13.3% -0.88% -52.9% 19.7% 25.7%
‘10 v. ‘16 -6.52% -3.15% 0.11% 20.3% 81.2% 141%
‘90 v. 16 -21.6% -16.1% -0.77% -43.4% 117% 203%

Table 11 summarizes the average degradation rates these modules experienced

between testing periods. While there is inconsistent decline in power output from testing

cycle to testing cycle, as shown earlier in Figure 43, the lifetime power degradation rate

comes to 0.85%/year with a range of rates from 0.4%/year to 1.4%/year. Table 12

summarizes the average and standard deviation of the parameters for each test cycle, with

the number of original ARCO modules tested in that cycle noted, as these are the criteria

where the parameters experienced the most significant changes throughout the life of the

project.



Table 11: Average degradation rates seen throughout the project

Testing Cycle

Years in the

Average Power

Degradation Rate

Range Field (years) Loss (%0) (Yolyear)
1990-2001 11 -4.36% -0.40%/year
2001-2010 9 -12.3% -1.37%/year
2010-2016 5.5 -6.52% -1.19%/year
1990-2016 25.5 -21.6% -0.85%/year

Table 12: Average and standard deviations for important IV curve data

Parameter Year ARCO Mo_dule Average Star]da_lrd

Sample Size Deviation
Pmax (W) 1990 192 39.87 0.85
Prmax (W) 2001 191 38.13 1.67
Pmax (W) 2010 189 33.43 2.93
Pmax (W) 2016 188 31.25 4.10
Isc (A) 1990 192 3.30 0.04
Isc (A) 2001 191 3.15 0.12
lsc (A) 2010 189 2.86 0.14
lsc (A) 2016 188 2.77 0.25
Voc (V) 1990 192 18.20 0.13
Voc (V) 2001 191 18.15 0.11
Voc (V) 2010 189 18.04 0.26
Voc (V) 2016 188 18.06 0.11
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Parameter Year ARCO Mo_dule Average Star]da}rd

Sample Size Deviation
Rp (©2) 1990 192 171.04 66.61
Rp (©2) 2001 191 95.67 55.90
Rp (Q) 2010 189 80.49 51.05
Rp (Q) 2016 188 96.81 7457
ekt (V1) 1990 192 0.71 0.12
ekt (V1) 2001 191 0.89 0.21
ekt (V1) 2010 189 0.85 0.24
ekt (V1) 2016 188 1.54 0.92
Rs (Q) 1990 192 0.35 0.12
Rs (Q) 2001 191 0.22 0.24
Rs (Q) 2010 189 0.44 0.43
Rs (€Q2) 2016 188 1.06 0.52
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Histograms

The following pages contain color coded histograms for each of the IV curve
parameters covered in Table 10 in order of the test cycle, showing how the distribution of
the values initially began narrow and then spread out as the modules aged. The precise
relationships seen in these histograms are explored in the Discussions section. The Pmax
histogram plots include Figure 44 to Figure 47. The histograms for Isc and Vo are shown
in Figure 48 to Figure 51 and in Figure 52 to Figure 55, respectively. The histograms for
Rp are given in Figure 56 to Figure 59, for ekt in Figure 60 to Figure 63, and for Rs in
Figure 64 to Figure 67. The histograms for Vmp and Imp can be found in Appendix G
(Figure G - 5 to Figure G - 12). The average Vmp Stayed relatively the same even as the
standard deviation grew, while the average Imp dropped significantly over the lifetime of

the project, following the same trends seen with Isc and Voc.
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Figure 44: 1990 Pmax histogram with an initially narrow range
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Figure 45: 2001 Pmax histogram with a widening range after 10 years of field exposure
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Figure 46: 2010 Pmax histogram with a lower average after 20 years of field exposure
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Figure 47: 2016 Pmax histogram of the modules at the project’s completion
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Figure 49: 2001 Isc histogram showing widening range while maintaining similar average
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Figure 50: 2010 Is histogram with decreased average after 20 years
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Figure 51: 2016 Isc histogram showing significant spread in the results
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Figure 52: 1990 V¢ histogram
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Figure 53: 2001 Vo histogram that shows little change after 10 years
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Figure 54: 2010 Vo histogram that is similar to the plot from 1990 and 2001
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Figure 55: 2016 Vo histogram that hardly changed over 25 years




93

Frequency

120

100

=]
o

7] 1990 Rp

[=2]
o

40

20 7
Z
0 V7'7 7%77 ) e

0 100 200 300 400 500 600

Parallel Resistance, Rp (Ohms)

Figure 56: 1990 R, histogram with relatively wide range at the start of the project
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Figure 57: 2001 Rp histogram with collective decrease in the R, parameter
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Figure 58: 2010 Ry histogram with large potion hitting the 2010 parameter lower limit
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Figure 59: 2016 R, histogram showing natural spread with widened limits
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Figure 60: 1990 ekt histogram showing initial consistency with the modules’ ekt
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Figure 61: 2001 ekt histogram showing gradual widening of the ekt variation
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Figure 62: 2010 ekt histogram
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Figure 63: 2016 ekt histogram with large spread after 25 years and with wider limits
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Figure 64: 1990 Rs initial histogram
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Figure 65: 2001 Rs histogram that shows negative values after 10 years
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Figure 66: 2010 Rs histogram with a lower limit of zero implemented
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Figure 67: 2016 Rs histogram highlighting a general rise in Rs in last years of the project
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IV Curves

IV curves are at the center of this thesis analysis, as all the parameters covered in
the previous section are obtained from these curves. This portion of the results section
shows a variety of 1V curves produced throughout the project, highlighting the smallest
and largest changes in performance observed in this sample of solar modules. Figure 68
shows the IV curves from 1990 and 2016 for the module that experienced the smallest
decline in performance (i.e., in Pmax), module 160. Module 160 tested at 40.53 W in 1990,
above average, and tested at 37.09 W in 2016, the highest power output among the

original modules. This power degradation of only 3.44 W, or 8.5%, is not representative

of the typical module.
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Figure 68: IV curves from 1990 and 2016 for the module 160, which had the smallest
decline in power output over the 25-year project



100

Figure 69 shows the 1V curves from 1990 and 2016 of the module that had the
largest decline in power output that still produced an IV curve, module 015. There were
two modules, module 044 and module 078, that tested at a lower Pmax than module 015 in
2016, but their current-voltage relationships were so unrecognizable (almost linear,
instead of the expected IV curve shape like Figure 68) that they could not be analyzed.
Module 015 originally produced 39.18 W in 1990 and only produced 24.40 W in 2016, a
drop of 14.78 W, or 37.7%. Note how the slopes of the IV curve flatten out as the
performance of the module declines over time. This trend is evident in the progression of

the Rp, ekt, and Rs factors in the array average over 25.5 years.
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Figure 69: IV curves from 1990 and 2016 for the module 015, which lost the largest
power output over 25 years
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The replacement modules benefitted from the use of improved materials and
manufacturing processes, including improvements to the EVA, that allowed them to age
more gracefully than the original ARCO modules. Module 101, which was added to the
array between 2001-2010, barely saw a change in its IV curve and performance from
2010 to 2016, as shown in Figure 70. Improved material choices and design in this solar
module indicates how improved manufacturing practices can lead to better module

performance and durability over their lifetime.

Table 13 summarizes the Pmax of the four replacement Siemens modules. However,
because they were not tested when they were initially installed, the only point of
comparison is the nameplate rating of 50 W STC. Figure 71 shows a physical
comparison between the newer Siemens module 101 and the best performing ARCO
module 160 to highlight the aging process differences, as even the best ACRO module

has signs of cell discoloration and delamination.
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Figure 70: 1V curves from 2010 and 2016 for Siemens module 101 with little power loss

Table 13: Pmax in 2016 for the four Siemens replacement modules of various ages

Siemens Module (estimate of year added) 2016 Testing Pmax Results (NOCT)
035 (circa 2001-2010) 40.60 W
101 (circa 2001-2010) 41.46 W
102 (circa post 2010) 41.27T W
148 (circa 1996) 4051 W
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Figure 71: Comparison of Siemens module 101 (left) and ARCO module 160 (right)

Bypass Diode Analysis

Even the best performing module, module 160, shows signs of active bypass
diodes creating a second knee in the IV curve. In the 2001, after 11 years of field
exposure, there were already 54 modules that were showing signs of active bypass
diodes, and in 2016 every single module had some form of a second knee. The Scilab
code included a cutoff at 5 V to eliminate the initial false knees in the 1V curves created
by the activated bypass diodes that would require an 11-parameter analysis. The Scilab

graph Figure 72 shows the IV curve with the 5 V cutoff for the first test of module 184.
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Figure 72: Scilab produced IV curve for module 184

A sample of modules, three that showed significant bypass diode action and three
that did not, were re-tested with their bypass diodes removed to determine the effect of
the diodes on power production after 26 years. Figure 73 shows the effect of removing
the diodes from module 184, the same module shown in Figure 72. Note the 5 V cutoff
has been removed to allow for a comparison of the module’s true performance. Figure 74
shows the minimal change of removing the diodes from the less affected module 124. In
the 2016 testing, module 124 tested at 30.63 W with the diodes and 30.53 W without the
diodes (i.e., a decrease of 0.10 W), while module 184 saw an increase in its Pmax from
27.84 W t0 29.12 W (i.e., an increase of 1.28 W) by removing the diodes. The other four
IV graphs of the modules included in this extra experiment are in Appendix G (Figure G -

13 to Figure G - 16), and their results are included in the Discussion section.
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Figure 73: 1V curves for module 184 in all testing cycles and then without diodes
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Figure 74: 1V curves for module 124 showing small effect of removing diodes
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The other two modules that did not have large second knees, modules 028 and
043, experienced an increase in Pmax without diodes of 0.47 W and 0.21 W, respectively.
Comparatively, the other two modules that had large second knees, modules 110 and 118,
saw increases in Pmax 0f 0.88 W and 0.79 W, respectively. Only module 124 in this
sample lost some of its performance abilities with the removal of the bypass diodes and

that 0.10 W loss that was small enough to be solely due to measurement error.

Sensitivity Analysis

As covered earlier in this report in the Background section of the Introduction,
Jim Zoellick performed sensitivity analyses to quantify the dependence of the modules’
Voc 0n both temperature and solar insolation. This section of the Results goes into detail
about similar tests that were performed in the 2016 round of testing in the attempt to
investigate any changes in that relationship since Zoellick’s initial findings.

Additional tests were performed on seven modules (045, 047, 101 (Siemens
replacement), 103, 115, 151, and 164) at cold, warming up, and steady state conditions,
as described in the Methods section. This created a temperature relationship profile for
the performance of those modules. However, during the testing all of the temperature
tests were conducted at insolation values relatively close to 1000 W/m?, just like all of the
other normal tests on the modules. Because of this, these 2016 results are not well suited
to check the dependence of Vo on insolation as was done in Zoellick’s multiple linear

regression analysis detailed in Equation 2. Therefore, this report focuses primarily on the
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dependence of module Vo on module temperature. However, since there was some
degree of variation in the insolation conditions during testing, the complete multiple
linear regression involving both the module temperature and the solar insolation is also
reported.

Omitting the insolation-dependent term in Equation 2 and using the thermocouple
readings and the raw Vo (not corrected to NOCT), a simple linear regression was

conducted between Vo and module temperature (Equation 7):

Voo=a+bx*T (7
where:
Voc = 0pen circuit voltage of the module (V)
a = Vo intercept (V) (i.e., the estimated Vo at 0°C)
b = temperature coefficient for Vo (V/°C)

T = module temperature (°C)

This regression was first performed on combined data from all six ARCO
modules. Then a regression was performed to estimate a common slope but with a
separate intercept for each module. Using the original 1990 sensitivity analysis data, the
simple linear regression was performed on V. versus the module temperature. Finally,
the regression of Vo on temperature was also performed for the one Siemens module

(101) that was included in the 2016 sensitivity analysis. Figure 75 shows the observed
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Voc Versus temperature relationships for the 1990 ARCO, 2016 ARCO, and 2016
Siemens testing for the Vo temperature coefficient. Table 14 summarizes the estimated
slopes (i.e., the temperature dependence coefficient) from these four linear regression

analyses and includes a 95% confidence interval for the slopes.
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Figure 76 compares the confidence intervals for the estimated temperature sensitivity |
coefficients in a graphical form. The results of the 2016 round of analysis fall within the
associated confidence intervals, but the temperature coefficient for the V¢ has changed
from roughly -0.06 V/°C to -0.07 VV/°C over the 25.5 years of this project, which could
consequently result in varying values for the NOCT-adjusted data and in the Pmax and

other calculations.
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Figure 75: Test information for the temperature sensitivity analysis
Table 14: Temperature linear regression sensitivity analysis results
Temperature 1990 2016 2016 ARCO with 2016
Coefficient ARCO ARCO Common Slope Siemens
Estimate (V/°C) -0.06008 | -0.06893 -0.06955 -0.06979
Standard Deviation 0.002414 | 0.001146 0.000482 0.001316
Degrees of Freedom 58 34 29 4
Sample Size (Tests) 60 36 36 6
95% CI Upper Limit -0.05525 | -0.06660 -0.06857 -0.06614
95% CI Lower Limit | -0.06491 | -0.07126 -0.07054 -0.07345
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Figure 76: Temperature sensitivity analysis with error bars

While the range of module temperatures in the 2016 testing was sufficient for this
sensitivity analysis, the range of insolation values was only 942-967 W/m?, whereas the
module temperature range was 29-61°C. Acknowledging that this narrow range of
insolation conditions severely limits the ability to estimate the dependence of Vo on
insolation, a multiple linear regression of V. on temperature and insolation was
performed in an attempt to determine if there is a noticeable change in the insolation
coefficient for Voc. Table 15 compares the 1990 and 2016 coefficients obtained by this
regression. Although the confidence interval for the estimated insolation coefficient from

the 2016 data is quite wide, note that the confidence intervals for the 1990 coefficient
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does not overlap with the 2016 coefficient, indicating that the insolation coefficient has
substantially increased over 25.5 years. Table H - 1 and Table H - 2 in Appendix H
contain the complete multiple linear regression tables for the 1990 and 2016 irradiance
and module temperature Vo coefficient analyses.

Table 15: 1990 and 2016 V.. coefficients for temperature and irradiance

Correction Factor, variable 95% Confidence Level [units]

1990 Open circuit voltage temperature, ® -0.060291 + 0.000534 [V/I°C]

1990 Open circuit voltage irradiance, ® 0.0009296 + 0.0000511  [V/(W/m?)]

2016 Open circuit voltage temperature, ® -0.065381 + 0.00357 [V/I°C]

2016 Open circuit voltage irradiance, ® 0.006211 + 0.00497 [VI(W/m?)]

To see the range of effects that these updated module temperature and solar
insolation coefficients would have on the current round of analysis on the ARCO
modules, the tests that experienced the highest and lowest temperatures and insolation
values, exempting the sensitivity analysis runs, were re-run in Scilab with the 2016
coefficients. The module temperature outliers used in this analysis ranged from 37.1°C to
59.5°C, and the highest and lowest raw insolations from the 2016 testing were 919.6
W/m? and 1034.6 W/m?, respectively. For consistency with Zoellick’s analysis decisions,
the coefficients found for the collective 2016 sensitivity data, not the individual modules
with separate intercepts, are used here. However, it became apparent that the method
using a common slope with individual intercepts for the module results in slightly more

precise estimate. This data points towards less dependency of the Vo on either the solar
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insolation or the module temperature. Table 16 summarizes the changes seen both in the

Voc and the resulting Pmax, and it must be noted that the percent changes in the Voc

calculations were mirrored into the Pmax changes. Overall, the coefficients determined for

these ARCO M75 modules back in 1990 still apply today, as they may only affect the all-

important Pmax calculations by up to 2.5%, or less than 1 W,

Table 16: Effect of new 2016 V. coefficients on the extreme 2016 tests

NOCT Voc | NOCT NOCT [ NOCT [
Test Module | (V) With | Voc (V) | Pmax (W) | Pmax (W) | ' g
Description | Test 1990 with 2016 | with 1990 | with 2016 (O/”;ax
Coeff. Coeff. Coeff. Coeff. 0
Lowest 184b 17.61 17.49 28.34 2815 | -0.7%
Temperature
Highest 105a 18.19 18.40 31.73 32.00 1.1%
Temperature
Lowest 127a 18.08 18.51 30.85 31.58 2.4%
Insolation
Highest 038b 18.25 18.07 30.96 30.64 -1.0%
Insolation
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DISCUSSION

This section of the report involves a discussion about the concepts and results
covered in earlier sections, focusing on quantifying and discussing the 2016 testing
results and comparing them to the past rounds of testing on these modules and relevant
findings reported in the Literature Review. The primary conclusion is that these modules
experienced physical degradation that led to a substantial and roughly linear drop in
power output over the 25.5 years of the project. The reasons for this decline in

performance are further explored here.

Interpreting the Results

The characteristics of these ARCO M75 modules have clearly changed over the
25.5 years of field exposure that they have endured, as can be seen in the appearance of
the typical 2016 IV curves seen in Figure 72, Figure 73, or Figure 74 versus the
nameplate IV curve that came with the original specifications shown in Figure 6 and the
changes in the Pmax and the five key IV parameters covered in Table 12.

Table 10, Table 11, and the histograms of Pmax and the five IV parameters for
each test cycle (Figure 44 to Figure 67) present information about the drop in Pmax and
the main contributors to that decline. The 21.6% drop in average Pmax is almost
completely reflected in the 16.1% drop in the average lsc values after 25.5 years.

Meanwhile, the V. did not even fall 1.0% below its original measure. The increased
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degradation of the modules’ Isc can be attributed to corrosion and delamination within the
layers of the modules, especially in relation to the EVA, and, to a lesser degree,
performance reductions due to activation of the bypass diodes. With the active bypass
diodes, the current is redirected around problematic cells and strings of cells by the
diodes, which sometimes increased the Isc in modules such as 184 (Figure 73). However,
the average Isc in the array, along with the average Imp, declined throughout the life of the
project, which led to the loss of average Pmax. This is exaggerated by analyzing the
modules with a 5-parameter model instead of an 11-parameter model, essentially
eliminating the effect of the bypass diodes with the 5 V lower limit with the 1V curve.
The power produced by PV modules comes directly from the current and voltage in that
module, so a drop in either voltage or current is carried through to the power output. With
these modules, it was a drop in the current.

While the activation of the bypass diodes has created a second knee in the
modules’ IV curves, the experimental removal of the diodes proved that these additional
knees only hindered the power output by a few Watts at most while providing crucial
over-current protection by redirecting excessive current away from potential hot spots on
the module. The bypass diode analysis portrayed in Figure 73 and Figure 74 suggest that
the effect of removing the diodes is only evident in the 1V curves of modules that had
significant second knees from active bypass diodes. Even then, the increase in power
through the removal of the bypass diodes was limited to less than 2 W. Siemens
apparently updated their material and manufacturing practices between 1989 and 1995

when the replacement modules were created, and the problems with physical and



115
chemical degradation and the inherent drop in lsc and Pmax that the ARCO modules
experienced are not seen in these replacement modules.

The histograms help visualize the growing spread and skew in the measurements
of the results for the 1V curve parameters that are presented in Table 12. The standard
deviation of the Pmax results almost quintupled throughout the project lifetime; the I
standard deviation grew to be six times its original value; and, oddly, the Vo standard
deviation decreased slightly in the last 5.5 years after growing over the previous 20 years.
This response in the Vo of the modules could be due to the permanent effects of the
bypass diodes on the current, which may have allowed the voltage to adjust, or it could
just be random variation present in the data for the last 5.5 years of the project.

While the Voc and Isc determine where the 1V curves start and end, the parameters
that influence the shape of the curve between these points on the curve changed even
more dramatically—explaining the progressive decline in the modules’ fill factors (FF).
The slope of the IV curve during higher currents, the reciprocal of Rp, was cut in half
over the life of the project. Curiously, the standard deviation of the metric hardly
changed. The parameter that controls the degree of curvature in the IV curves, ekt,
doubled over the 25.5 years, and its standard deviation grew to eight times its original
1990 value. This substantial growth in the value and standard deviation indicates that the
radius of the IV curve changed significantly from its original rectangular shape to a more
linear curve across the sample of modules. Lastly, the slope of the portion of the IV
curves with lower current and higher voltage, the reciprocal of Rs, tripled over the project

while its standard deviation quadrupled. The conclusion from the analysis of these three
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IV curve parameters indicates that more changes in the modules’ operational
characteristics are experienced when the modules were subjected to smaller currents and

larger voltages during the IV curve testing process.

Comparison of Results to Literature Review

The three most common types of PV module degradation, cell discoloration,
delamination, and hot spots (Vazquez and Rey-Stolle, 2008), were all seen throughout the
188 remaining ARCO modules from the Trinidad array. Every module that spent over 25
years at the project site has changed from a black/blue color to brown, and significant
delamination of the EVA layer on at least one entire cell is evident in roughly 82% of the
ARCO modules (155 of the original 188) as seen in the collection of photos of each
module from 2016 testing. All of the original modules have experienced EVA
delamination to some degree. This occurred, as expected, on the front of the modules
where UV exposure was at its greatest and not on the back panel of the modules
(Jorgensen and McMahon, 2008). These are the main contributors to the degradation of
these particular modules that resembled aged modules from similar projects (Figure 20
versus Figure 22, Figure 23, and Figure 24). Hot spots, while prevalent, were not nearly
as common as the other two types of degradation witnessed with these modules,
indicating that the bypass diodes successfully handled their responsibility of over current

protection for much of the project.
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The physical degradation appeared gradually over time, as expected, but it is
certainly possible, although not provable since the tests were not performed on the
modules between 1990 and 2001, that the 4% power loss experienced in the first 11 years
of the project could have occurred within the first year of field exposure. This would be
consistent with the literature on the light induced degradation (LID) effect that causes
modules to lose up to 5% of their power production in the first year of exposure
(Quintana et al., 2002, Meydbray and Dross, 2016). The smallest degradation rate seen in
the project, 0.4% * 0.057% per year with a 95% confidence interval, occurred in the first
decade of operation, but then, opposite of expectations, the second decade of operation
saw an almost tripling in the degradation rate to 1.4% + 0.195% per year at a 95%
confidence interval. While only four data points over 25.5 years cannot truly map the
degradation of these modules like yearly tests could have, the last 14.5 years (2001-2016)
of the project, as shown in Figure 43, appear to have experienced a relatively linear
degradation of power output. This agrees with the literature review that states that the
degradation of PV modules tends to level out as the modules get older (Quintana et al.,
2002, Vazquez and Rey-Stolle, 2008).

Studies performed on modules manufactured around the same time and of similar
design of the ARCO M75 modules resulted in the expected degradation rate range of
0.5%/year-0.8%/year. Considering that the Trinidad ARCO modules were located outside
and rarely moved over 25 years in a coastal marine environment, the lifetime average
degradation rate of 0.85% % 0.121% per year with a 95% confidence interval, or 0.35 W

per year in power loss, is consistent with the findings in the literature (Osterwald et al.,
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2002, Quintana et al., 2002, Jordan and Kurtz, 2011, Branker et al., 2011). Without
testing these same modules in a non-coastal environment, it is impossible to conclude
how the degradation rate was exactly affected by the coastal conditions, but with only
0.05%/year in additional degradation when compared to published literature on the
subject, the performance of these ARCO modules can be considered consistent with the
literature review.

The successful operation of the ARCO modules can be further evidenced by the
fact that 48% of the modules are still producing at least 80% of their original production
capabilities in 2016—and 90% of them still produce over 70% of their initial tests—when
their warranties only covered 10 years (Siemens Solar Industries, 1990). Most modern
warranties advertise 80% production at the end of the warranty (Meydbray and Dross,
2016, Vazquez and Rey-Stolle, 2008). In 2001, after the warranty-guaranteed years of
operation had been surpassed for these modules, 100% of the modules were still

producing over 80% of their original performance abilities.

Continuing Trends of Past Rounds of Testing

Overall, the success of producing repeatable and consistent testing procedures
from 1990 to 2016 created data in similar analysis categories that made each cycle of
testing, and its results, comparable to the other reports. In this manner, each preceding
cycle dictated what the next cycle focused on. This allowed the final 2016 report to

consider all of the theories and questions posed in 1990, 2001, and 2010. Zoellick’s work
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in 1990 set the stage for this lifecycle analysis of the modules at the Telonicher Marine
Lab PV array over 25 years later. Many of the observations and analyses from the 2001
and 2010 rounds of testing presented trends in the performance of the ARCO modules
that continued into the final cycle of testing in 2016. The general trends were an obvious
general decline in power production and current paired with the physical deterioration of
the modules due to UV field exposure.

Reis et al. (2002) pointed out that the decrease in Rp and increase in Rs would lead
to a decrease in the available current for the modules that would create further decline in
the Pmax. This observation held true through the next 14.5 years of the project. As the
modules aged, the location of Vmp and Imp also continued to work their way down the IV
curve, just as Reis et al. (2002) predicted. The 2001, 2010, and 2016 rounds of testing all
saw some modules experience an increase in their lsc, while the general trend shown in
the histograms involved a decline in Isc. This rise in Isc for individual modules is related
to the activation of the bypass diodes affecting the current characteristics within the
modules. However, after 25.5 years all the modules experienced a drop in their Isc values
relative to the measured values in 1990.

The limits for the IV curve parameters written into the Scilab modeling code to
filter out any outliers, or instances of poorly performed tests, in the data became more
relevant later in the project, specifically in 2010 and 2016 for Rs, Rp, and ekt that dealt
with the changing physical shape of the IV curves. As is shown in the respective
histograms, the minimum limit for Rs of 0.050 Q was violated 36 times in 2010, and the

maximum limit for Rp of 50 Q was reached 90 times in 2010. These limits were
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introduced and enforced in the attempt to clean the data of any outliers, but as the
modules aged and their parameter ranges grew, the majority of the results fell outside the
previously defined boundaries for identifying outliers. If the limits were initially set in
2010 to be wider, then the histograms would more closely reflect the true spread of the
data. This is the reason why, in the 2016 round of testing, the limits were heavily
expanded to include almost all the results. As stated in the Methods section of this report,
only eight limits were exceeded in 2016 given the wide range of limits. Seven of these
occurrences were related to the upper limit for Rp of 3500 Q, essentially infinity for all
intents and purposes with this analysis, indicating adverse effects of the initial IV curve
slope due to bypass diodes. The remaining incidence was for the upper limit of 3.5 V1 for
ekt, which occurred when the diodes were removed from that particular module (118).
This resulted in a sharp radius of curvature in the IV curve that can be seen in Appendix
G as Figure G - 16. Most of the module tests did not approach these limits, which
indicates that most of the modules aged gracefully in terms of performance. However, the

same cannot be said for their physical appearance.

Holes in the 2016 Round of Testing

As the 2016 round of testing attempted to mirror the previous rounds of testing in
terms of data collection methods and analysis, some issues were not addressed due to

time and resource constraints.
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At no time were any of the ARCO modules dissected, save for the removal of the
bypass diodes in six of the modules for that analysis. Dissection is destructive, but it
could contribute to an understanding of the specific processes that occurred that led to
physical and/or chemical delamination or deterioration in the respective modules. This
could have been useful for the analysis of the degradation that appeared in these modules
and the causes for that deterioration. However, the scope of past cycles of testing focused
on the performance of the modules in spite of degradation rather than on the causes of the
degradation itself. Seeing how these modules physically aged on the UV-facing side
helped conclude which modules would test better and when cell browning, EVA
delamination, or hot spots occurred. Inspecting the hidden layers of the modules (i.e.,
soldering joints, layer-to-layer adhesion, etc.) would be a fruitful endeavor to determine
what other aspects of degradation arose in over 25 years of field exposure. All the
modules are currently in storage and still in possession of HSU/SERC, so that analysis
opportunity is still present. However, it may not be an option for very long as the project
analysis period has now come to an end.

One missing part of this report is a complete sensitivity analysis for the module
temperature and solar insolation effect on the modules’ Voc and inherently the Pmax.
While data were collected for a set of modules with a wide range of module temperatures,
all of those tests had insolation values in a small window (940-970 W/m?). Zoellick
achieved a better sensitivity analysis in 1990, when he determined the Vo coefficients
that then were applied to the modules throughout the rest of the analysis project. His

range of insolation values had a wider range because he adjusted the testing rack to
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dictate the solar insolation hitting the module rather than orienting the modules direct
normal to the sun as was done in the 2016 testing. A complete temperature sensitivity
analysis was still performed in 2016, leading to the findings of a -0.01 V/°C change in the
effect of module temperature on Vo over 25.5 years. Further studies then proved that this
change could only affect the Pmax results from the most extreme testing conditions by a
matter of 2.5% at most, validating Zoellick’s findings and assertions from 1990. A
multiple linear regression with both module temperature and solar insolation was
included in this report, but due to the small insolation window, the results are less useful.
Unfortunately, the sunny testing period of the year was lost before this lack of data range
was realized. Nonetheless, the analysis based on the available data indicate a possibly

negligible effect of insolation on the module Voc.
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CONCLUSION

The work done on this research project by the many people involved throughout
the years has produced one of the best-analyzed PV solar arrays in the world. Information
and knowledge gained from this project can be applied to better manufacture PV
modules, specifically mono-crystalline cell modules, and to apply realistic warranties on
such products that reflect the true degradation tendencies in field-aged solar modules.
The analyses show that the ARCO M75 modules from the Telonicher Marine Lab PV
array in Trinidad, California performed consistent with other real projects and modeling
programs pertaining to similar PV modules from the early 1990s. This round of testing in
2016 completed study of the now decommissioned array, and the primary results are
summarized below:

e The average Pmax Of the remaining 188 ARCO M75 modules declined by 21.6% over
25.5 years of field exposure on the coastal location of the Telonicher Marine Lab
solar PV array, which corresponds to an average annual power output decline of
0.85% =+ 0.121% per year with a 95% confidence interval.

o Thedrop in Isc that almost paralleled the Pmax drop (16.1% and 21.6%,
respectively) as modules aged, partially contributed to by the widespread
activation of the modules’ bypass diodes, is identified as the primary factor in
the power loss experienced by the modules.

o Conversely, the Vo hardly changed throughout the lifetime of the project,

with an average decline of only 0.77%, or 0.14 V.
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e Average module NOCT efficiency fell from 10.016% =+ 0.063% with a 95%
confidence interval in 1990 to 7.915% + 0.156% from 1990 to 2016

e Considering the possibly degradation-accelerating marine environment, a 0.85%/year
degradation rate is consistent with the 0.5-0.8%/year reported in other studies on
modules from the late 1980s and early 1990s.

o After 26 years, 185 of the original 192 ARCO modules successfully produce
IV curves. Four were replaced throughout project, and three were successfully
tested during the 2016 round of analysis and categorized as failures.

o Of the 188 original ARCO modules tested in 2016, 47% of them still produce
above 80% of original power, and 89% produce over 70% of original power.
This maintained power generation outperformed the expected performance,
based on the 10-year warranty, as literature suggests that manufacturers often
promise 80% of the original performance at the end of the warranty, not 15
years after the warranty expires.

o Appearance isn’t everything, as shown by the ARCO modules that all
physically degraded yet maintained their functionality in power output.

e Cell browning, EVA delamination, and hot spots were the most prevalent signs of
degradation experienced by these modules; however, based on the 2016 module
images in Appendix C (Figure C - 1 to Figure C - 12), there is not a clear correlation
between the highest and lowest performing modules and the most and least
aesthetically changed module. Module 160 (Figure C - 12 in Appendix C) shows little

signs of degradation and is the highest producing module in 2016, but the module
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with the smallest power output, module 078 (Figure C - 6 in Appendix C), does not
exhibit the largest signs of physical degradation. Modules 103 and 045 (Figure C - 7
and Figure C - 10 in Appendix C) show the most signs of physical degradation, yet
they each performed within 1 W of the average power output of the entire array.

e While all bypass diodes became active over the project, the over-current protection
and associated extension of the modules’ lifetimes is worth the small amount of
increased power that occurs with their removal.

e Siemens appears to have fixed many of the issues seen in the ARCO modules, as the
replacement Siemens modules have aged much more gracefully (see module 148 in

Figure C - 1 in Appendix C).
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Appendix A: Instrument Specifications Sheets
This Appendix contains the specification sheets for the equipment and
instruments used in the data collection for this project (Figure A - 1 to Figure A - 9). This
covers the solar modules, Mini-KLA PV IV Curve Tracer, Eppley PSP, Fluke 287 True

RMS Multimeter, Omegaette HH303 Type K Thermometer, and Type K thermocouple.
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l SUPPLEMENT TO INSTALLATION GUIDE 233-701500-20 MAY, 1989

' SPECIFICATIONS
MODEL MODEL MODEL MODEL MODEL MODEL  MODEL

M55 M58 M75 M78 M65 Me68 M25
ELECTRICAL

CHARACTERISTICS:
' Rated Power, Watts 53 Wp 48 wp 48 Wp 40 wp 43 up 37 wp 22 wp
Open Circuit Voltage, Typical 21.7 21.6 19.8 19.5 18.0 18.0 18.0
Short Circuit Current, Typical 3.35 3.2 3.35 3.0 3.32 3.0 1.68
Voltage at Load, Typical 17.4 17.3 15.9 15.7 14.6 4.5 14.5
Amperage at Load, Typical 3.05 2.78 3.02 2.55 2.95 2.56 1.52

NOTE: ALl electrical specifications are at Standard Test Conditions of: 1000 W/m?, 25°C cell temperature and solar spectral
irradiance per ASTM E 892.

PHYSICAL CHARACTERISTICS:

No. Cells in Series 36 36 33 33 30 30 30
Coll 8iz@ = = = seieeesasesesamenyesveeaes 6.05% €102.9 M) 8G. scocccessensssonsvesscnseoe 1/2 of
4.05" cell
Module = Longth: 50.9% ..cecoesen sesssssea A8Y cevevnsnersesanasone BN oo sonsnnvonamsnnns 22.4m
(1293 mm) (1219 mm) (1083 mm) (569 mm)
c Width:  .cscesscescesssnssssrsnss 13% (330 MB) soccocscccssoncscscsssnnsassesnsessnscences esssees
> DOPLhT cessiiiesnsesssonssasanne 1:4% (36 M) cocscescovecsoscasssncovscosissssssssess esssscsce

Weight

Mounting Holes:
Across Length of Module:

Inner Set:

Across the Width of Module:

Diameter:

BEEINg Provisionss = - ' sideewsseesessessseaisesi 2 Junction COVers cccceeccsccacncccncscacccnccnnse 18 AWG, 2
......................... for 14 to 8 AWG Wire ...veeesececascessensensssas cond. cable
) attached

SYSTEM DESIGN INFORMATION:
Max Short Circuit Current at 3.72 3.53 372 3.30 3.68 3.0 1.86

1000 w/n? & 47°C
Open Circuit Voltage at 0°C 24V 24V 22v 22v 20v 20v 20v
Maximum System Open Circuit Voltage  ...c.ceeeeveccccscscssaes GO0V .cronennsunnesosensnsnsnmansenassnnenssnesusdi 20v
Factory Installed Bypass Diodes Yes " Yes Yes Yes Yes Yes No

g Maximum Number Series Modules 25 : -1 2r 14 30 30 1
233-701500-41, REV. 2
103

Figure A - 1: ARCO MT75 specifications sheet



133

High efficiency solar electric module

FEATURES

Large, high efficiency single crystal
solar cells provide the highest light to
energy conversion efficiency available
from Siemens.

Cells are textured and have an anti-
reflection coating.

Multiple redundant contacts provide a
high degree of fault tolerance and circuit
reliability.

Cells within a module are electrically-
matched for increased efficiency.

Circuit is laminated between layers of
ethylene vinyl acetate (EVA) for moisture
resistance, UV stability ——
and electrical isolation.

Low iron tempered
glass front for
strength and superior
light transmission.

Rugged anodized
aluminum frame is
designed for
exceptional strength.

Side rails with multiple
mounting holes for easy installation.

Tough, multi-layered polymer backsheet is
used for environmental protection, resist-
ance to abrasion, tears and punctures.

Two junction

| covers with lids

|| are designed for

easy field wiring,

safety and

environmental

protection.

| Wired-in bypass

| diodes reduce
&l potential loss of

power from partial array shading

Siemens Solar Industries
PO Box 6032, Camarilio, CA 93011

SPECIFICATIONS

CHARACTERISTICS

T T
1000W/M? @ 25°C

Rated Power 48 Watts B AMPS

Current (typical at load) 3.02 Amps

Voltage (typical at load) 15.9 Volts 3

Short Circuit Current (typical) 3.4 Amps 1000 was i 47'C

Open Circuit Voltage (typical) 19.8 Volts

Power specifications are at standard test
conditions of. 1000 W/M? solar irradiance, 25°C
cell temperature and solar spectral irradiance
per ASTM EB92

Weight 11.6 1b/5.2 kg
T I o] |
I |
= E
8 @ 2
s o 5
2 & ]
€ i
—13"/330mm — — “73"»‘
1.4*/36mm 287mm
26"/6.6mm
(diameter)

T_M_F!K)hf)ﬂe‘ (805) 482-6800 FAX: (B05) 388-6395

1 500 W/M? @ 25°C \

y

0 2 4 8 8 10 12 14 16 18 20 22
VOLTS

The 1V curve (current vs. voltage) above
demonsirates typical power response to
various light levels at 25°C and a 47°C
cell temperature.

& Minimum power upon final factory
inspection is within 10% of rated power.

& Module leakage current of less than
50pA at 3000 VDC.

® Normal operating cell temperature
(NOCT) as defined by ASTM E 1036
i542°C +/-2°C.

® Laboratory tested for wide range of
operating conditions ( —40°C to 90°C,
0 to 85% humidity).

® Passes Salt Fog Test per
Mil-Standard 810.

B Passes complete environmental
requirements of JPL Specification
No. 5101-61 (Block V).

® External grounding screw for
electrical safety.

® Ground continuity of less than 1 ohm
for all metallic surfaces.

® Ten-year limited warranty on
power output.”

= UL Listed. (Per UL 1703).

Charts are for estimating purposes only.
Specifications subject to change without notice.

*Complete warranty and instaliation information is
included in the module package or is available
from Siemens or your Siemens Solar dealer prior
to purchase.

©1990 Siemens Solar Industries. 111-700016-79 Rev. A (2174) Printed in USA  7/80

Figure A - 2: Siemens M75 module brochure
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Inteligent module design

- All celis are electrially malched to asure the
grealest power output possible.

Solar module SM50-H

Bectrical parameters

- Ul clezr tempered ghass provices excetient ight Maximum power rating Py, [W,]" 50
transmission and prolests from wind, hal, and Rated current |, [A] 3.15
gt Rated voltage Ve v 15.9

- Torsin ad ¢ Short circuit current I [A] 3.35
modue frame ensures e, - .
even thmugh harsh wed her conditions and in Open circuit voltage Vo, v 19.8
maine ewionments. Thermal pararreters

- Bllilbmmﬂ?\lulfglﬂm)mh NOCT? [°C] 4512

! ! e g o Temp. coefficient: short-circuit current 1.2mA/°C

High quality Temp. coefficient: open-circuit voltage -077V/°C

- Every mocule s subjed to e Taclory review, Qualification test parameters®
m' ricd, ;“::j,:,tag. l“um‘:'m'.';';m"‘" Temperature cycling range [*C -40 to +85

. . . Humidity freeze, Damp heat [%RH] 85
ﬁ%ﬂgmmmmmm,m Maximum system voltage V] 600 (1000 V per ISPRA)
wedher conilins. Wind Loading PSF [N/m7] 50 [2400]

- Cell surfaces are trealed with the Texture Maximum distertion® [’ 12
i ™™ [Failstoneimpact __Inches __[mm)] 1.0[25]

- Fax i c s o oot et MPH [m/s] 52 [v=23]
back of each cell provide supexion relizbiity. Weight Pounds kgl 11.5[5.2]

= Splar cells ae laminaled betw een a muliiHayered
polymer backsheet and layers of ethwiene vingl
acetate (FVA) for enwimonmenia protection,
mosture restsiance, and eectrical isolation.

= Durabie bark sheet provides the module underside

with protection from scralching, cuts, brealage,
and most envimnmental conditions.

-1 y test certified for
operding canditions.

= Ground contimully of less than 1 ohm for all metalic
surfaces.

o

- Manufactured in IS0 9001 certified facilities to
g ity

Easy installation

- Proct

encinsues ae
- Tor >

W, (Watt peak) = Peak power
(Mimimum W, = 45 Watts)

Air Mass AM =135
Irradiance E = 1000 W/m?2
Cell tem perature Te =25°C

2 Normal Operating Cell Temperature at:
Irradiance E =800 W/m?2
Ambient temperature T, =20°C
Wind speed Vi =1imis

w

) Diagonal lifting of the module plane

&

! Per EIC 1215 test requirements

! 12 Volt configuration

Module dmensions

protection. (Modified Yersins ae
eg. as SM30-H) withthe speda ProChager™-CR
Jnctian box )

= Lightweight ahaminum frame and pre-drilled
mouniing hales for easy nstaliabion.

- Modules may be wired together in series ar
pardid to atan required power ievels.

Performance wamanty
- 25Year imited warmranty on power outpul .

Further information on solar rodixcts, systems,
incy ions 5 nthe
Siem ens Solar product catalog.

Sianensmidules ae recydable.

El
£ £
2 £ E
o~ @ 2
= = e
2 B g
@ &
o]
— —l i
13379 1.5 11.3%
3amm 286mm

Hole diameter 0.26 inch (6.6 mm)
Mounting hole dimensions are center to center

ProCharger ™-§
Junction-box
Maximum cable
diameter- 4 mm?
Type of
protection: IP54

Your address for photovoliaics from Siemens Solar

Bie @)<t-C€ &

Salus 398 — Subjedt to modification.

Siemens Solar GmbH

A joint venture of

Siemens AG and Bayemwerk AG
Postfach 46 07 05

D-80015 Manchen
Germany

Siemens Solar Industries

PO. Box 6032

Camarillo, CA93011,US A

Tel: 805-482-6800

Fax: 805-388-639%

Web gte: www _siemenssolar.com
E-mail: sunpower@solarpv_com
Printed in USA.

Siemens Showa Solar Pte. Ltd.

Hk 164 Kallang Way

#05-14/15 Kolam Ayer Industrial Park
Singapore 349248

Tel: 65-842-3886

Fax:- 65-842-3887

-~
s

Order No 019816 Rev_C

Figure A - 3: Replacement Siemens SM50-H specifications sheet



MINI-KLA

PV -V Curve Analyser

S-01TC-T
Solar Irradiance i:"lo;nr

EXTEND OF
SUPPLY

Technical Data

« Basic accuracy: +0,4 % fsr
= Voltage ranges: 30, 60 and 120V
« Cument ranges: 4and B A
= lmadiance range: 1300 W/m?
+ Temperature range: —20to + 100 °C

« Bvery cument and voltage range can be combined with each other
= Automatic setting of the optimal measuring rate
« Automatic selting of the optimal sampling rate

+ Maximum sampling rate for one voltage-cument pair: 45 ksamples’s
= Solution of the analog-to-digital converter: 12 bit, no missing codes
» Solution of the graphical LC display: 12864 pixel
« Operational control: 2 buttons
= Power supply: 5V, 4*battery, mignon type
= PCport: RS232 (19,2 kBaud)
» Weight {incl. batteries) 600 g
Technical Data

Slicon imadiance sensor with active temperaure compensation and embedded
temperature sensor

= Monocrydalline solar cell, embedded into Bhylen-Vinyl-Acetat {EVA) betw een
das and Tedlar

* Powdercoated aluminum

« Calibration value of imadiance: 1V for every 1000 W/m?
= Calibration value of temperature: 10mV for every K

0°Cis1,235V
Standard Versiom

Complete Mini-KLA is delivered with the following equipment:

= Seria R232 port

+ Dalta cable and Windows download software for IBM compatible PC with RG232

com port

Graphica LC display

= 4*NiNH batery {mignon size of 2500 mAh)

= Intema memory {1 MBit) for up to 100 |-V curves

« Slicon solar imadiance sensor S-01TC-T with active temperature compensation
and integrated active temperalure sensor
{incl. 2 m sensor cabling, uv- and heat resistant)

= Manua

= Canying Case

Options

Same as nommal version, but with following changes:

= Mini-KLA 8/16 with cument ranges of 8 and 16 A, Fourwire measurement

« Other measuring ranges within the limits of 120 V and & A on customer request,
for example 10, 20 and 40V, 1 and 2A

Patent pending

—T)\ngan\aurburo M ancke & Tagtmeyer GmbH - Hameln - @ August 2011

Figure A - 4: Mini-KLA PV IV Curve Analyser specifications sheet
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Model PSP Specifications

There are two generally accepted Classification Systems used for Pyranometers. IS0 classifies pyranometers as a
“Secondary Standards”, “First Class” or “Second Class™ while WMO uses “High Quality”™, *Good Quality”™ and
“Moderate Quality™.

The Precision Spectral Pyranometer, Model PSP is classified as g ISO Secondary Standard or WMO High Quality

Fyranometer.

= Classification: IS0 Secondary Standard Pyranometer / WMO High Class
= Response Time (95%): 10-13 seconds

*  Zero Offset to 200 Wm” net radiant loss to sky: 4-6 Wm?

*  Zero Offset to 5° C/hr change in ambient emperature: 1-2 Wm?

*  Resolution: <1 Wm4

= Mon-5tability: <0.5% / yr (typical)

*  Non-Linearity: +0.5% from 0-2800 Wm?

*  Directional Response: < 10 Wm™?

= Spectral Selectivity: 1%

*  Temperamre Response: £1%

= Tilt Response: < 0.5%

= Achievable Uncertainty (Hourly): 1-2 %

= Achievable Uncertainty (Daily): 1-2 %

= Suitable Application: Working Standard or Network Measurements

Figure A - 5: Eppley PSP specifications sheet
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THE EPPLEY LABORATORY, INC.

12 Sheffield Avenue, PO Box 419, Newport, Rhode Island USA 02840
Phone: 401.847.1020  Fax: 401.847.1031 Email: info@eppleylab.com

Calibration Certificate

Instrument: Precision Spectral Pyranometer, Model PSP, Serial Number 25913F3
Procedure: This pyranometer was compared in Eppley’s Integrating Hemisphere according to
procedures described in ZSO 9847 Section 5.3.1 and Technical Procedure, TPO1 of

The Eppley Laboratory, Inc.’s Quality Assurance Manual on Calibrations.

Transfer Standard: Eppley Standard Precision Pyranometer, Model SPP, Serial Number 37501F3

Results: Sensitivity:  S=8.78 pV/Wm™
Uncertainty: Ugs =+0.91% (95% confidence level, k=2)
Resistance: 650 Qat23°C
Date of Test: April 22,2016
Traceability: This calibration is traceable to the World Radiation Reference (WRR) through

comparisons with Eppley’s AHF standard self-calibrating cavity pyrheliometers
which participated in the Eleventh International Pyrheliometric Comparisons (IPC
XI) at Davos, Switzerland in September-October 2010. Unless otherwise stated in
the remarks section below or on the Sales Order, the results of this calibration are
“AS FOUND / AS LEFT”.

Due Date: Eppley recommends a minimum calibration cycle of five (5) years but encourages
annual calibrations for highest measurement accuracy.

Customer: Shatz Energy Research Center — Humboldt State University
Arcata, CA

N SN N J 7 L
0t £ L [homad 0N &g il

Signatures: In Charge of Test: Reviewed by:

Eppley SO: 64699
Date of Certificate: April 22,2016

Remarks: Sensitivity before Repainting Element = 8.32 pV / Wm™

End of Report

Figure A - 6: Calibration sheet for the specific Eppley PSP used in this project
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Function Range and resolution Basic accuracy
DC volts 50.000 mV,500.00 mV, 5.0000 V, [0.025 %
AC volts 50.000 V, 500.00 V, 1000.0V 0.4 % (true-rms|
DC current 500.00 pA, 5000.0 pA, 50.000 mA, |0.06 %
AC e 400.00 mA, 5.0000 A, 10.000 A 0.6%ftrue-rms)
Temperature -200.0 °C to 1350.0 °C (-328.0 °F | 1.0 %
(excluding probe) |to 2462.0 °F)
Resistance 500.00 Q, 5.0000 kQ, 50.000 kQ, |0.05 %

500.00 kQ, 5.0000 MQ, 50.00 MQ,

500.0 MQ
Capacitance 1.000 nF,10.00 nF 100.0 nF, 1.0 %

1.000 pF, 10.00 pF, 100.0 yF,

1000 pF, 10.00 mF, 100.00 mF
Frequency 99.999 Hz, 999.99 Hz, 9.9999 kHz, | 0.005 % + 5

99.999 kHz, 999.99 kHz
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FLUKE -

Ordering
information

Fluke-287/FVF True-rms
Logging Multimeter Combo Kit
with TrendCapture

Fluke. Keeping your world
up and running.®

Fluke Corporation
PO Box 9090, Everett, WA 98206 U.S.A.

Fluke Europe B.V.
PO Box 1186, 5602 BD
Eindhoven, The Netherlands

For more information call:

In the U.S.A. (800) 443-5853 or

Fax (425) 446-5116

In Europe/M-East/Africa +31 (0) 40 2675 200 or
Fax +31 (0) 40 2675 222

In Canada (800)-36-FLUKE or

Fax (905) 890-6866

From other countries +1 (425) 446-5500 or

Fax +1 (425) 446-5116

Web access: http://www.fluke.com

©2009 Fluke Corporation
Specifications subject to change without notice.
Printed in U.S.A. 3/2009 3451757 D-EN-N Rev A

ification of this s not i
without written permission from Fluke Corporation.

Shop for Fluke products online at:  WWW, MyFI u kEStO re.com 1.877.766.5412

Figure A - 7: Fluke 287 Multimeter specifications sheet
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Mini Thermometers

HH300 Series T PAL"
, OCKE
;tarts at A7en | P
8 9 WARRANTY sta“dard
No Points HH308, $89. HH303, $119.

v Wide Measurement Range:
-200 to 1370°C
(-328 to 2498°F)
+ Auto Ranging
1~ Auto Power-Off
v+ Dual Input and Dual Display
+* REL Function
+* Hold Function
+* Min/Max Function
v+~ Resolution 0.1°C/0.1°F
up to 599.9°C/999.9°F

The HH300 Series are low cost
digital thermometers, small enough
to fit in your pocket. They are
available in Type K or Type J/K
input models with standard features
such as min/max reading, reading
hold, and both are °C to °F
switchable. Their temperature range
is from -200 to 1370°C (-328 to
2498°F). The HH303 also offers a
software and USB or RS232 interface
cable option that allows a PC to read
the data.

Specifications
Range:
Type K: -200 to 1370°C
(-328 to 2498°F)
Type J: -200 to 760°C (-328 to 1400°F)
Accuracy:
HH303: 0.1% rdg + 0.7°C (1.4°F)
HH308: 0.3% rdg + 1°C (2°F)
Input Protection: 60 Vdc
or 24 Vrms AC maximum
Battery: 9V (included), MN 1604
Battery Life: 120 hour (with alkaline)
Operating Range: 0 to 40°C
(32 to 104°F) <80% RH
Storage Range: -10 to 60°C
(14 to 140°F) <80% RH
Dimensions:
HH303: 184 H x 64 W x 30 mm D
(7.5x25x1.2")
HH308: 164 H x 54 W x 34 mm D
(6.5x2.1x1.3"
Weight: Approx 200 g (7 0z)

Free Thermocouple Included!

These models include a free 1 m (40") Type K
insulated beaded wire thermocouple with
subminiature connector and wire spool caddy
(1 per channel). Order a Spare! Model No.
SC-GG-K-30-36, $15. -

7

0% @ =
ice of
Uscg?)r RS232 3 .
- =

w HH303 TYPE K J "
OMEGAETTE" 1 jcrmomeTER

1259 |

T2 148

“erF

C/°F

200°C ~ 1370°C
A -328°F ~ 2498°F
-200°C ~ 1370°C
-328°F ~ 2498°F

200°C ~ 760°C
328°F ~- 1400 °F

AVAILABLE FOR FAST DELIVERY!

To Order (Specify Model Number)

Model No. Price | Description

HH308 $89 | Type K handheld 0.1°C/F thermometer

HH303 119 | Type J/K handheld 0.1°C/F thermometer
HH310-SW 50 | Software and RS232 interface cable for HH303
HH300-SW-USB* 50 | Software driver and USB interface cable for HH303
HH300-ADAPTER 18| AC adaptor for HH303

HH300-CABLE 18 | Spare RS232 interface cable for HH303
HH300-CABLE-USB| 18| Spare USB interface cable for HH303
CAL-3-HH 75| NIST-traceable calibration, with points

Al

\ ™~
5 = =
Y

* Requires HH310-SW

Comes complete with beaded wire Type K thermocouple (one per input), 9V battery,
operator’s manual and NIST certificate (no points).

Ordering Example: HH308, dual input Type K thermocouple thermometer, $89.

L-37

Figure A - 8: Omegaette HH303 Type-K Thermometer specifications



MAXIMUM TEMPERATURE RANGE
Thermocouple Grade

— 328 to 2282°F

—200 to 1250°C

Extension Grade

32 to 392°F

00 200°C

LIMITS OF ERROR

(whichever is greater)

Standard: 2.2°C or 0.75% Above 0°C
2.2°C or 2.0% Below 0°C

Special: 1.1°C or 0.4%

COMMENTS, BARE WIRE ENVIRONMENT:
Clean Oxidizing and Inert; Limited Use in
Vacuum or Reducing; Wide Temperature
Range; Most Popular Calibration
TEMPERATURE IN DEGREES °C
REFERENCE JUNCTION AT 0°C

-260 -6.458 -6.457 -6.456 -6.455 -6.453 -6.452 -6.450 -6.448
-250 -6.441 -6.438 -6.435 -6.432 -6.429 -6.425 -6.421 -6.417

-240 -6.404 -6.399 -6.393 -6.388 -6.382 -6.377 -6.370 -6.364
-230 -6.344 -6.337 -6.329 -6.322 -6.314 -6.306 -6.297 -6.289
-220 -6.262 -6.252 -6.243 -6.233 -6.223 -6.213 -6.202 -6.192
-210 -6.158 -6.147 -6.135 -6.123 -6.111 -6.099 -6.087 -6.074
-200 -6.035 -6.021 -6.007 -5.994 -5.980 -5.965 -5.951 -5.936

-190 -5.891 -5.876 -5.861 -5.845 -5.829 -5.813 -5.797 -5.780
-180 5730 -5.713 -5.695 -5.678 -5.660 -5.642 -5.624 -5.606
-170 -5.550 -5.531 -5.512 -5.493 -5.474 -5454 -5435 -5415
-160 -5.354 -5.333 -5.313 -5292 -5.271 -5250 -5.228 -5.207
-150 -5.141 -5.119 -5.097 -5.074 -5.052 -5.029 -5.006 -4.983

-140 -4.913 -4.889 -4.865 -4.841 -4.817 -4793 -4.768 -4.744
-130 -4.669 -4.644 -4618 -4.593 -4.567 -4.542 -4.516 -4.490
-120 -4.411 -4.384 -4.357 -4.330 -4.303 -4.276 -4.249 -4.221
-110 -4.138 -4.110 -4.082 -4.054 -4.025 -3.997 -3.968 -3.939
-100 -3.852 -3.823 -3.794 -3.764 -3.734 -3.705 -3.675 -3.645

-90 -3554 -3523 -3492 -3.462 -3.431 -3.400 -3.368 -3.337
-80 -3243 -3211 -3.179 -3.147 -3.115 -3.083 -3.050 -3.018
<70 2920 -2.887 -2.854 -2.821 -2.788 -2.755 -2.721 -2.688
60 -2.587 -2.553 -2.519 -2.485 -2.450 -2.416 -2.382 -2.347
<50 -2.243 -2.208 -2.173 -2.138 -2.103 -2.067 -2.032 -1.996

-40 -1.889 -1.854 -1.818 -1.782 -1.745 -1.709 -1.673 -1.637
<30 -1.527 -1.490 -1.453 -1.417 -1.380 -1.343 -1.305 -1.268
-20 -1.156 -1.119 -1.081 -1.043 -1.006 -0.968 -0.930 -0.892
-10 -0.778 -0.739 -0.701 -0.663 -0.624 -0.586 -0.547 -0.508
0 -0.392 -0.353 -0.314 -0.275 -0.236 -0.197 -0.157 -0.118

0 0000 0039 0079 0119 0.158 0.198 0238 0277
10 0397 0437 0477 0517 0557 0597 0637 0.677
20 0798 0.838 0879 0919 00960 1.000 1.041 1.081
30 1203 1244 1285 1326 1.366 1407 1448 1489
40 1612 1653 1694 1735 1776 1817 1.858 1.899

50 2023 2064 2106 2147 2188 2230 2271 2312
60 2436 2478 2519 2561 2602 2644 2685 2727
70 2851 2893 2934 2976 3.017 3.059 3.100 3.142
80 3267 3308 3350 3391 3433 3474 3516 3557
90 3682 3723 3765 3.806 3.848 3889 3.931 3972

-6.446
-6.413

-6.358
-6.280
-6.181
-6.061
-5.922

-5.763
-5.588
-5.395
-5.185
-4.960

-4.719
-4.463
-4.194
-3.911
-3.614

-3.306
-2.986
-2.654
2312
-1.961

-1.600
-1.231
-0.854
-0.470
-0.079

0.317
0.718
1122
1530
194

2.354
2.768
3.184
3.599
4013

o

Nickel-Chromium

VS.

Nickel-Aluminum

Thermoelectric Voltage in Millivolts

-1

-6.444
-6.408

-6.351
-6.271
-6.170
-6.048
-5.907

-5.747
-5.569
-5.374
-5.163
-4.936

-4.694
-4.437
-4.166
-3.882
-3.584

-3.274
-2.953
-2.620
2278
-1.925

-1.564
-1.194
-0.816
-0.431
-0.039

0.357
0.758
1.163
1571
1.982

2.395
2810
3225
3.640
4.055

-6.441
-6.404

-6.344
-6.262
-6.158
-6.035
-5.891

-5.730
-5.550
-5.354
-5.141
-4.913

-4.669
4411
-4.138
-3.852
-3.554

-3.243
-2.920
-2.587
2243
-1.889

-1.527
-1.156
-0.778
-0.392

0.000

0.397
0.798
1.203
1612
2,023

2.436
2.851
3.267
3.682
4.096

°C

-260
-250

-240
-230
-220
210
-200

-190
-180
-170
-160
-150

-140
-130
-120
-110
-100

10
20
30
40

50
60
70
80
N

+

Extension

Grade

°C
250
260
270
280
290

300
310
320
330
340

350
360
370
380
390

400
410
420
430
440

450
460
470
480
490

500
510
520
530
540

550
560
570
580
590

600
610
620
630
640

0
10.153
10.561
10971
11.382
11.795

12.209
12,624
13.040
13.457
13.874

14.293
14713
15133
15.554
15.975

16.397
16.820
17.243
17.667
18.091

18.516
18.941
19.366
19.792
20218

20644
21.071
21.497
21.924
22.350

22776
23.203
23629
24.055
24.480

24.905
25.330
25.755
26.179
26.602

£ OMEGA

Revised Thermocouple Reference Tables

1
10.194
10.602
11.012
11.423
11.836

12.250
12.665
13.081
13.498
13.916

14.335
14.755
15.175
15.596
16.017

16.439
16.862
17.285
17.709
18.134

18.558
18.983
19.409
19.835
20.261

20.687
21.113
21.540
21.966
22.393

22819
23.245
23671
24.097
24523

24.948
25.373
25797
26.221
26.644

IEC color code

2
10.235
10.643
11.053
11.465
11.877

12.291
12.707
13128
13.540
13.958

14.377
14.797
15217
15.638
16.059

16.482
16.904
17.328
17.752
18.176

18.601
19.026
19.451
19.877
20.303

20.730
21.156
21.582
22.009
22435

22.862
23.288
23714
24.140
24.565

24.990
25415
25.840
26.263
26.687

ANSI color code

ITS-90

3
10.276
10.684
11.004
11.506
11.919

12.333
12.748
13.165
13.582
14.000

14.419
14.839
15.259
15.680
16.102

16.524
16.947
17.370
17.794
18218

18.643
19.068
19.494
19.920
20.346

20.772
21.199
21.625
22.052
22478

22.904
23.331
23.757
24.182
24,608

25,033
25.458
25.882
26.306
26.729

4
10316
10.725
11.135
11.547
11.960

12.374
12.790
13.206
13.624
14.042

14.461
14.881
15.301
15.722
16.144

16.566
16.989
17.413
17.837
18.261

18.686
19.111
19.537
19.962
20.389

20815
21.241
21.668
22.094
22.521

22.947
23373
23.799
24.225
24.650

25.075
25.500
25.924
26.348
26.771

5
10.357
10.766
11.176
11.588
12.001

12416
12.831
13.248
13.665
14.084

14.503
14.923
15.343
15.764
16.186

16.608
17.031
17.455
17.879
18.303

18.728
19.154
19.579
20.005
20431

20.857
21.284
21.710
22137
22.563

22.990
23.416
23.842
24.267
24,693

25118
25543
25.967
26.390
26.814

6
10.398
10.807
1.217
11.630
12.043

12.457
12.873
13.290
13.707
14.126

14.545
14.965
15.385
15.806
16.228

16.651
17.074
17.497
17.921
18.346

18771
19.196
19.622
20.048
20.474

20.900
21.326
21.753
22179
22,606

23.032
23.458
23.884
24310
24735

25.160
25.585
26.009
26.433
26.856

7
10.439
10.848
11.259
11.671
12.084

12.499
12915
13.331
13.749
14.167

14.587
15.007
15.427
15.849
16.270

16.693
17.116
17.540
17.964
18.388

18.813
19.239
19.664
20.090
20.516

20.943
21.369
21.796
22222
22,649

23.075
23.501
23.927
24.353
24778

25203
25.627
26.052
26.475
26.898

TYPE

Reference
Tables
N.LST.
Monograph 175
Revised to

8
10.480
10.889
11.300
1.712
12126

12.540
12.956
13373
13791
14.209

14.629
15.049
15.469
15.891
16.313

16.735
17.158
17.582
18.006
18.431

18.856
19.281
19.707
20.133
20.559

20.985
21.412
21.838
22.265
22691

23117
23544
23.970
24.395
24.820

25.245
25,670
26.094
26.517
26.940

Figure A - 9: Type-K thermocouple specifications sheet

9
10.520
10.930
1.341
11.753
12.167

12.582
12.998
13415
13.833
14.251

14671
15.001
15511
15.933
16.355

16.778
17.201
17.624
18.049
18.473

18.898
19.324
19.750
20175
20.602

21.028
21.454
21.881
22.307
22.734

23.160
23.586
24,012
24.438
24.863

25.288
25712
26.136
26.560
26.983

4

10
10.561
10.971
11.382
11.795
12.209

12.624
13.040
13.457
13.874
14.293

14.713
15.133
15.554
15.975
16.397

16.820
17.243
17.667
18.091
18.516

18.941
19.366
19.792
20.218
20644

21.071
21.497
21.924
22.350
22776

23203
23.629
24.055
24.480
24.905

25.330
25.755
26179
26.602
27.025

250
260
270
280
290

300
310
320
330
340

350
360
370
380
390

410
420
430
440

460

140



141
Appendix B: Scilab Code
This Appendix contains the code from Scilab that was used to collect, organize,

and calculate the data used in the Results section, and create the summary files,
regression analyses, and IV curves for each test. The code below includes the adjusted
constraints used in the 2016 testing in line 231-232, and lines that begin with “//” are
comments. As noted in the body of this report, not all the Mini-KLA files were identical,
so this example of the code includes “txt 2" and a second “%s” on line 124 to account for
the comment number present in most of the file (excluding test from June 24" and
August 12M). Another important aspect in this code is the Vo sensitivity equation that

factors in the effects of module temperature and solar insolation on a module’s Voc.

/[---- Using only data with raw voltages above 5 V -------mmmmmmm e

/I---- 5 parameter single module tests with filtered data and output to file-------------------------

e start pv5 function----------------
function amps=pv5(vv, b)

/Ipv5 function

/lcompute and return PV module current in Amps at operating voltage v
/I5 parameter model of a PV module
/Iv=PV module voltage (Volt)
/liL=short circuit current (Amp)
iL=b(1);

/Ivoc=0open circuit voltage (Volt)
voc=b(2);

[lekt = g/(n*k*t) (1/Volt)

ekt=b(3);

/lq = Electron charge (Coulomb)

/In = ldeality factor per cell (unitless)
/lk = Boltzmann's constant (Joule/K)
/[T = Temperature (K)

/[rs=series resistance (Ohm)

rs=b(4);

/Irp=parallel resistance (Ohm)
rp=b(5);



/Itol = tolerance criterion for Newton's Method
tol=0.00001;
/[disp([iL,voc,ekt,rs,rp])

/I simplify later equations
i0=(iL-voc/rp)/(exp(ekt*voc) - 1);

[row,col]=size(wv);
for i=1:row
v=wv(i)

[[calulate initial guess using 3 parameter version of model
i1=iL-i0*(exp(ekt*v) -1);
di=(iL-i0*(exp(ekt*(v+rs*il))-1)-(v+rs*il)/rp) - il;
count=0;

maxcount=20;

while (abs(di)>tol)

count=count+1;

if(count>maxcount) then
disp(“exceded maximum iterations",[i,v,il,di,iL,voc,ekt,rs,rp])
amps=0;

end

i2=il+tol;

di2=(iL-i0*(exp(ekt*(v+rs*i2))-1)-(v+rs*i2)/rp) - i2;

[[disp([i1,di,tol,di2])

i1=il-di*tol/(di2-di);

/[calculate revised discrepancy in function at new il
di=(iL-i0*(exp(ekt*(v+rs*il))-1)-(v+rs*il)/rp) - il;
I[disp([v,il1,di])

end
amps(i)=il;
end
endfunction
/l-- - end pv5 function----------=--=-----
/I-- - start resid function---------------

function e=resid(b, pv_v, pv_i)
pv_i_pred=pv5(pv_v,b);
e=pv_i_pred - pv_i;

endfunction

/- - end resid function---------------

p=5; //number of parameters
name=["iL","voc","ekt","rs","rp"];
[Itmp_path="/Users/charles/Desktop/Temp File/";
tmp_path="/Users/jakerada/Desktop/Temp File/";
cd(tmp_path);
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[lopen data file for input
filename="Temporary Clipboard Data.txt";
fd_r=mopen(filename,"r");

if(fd_r==-1)
error("cannot open file for reading")
end

/lopen data file for regression output
fileout="pv5_regr_results_2016.txt";
fd_w=mopen(fileout,"w");

if(fd_w==-1)
error(""cannot open file for writing™)
end

/lopen data file for summary output
fileout2="pv5 summary results 2016.txt";
fd_ww=mopen(fileout2,"w");

if(fd_ww==-1)
error(*"cannot open file for writing™)
end

[lwrite headers to summary file

mfprintf(fd_ww, %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s
%s %s %s %S %s %s %s %s %s\n',"Date", "Panel_Number", "Serial_Number (SN)",
"Module_Brand", "File_Name", "Test_Time", "Panel_Temperature", "Eppley_Insol(W/m2)", "Knees",
"Run_a_or_b", "Curve_no", "m", "Se", "r2", "Pmax", "Vmax", "Imax", "Isc_obs", "VOC_obs", "iL",
"voc", "ekt", "rs", "rp", "sd_iL", "sd_voc", "sd_ekt", "sd_rs", "sd_rp")

num_read=1;
k=0;
while(num_read>0)
k=k+1;
/Iread data in from "Temporary Clipboard Data.txt"
[num_read,date_txt,panel,serial,maker,filename,time,temp,Eppley,knee,run,curve]=mfscanf(fd_r,"%s %i
%i %S %s %s %f %f %s %s %s");

Il Eppley calibration equation
insol=Eppley/8.78e-3

mprintf('\n%s %s %s %s %s %s %s',date_txt,maker,filename,time,knee,run,curve);
mprintf(\n%i %I %f %f %f panel,serial,temp,Eppley,insol);

if(num_read>0)

/lopen module data file for input
fd_rr=mopen(filename,"r");

if(fd_rr==-1)
error("cannot open file for reading")
end

[num_read,txt1,txt2,txt3,txt4,txt5,date_txt2,time2,ampm]=mfscanf(fd_rr,"%s %s %s %s %s %s %s
%s");
/[disp([date_txt2,time2,ampm]);
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[num_read,txt1,txt2]=mfscanf(fd_rr,"%s %s"); //test dates 6/24 and 8/12 didn't have numbers in the
mini-KLA "comment:" so only txt1 and one %s for those two days...the rest have txt2 and a second %s here
/Idisp([txt1]);

[num_read,txtl,txt2,txt3,txt4,txt5,txt6,txt7,txt8, txt9,txt10,txt11,txt12,txt13,txt14,txt15,txt16 |=mfscanf(fd_rr
,"%S %S %S %S %S %S %S %s %S %s %S %S %S %s %S %s™);

/ldisp([txtl,txt2,txt3,txt4, txt5,txt6,txt7,txt8,txt9,txt10,txt11,txt12, txt13,txt14,txt15,txt16]);

mfprintf(fd_w,"\n\n%s %s',date_txt,time)

[num_read,vmppO,impp0,pmpp0,voc0,isc0,insol2,temp2,ff0]=mfscanf(fd_rr, " %f %T %7 %f % %T %f
%f %f");

mfprintf(fd_w," \n%f %f %°f %f"insol,insol2,temp,temp2);

mprintf(\n%f %T %7 %TF % %T %T %f" ,vmpp0,impp0,pmpp0,voc0,iscO,insol2,temp2,ff0);

/Iskip blank line and header line

[num_read,txtl,txt2]=mfscanf(fd_rr,"%s %s");

[num_read,txtl,txt2]=mfscanf(fd_rr,"%s %s");

i=0;
while (num_read>0)
i=i+1;
[num_read,xx(i),yy(i)]=mfscanf(fd_rr," %f %f");
if(num_read>0)
Idisp([xx(i).yy (1)
end
end

mclose(fd_rr); //close module data file
m=i-1 //number of data points

[[filter the data
dv=0.05;
di=0.05;

/I find the starting point for voltages above 5.0V
fori=1m
if(xx(i)<5.0)
kO=i;
end
end
k0=k0+1

pv_v_raw(1)=xx(k0);

pv_i_raw(1)=yy(k0);

kk=1;

[Imprintf(\n\n%i %f %f",kk,pv_v_raw(kk),pv_i_raw(kk))

for i=kO:m
if(xx(i)-pv_v_raw(kk)>dv)
kk=kk+1;
pv_v_raw(kk)=xx(i);
pv_i_raw(kk)=yy(i);
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[Imprintf(\n%i %f %f' kk,pv_v_raw(kk),pv_i_raw(kk))
else
if(abs(yy(i)-pv_i_raw(kk))>di)
kk=kk+1;
pv_v_raw(kk)=xx(i);
pv_i_raw(kk)=yy(i);
[Imprintf(\n%i %f %f" kk,pv_v_raw(kk),pv_i_raw(kk))
end
end
end
m=kk

/lcorrect data for insolation and temperature
mod_in_series=1;
VOC_raw=pv_v_raw(m);
voc_noct=voc_raw-0.060291*mod_in_series*(47 - temp) + 0.0009296*mod_in_series*(1000-insol);
//-0.06538 and 0.006211 for 2016 Voc coefficients
pv_v=zeros(m,1);
pv_i=zeros(m,1);
fori=1:m
pv_i(i)=pv_i_raw(i)/insol*1000;
pv_v(i)=pv_v_raw(i)*voc_noct/voc_raw;
[Imprintf(\n%f %f %f %f' pv_v_raw(i),pv_i_raw(i),pv_v(i),pv_i(i))
end
[/[rowi,coli]=size(pv_i);
[I[rowv,colv]=size(pv_v);
[Imprintf("\n%i %i %i",m,rowv,rowi)

/[find observed Pmax, Vmax, and Imax
Pmax_obs=-1;
Vmax_obs=-1;
Imax_obs=-1;
fori=1:m
pp=pv_v(i)*pv_i(i);
if(pp>Pmax_obs)
Pmax_obs=pp;
Vmax_obs=pv_v(i);
Imax_obs=pv_i(i);
end
end

[linitial parameter guess
/l1L=24.55;
iL=pv_i(1);

isc_obs=pv_i(1);
voc_obs=pv_v(m);

/Ivoc=36;
voc=pv_v(m);
ekt=0.7;
rs=.4;
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rp=60;
bO=[iL;voc;ekt;rs;rp];
/Idisp(b0)
[le=resid(b0,pv_v,pv_i)
[[[row,col]=size(e)
/disp([e])

bLL=[2;15;0.1;0.05;15];

bUL=[4;25;5.5;4;3500];

/lcall leastsq function
[min_ssr,b_opt,grad_opt]=leastsq(list(resid,pv_v,pv_i),"b",bLL,bUL,b0);
[[disp(b_opt)

/lcompute Se & r2
Se=sqrt(min_ssr/(m-p));
Se2=Se"?2;

mfprintf(fd_w,"\npanel number, serial number, run, & curve %i %I %s %s',panel,serial,run,curve)

mfprintf(fd_w,"\nsample_size %i',m)
format('v',4);
mfprintf(fd_w, \nstandard_error(Amps) %f',Se)

pv_i_pred=pv5(pv_v,b_opt);
mean_pred_i=mean(pv_i_pred);
mean_obs_i=mean(pv_i);
explained=sum((pv_i_pred-mean_obs_i)."2);
mean_obs_i=mean(pv_i);
total=sum((pv_i-mean_obs_i)."2);
r2=explained/total;

format('v',4);

mfprintf(fd_w,"\nr2 %f,r2)

vv=linspace(0,b_opt(2),100);
pv_i_plot=pv5(vv,b_opt);

/[find predicted Pmax, Vmax, and Imax
Pmax_pr=-1;
Vmax_pr=-1;
Imax_pr=-1,
for i=1:100
pp=vv(i)*pv_i_plot(i);
if(pp>Pmax_pr)
Pmax_pr=pp;
Vmax_pr=vv(i);
Imax_pr=pv_i_plot(i);
end
end
mfprintf(fd_w, \nObserved_and Predicted Pmax %f %T',Pmax_obs,Pmax_pr)
mfprintf(fd_w," \nObserved _and Predicted Vmax %f %7f,Vmax_obs,Vmax_pr)
mfprintf(fd_w," \nObserved and Predicted Imax %f %f',Imax_obs,Imax_pr)
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/Iplot the observed and the predicted curves

clf(k)

scf(k)

plot2d(vv,pv_i_plot,style=2,rect=[0,0,25,3.5]);

plot2d(pv_v,pv_i,style=-5,rect=[0,0,25,3.5]);

plot2d(Vmax_pr,Imax_pr,style=-3,rect=[0,0,25,3.5]);

plot2d(Vmax_obs,Imax_obs,style=-4,rect=[0,0,25,3.5]);

legend(["predicted values","observed values"]);

plot_title=filename+" "+run+"_"+curve

xtitle( plot_title,"\Voltage","Current™);

[Iplotname="plot_"+serial+"_"+string(run)+"_"+panel+"_"+string(mon)+"-"+string(day)+"-
"+string(10)+".jpg";

11xs2jpg(k,plotname);

//******************************************

J=numderivative(resid,b_opt);
JT=J.

JTI=IT*;

JTJinv=inv(JTJ);
cov_matrix=Se2*JTJinv;
sd2=diag(cov_matrix);
sd=sqrt(sd2);

[Imprintf(\n%i %f %f %f %f %f %f %f %f %f %f %f', sa, b_opt(l), b_opt(2), b_opt(3),
b_opt(4), b_opt(5), sd(1), sd(2), sd(3), sd(4), sd(5), Se)

mfprintf(fd_w,\n\n%s  %s  %s %s %s %s %s
\n',"name","coef","SD","t","p","LL","UL")

conf_level=0.95;

plevel=(1-conf_level)/2;

t=cdft("T",m-p,1-plevel,plevel);

LL=b_opt-t*sd,;

UL=b_opt+t*sd;
fori=1p

tval=b_opt(i)/sd(i);

[pv,qv]=cdft("PQ",1-tval,m-p);

pval=pv;

mfprintf(fd_w, %s %f %f %°T %e %f %f \n';name(i),b_opt(i),sd(i),tval,pval,LL(i),UL(i))
end

Ihwrite to summary file

mfprintf(fd_ww, %s %i %i %s %s %s %f %f %s %s %s %I %f %F %f %F %f %f %f %f
9% 9%T %T %fF %e %e %e %e %e \n',date_txt,panel,serial,maker,filename, time, temp,
insol,knee,run,curve, m, Se, r2, Pmax_obs, Vmax_obs, Imax_obs, isc_obs, voc_obs, b_opt(1), b_opt(2),
b_opt(3), b_opt(4), b_opt(5), sd(1), sd(2), sd(3), sd(4), sd(5))

fori=1lp
forj=1p
cor(i,j)=cov_matrix(i,j)/(sd(i)*sd(j));
end
end
format('v',7);cor;
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mfprintf(fd_w,"\n\n Correlation_Matrix_for_Parameter Estimates’)
fori=1lp

mfprintf(fd_w,"\n%s %f %f %f %7T %f \n',name(i),cor(i,1),cor(i,2),cor(i,3),cor(i,4),cor(i,5))
end

pv_i_pred=pv5(pv_v,b_opt);
e=resid(b_opt,pv_v,pv_i);

mfprintf(fd_w,\n\n%s  %s  %s %s %s',
"i","Obs_V(Volts)","Obs_I(Amps)","Pred_I","Residual")
fori=1m
mfprintf(fd_w,"\n%i %f %f %7 %f,i,pv_v(i),pv_i(i),pv_i_pred(i),e(i))
end
mfprintf(fd_w,"\n\n%s'," ")

else

mclose(fd_r); //close file name list
end //end if statement
num_read=1;

end //end "while" for file name list loop

mclose(fd_w); //close regression results output data file
mclose(fd_ww); //close summary results output data file
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Appendix C: Photos of Modules

This Appendix has a sample of the photos taken of each module during testing.
As there are 192 modules, there are 192 images. The complete collection of these pictures
will accompany the submission of this thesis in a digital form, but they are not all
included in this Appendix. The sample of images shown here envelope the range of
physical degradation experienced and witnessed in the modules over 26 years. When a
picture is of a module younger than that, the caption details the age of the module. The
first image (Figure C - 1) is of one of the four Siemens replacement modules, which aged

much better, and the rest (Figure C - 2 to Figure C - 12) are of ARCO M75 modules.

Figure C - 1: First Siemens replacement (module 148), rou'ghly 19 years old in 2016
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These next few images show the original ARCO modules that aged the most
gracefully after over 25 years of field exposure. Module 054 (Figure C - 2) shows very
little evidence of physical degradation besides a little browning of the cells, which was
the most common degradation seen in these ARCO modules. Module 132 (Figure C - 3)

also aged relatively well but with complete cell browning.

Figure C - 2: Module 054 aged much better than the average ARCO M75 module
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Figure C - 3: Module 132 shows complete cell browning of the module with out other
types of degradation present

The next collection of pictures shows the worst modules in terms of performance,
but they do not particular portray the worst looking modules. Module 015 (Figure C - 4)
produced the worst IV curve, of the modules that produced IV curves, in 2016 and
generated only 24 W. Module 161 (Figure C - 5) was the worst performing module in
1990, and in 2016 it generated slightly below the average power output. Module 078
(Figure C - 6), generating only 1.8 W with an essentially linear IV curve, was the worst

module to survive 25.5 years of field exposure.
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Figure C - 5: Module 161 was the lowest performer in 1990 but was average in 2016
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v

Figure C - 6: While it did not physically age dramaiically, module 078 had the lowest
power production of all the modules tested in 2016 (1.8 W) — possibly due to bypass
diodes or the almost completely delaminated cell in the center string

While the previous pictures showed the poorest performing modules, this next set
shows the modules that experienced the worst physical degradation, such delamination
and hot spots. The delamination between the EVA and the cells was the second most
common degradation of these modules, behind cell browning, and hot spots were the
third most common sighting. Hot spots were less common than the other two degradation
types in this array. Module 103 (Figure C - 7) shows the highest count of delaminated
cells found on one module, and module 059 (Figure C - 8) adequately highlights the
stages of cell delamination, as the process starts in the current-carrying strings and then

grows together to create a square or circle of delamination that takes up the entire cell.
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Figure C - 8: Module 059

exhibiting the stages of the delamination process
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Module 026 shows a more typical example of the hot spots that occurred in the
ARCO modules (5™ cell from the bottom on the furthest string to the right in Figure C -
9), while module 045 (Figure C - 10) shows to largest and worst instance of hot spots
from this array. As reported in the body of this thesis, the hot spots occur due to elevated

current in the cell that creates a local thermal increased that burns the crystalline cell.

— = —y Sl
Figure C - 9: Module 026 with a basic example of hot spots seen in this array
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- T
Figure C - 10: Module 045 experienced the worst hot spot seen in the array

These last module images are of the highest testing modules. Module 124 (Figure
C - 11) was the most productive module in the original 1990 testing, but by 2016 its
performance was close to the average of the array. Module 160 (Figure C - 12),
generating about 37 W in 2016, had the highest output of any module from this project,
and its lack of physical degradation supports the results. However, this comparison is not
as applicable to the worst modules because the lowest performers, modules 078 and 044

(Figure 36), look much better than others, such as modules 045 or 103, shown earlier.



Figure C - 12: Module 160 is the highest performing module in 2016 (37 W)
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Appendix D: Clipboard Recording

This Appendix shows a brief example of the data recorded externally of the Mini-
KLA, which includes the date, module number (1-192), manufacturer-assigned serial
number, test time, module temperature reading from the thermocouple reader, insolation
reading from the Eppley PSP (in millivolts), the number of knees perceived in the initial
Mini-KLA graphical display of the IV curve, verification that a photo of the module was
taken, the run on that specific module (a, b, c, d, e, ), the curve number assigned by the
Mini-KLA, and finally any comments about the module or explanations why certain
curve numbers were thrown out. Figure D - 1 shows an example of this clipboard data
from July 26, 2016, and Figure D - 2 shows the recordings from August 3, 2016. This
information was recorded for every test during all 17 days of testing, but all of those will
not be included in entirety in this Appendix due to the similarity in their appearance. For
the Scilab code, additional columns were created to identify the module brand (ARCO or
Siemens) and the filename for the output of the code for each respective module test (i.e.,
“Modulel67b.asc”), and the comments and photo check columns were unnecessary for

the code and were removed.
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Figure D - 1: Example image from July 26, 2016 of the clipboard data taken externally of

the Mini-KLA, complete with comments explaining why the first test was discarded
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Figure D - 2: Example image from August 3, 2016 of the clipboard data taken externally
of the Mini-KLA, complete with reasons why the first two tests needed to be deleted
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Appendix E: Scilab Code Output

The output from the Scilab code came in three forms, a summary file for all of the
module tests inputted for that day of testing, a regression file for every inputted test, and
an 1V curve for each of the tests.

The summary file reproduced the information from the clipboard data in
Appendix D, and added to it the number of iterations the code ran (m), standard error, the
r-squared value showing the finally degree of accuracy, Pmax, Vmp, Imp, Isc_o0bs, and
Voc_0bs. The Pmax here is what was used to compare the loss of power in the modules to
the previous testing cycles’ results. The Isc_obs and Voc_obs were the initial guesses that
the code used when analyzing the data. Following this data came the five IV curve
parameters (I, Voc, ekt, Rs, and Rp) and the standard deviations associated with the
calculations for those five parameters. The I and Vo presented here represent the Isc and
Voc Used to compare the modules, as opposed to the initial guesses mentioned earlier.
Because this summary file was not designed to fit into a typical Word document, an
example summary file for Modules 026, 037, and 064 from July 26", 2016 (both runs
“a” and “b”") are shown in Table E - 1 to Table E - 4. Keep in mind that this data came in
one continuous form from Scilab. The updated 2016 parameter limits are also present in

these tables.
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Table E - 1: Part one of four tables showing the Scilab summary file output

Module Run m Se r
026 a 118 0.043679 0.997423
026 b 111 0.040004 0.996516
037 a 119 0.067807 0.993919
037 b 118 0.066084 0.995157
064 a 110 0.053845 0.995551
064 b 113 0.056034 0.994849

Table E - 2: Part two of four tables showing the Scilab summary file output

Module Run Pmax Vimp Imp Isc_obs Voc_0bs
026 a 28.561305 | 13.287475 | 2.149491 | 2.417421 | 18.125385
026 b 29.611183 | 13.806764 | 2.144687 | 2.438684 | 18.101049
037 a 26.803258 | 11.892069 | 2.253877 | 2.857792 | 18.156934
037 b 26.826024 | 11.137517 | 2.408618 | 2.858473 | 18.194273
064 a 31.03949 | 14.805775 | 2.096445 | 2.403152 | 18.174155
064 b 31.114295 | 14.826449 | 2.098567 | 2.398683 | 18.112789
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Table E - 3: Part three of four tables showing the Scilab summary file output

Module Run I Voc ekt Rs Rp
026 a 2.611363 | 18.020661 | 1.361325 | 1.208173 | 39.319926
026 b 2.529459 | 18.084558 | 2.014995 | 1.347732 | 60.00524
037 a 2.937872 | 18.425255 | 0.509536 | 1.715115 | 636.083014
037 b 3.108383 18.20764 | 0.191437 | 0.073918 3500
064 a 2.676599 | 18.119044 | 3.633782 | 1.099772 | 29.670829
064 b 2.667242 | 18.112507 | 3.200149 | 1.067996 | 30.062536

Table E - 4: Part four of four tables showing the Scilab summary file output

Module Run sd_IL sd_Voc sd_ekt sd_Rs sd_Rp
026 a 4.53E-02 1.85E-02 1.75E-01 7.45E-02 5.87E+00
026 b 3.52E-02 1.91E-02 2.02E-01 4.49E-02 1.01E+01
037 a 5.81E-01 5.79E-02 2.66E-01 3.48E-01 2.50E+04
037 b 2.52E-01 4.65E-02 1.71E-01 9.16E-01 1.11E+06
064 a 3.87E-02 2.12E-02 8.15E-01 6.31E-02 2.59E+00
064 b 4.09E-02 2.34E-02 6.49E-01 6.59E-02 2.86E+00

The regression file shows the iteration process that the Scilab code goes through

to determine the correct values of the variables needed to analyze the modules’

performance (five IV curve parameters). Many of these are also reported in the summary

file, as the earlier examples showed. Table E - 5 exhibits these iterations for the “b” run

of module 064, which was a part of the example summary files. The “i” here is the same
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as “m” in the summary tables. The observed voltages and currents help find the predicted
currents, and the residuals, or difference between the prediction and the new solution, are

minimized until a satisfactory current-voltage relationship is determined.

Table E - 5: Iteration process of Scilab code produced by the regression file

i Obs_V(Volts) Obs_I(Amps) Pred_I Residual
1 5.346048 2.398683 2.352829 -0.045853
2 5.580795 2.398683 2.34822 -0.050463
3 5.671664 2.38654 2.346435 -0.040104
4 5.754961 2.384499 2.344799 -0.039699
5 5.81554 2.383478 2.34361 -0.039868
6 6.216777 2.389601 2.335731 -0.05387
7 6.322791 2.38256 2.333649 -0.048911
8 6.549965 2.38256 2.329188 -0.053372
9 6.708986 2.378478 2.326065 -0.052413
10 6.777138 2.373376 2.324727 -0.048649
11 6.966449 2.370416 2.321009 -0.049407
12 7.072464 2.362355 2.318927 -0.043428
13 7.292065 2.360314 2.314615 -0.045699
14 7.428369 2.352252 2.311938 -0.040314
15 7.746412 2.343068 2.305693 -0.037375
16 7.844854 2.326945 2.303759 -0.023185
17 7.988731 2.324904 2.300934 -0.02397
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i Obs_V(Volts) Obs_I(Amps) Pred_l| Residual
18 8.102318 2.313781 2.298703 -0.015078
19 8.291629 2.30674 2.294986 -0.011754
20 8.496085 2.308781 2.29097 -0.01781
21 8.57181 2.291535 2.289483 -0.002052
22 8.639961 2.286535 2.288145 0.00161
23 8.806556 2.287555 2.284873 -0.002682
24 9.026157 2.275412 2.28056 0.005148
25 9.359345 2.273371 2.274016 0.000645
26 9.419925 2.256227 2.272826 0.016598
27 9.472932 2.251125 2.271784 0.020659
28 9.647098 2.256227 2.268363 0.012135
29 9.881741 2.248166 2.263752 0.015586
30 10.078624 2.242043 2.259881 0.017838
31 10.320943 2.237043 2.255115 0.018072
32 10.517826 2.2299 2.251239 0.02134
33 10.752572 2.219797 2.246612 0.026815
34 10.919167 2.205715 2.24331 0.037595
35 10.972174 2.210715 2.242261 0.031546
36 11.282645 2.204694 2.236091 0.031397
37 11.335652 2.192551 2.235033 0.042482
38 11.388659 2.197653 2.233972 0.036319
39 11.471956 2.184489 2.232302 0.047812
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i Obs_V(Volts) Obs_I(Amps) Pred_l| Residual
40 11.585543 2.183469 2.230013 0.046544
41 11.721847 2.18653 2.227248 0.040718
42 11.774854 2.18653 2.226166 0.039635
43 12.153476 2.182448 2.218269 0.03582
44 12.289781 2.169284 2.215322 0.046038
45 12.38065 2.169284 2.213314 0.044029
46 12.653258 2.170305 2.206991 0.036686
47 12.978874 2.158162 2.198515 0.040354
48 13.21362 2.153161 2.191347 0.038186
49 13.281772 2.148059 2.189023 0.040964
50 13.349924 2.1451 2.186562 0.041463
51 13.516518 2.149079 2.179852 0.030773
52 13.766305 2.147141 2.1673 0.02016
53 13.849603 2.137956 2.16223 0.024273
54 13.978334 2.133977 2.153271 0.019294
55 14.160073 2.137956 2.137749 -0.000207
56 14.402392 2.132956 2.110186 -0.02277
57 14.629565 2.123874 2.074896 -0.048979
58 14.826449 2.098567 2.034962 -0.063605
59 15.04605 2.061218 1.978318 -0.082901
60 15.01576 1.995501 1.986947 -0.008554
61 15.091485 1.976316 1.964865 -0.011451
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i Obs_V(Volts) Obs_I(Amps) Pred_l| Residual
62 15.144492 1.935906 1.94839 0.012483
63 15.242934 1.914681 1.91552 0.000839
64 15.35652 1.877332 1.873888 -0.003444
65 15.394383 1.824779 1.859125 0.034346
66 15.462535 1.808656 1.831437 0.022781
67 15.545832 1.756102 1.795668 0.039565
68 15.636701 1.733856 1.754264 0.020408
69 15.697281 1.71161 1.725309 0.013699
70 15.856302 1.691405 1.644329 -0.047076
71 16.045614 1.642934 1.539053 -0.103881
72 16.007751 1.569155 1.560842 -0.008312
73 16.015324 1.51456 1.556513 0.041952
74 16.303078 1.471089 1.3819 -0.089188
75 16.166773 1.413535 1.466992 0.053457
76 16.242498 1.39231 1.420225 0.027915
77 16.409091 1.375166 1.312978 -0.062188
78 16.507533 1.319551 1.246979 -0.072573
79 16.386374 1.251895 1.32794 0.076046
80 16.719562 1.233731 1.098836 -0.134895
81 16.522678 1.182198 1.236662 0.054464
82 16.674127 1.163013 1.131231 -0.031782
83 16.62112 1.095255 1.168588 0.073333
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i Obs_V(Volts) Obs_I(Amps) Pred_l| Residual
84 16.727134 1.078111 1.093404 0.015293
85 16.893729 1.018517 0.971631 -0.046886
86 16.871011 0.956881 0.988483 0.031602
87 16.969453 0.940656 0.914923 -0.025733
88 17.075467 0.895246 0.834213 -0.061033
89 17.105756 0.831569 0.810883 -0.020687
90 17.211772 0.813405 0.728327 -0.085078
91 17.083039 0.742688 0.828391 0.085704
92 17.295069 0.728503 0.662528 -0.065975
93 17.348076 0.673909 0.62025 -0.053659
94 17.453987 0.617376 0.534873 -0.082503
95 17.151192 0.55972 0.77567 0.21595
96 17.310214 0.550638 0.65048 0.099842
97 17.506994 0.534515 0.491712 -0.042803
98 17.597864 0.497166 0.417084 -0.080082
99 17.393511 0.440531 0.583768 0.143237
100 17.476704 0.429408 0.51641 0.087002
101 17.643297 0.423387 0.379482 -0.043905
102 17.628153 0.359711 0.392037 0.032326
103 17.794746 0.321341 0.25282 -0.068521
104 17.862898 0.302157 0.195193 -0.106963
105 17.597864 0.24246 0.417084 0.174624
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i Obs_V(Volts) Obs_I(Amps) Pred_l| Residual
106 17.923479 0.248583 0.14366 -0.104923
107 17.696306 0.193989 0.335377 0.141389
108 17.900762 0.19603 0.163018 -0.033011
109 17.741739 0.139394 0.297376 0.157982
110 17.878044 0.138374 0.182336 0.043963
111 17.976486 0.126332 0.098338 -0.027994
112 18.037065 0.085922 0.046287 -0.039635
113 18.112789 0.042451 -0.019147 -0.061597

The final output from the Scilab code is an IV curve for each test. Figure E - 1 to

Figure E - 4 show the graphs created for both tests on modules 026 and 064, the same

modules used as examples previously in this Appendix, as examples of the IV curves

from the code. Note that these show the 5 V cutoff that eliminates the second knee caused
by the bypass diodes that existed in all of the modules in the 2016 testing, and the darker

dot in these curves represents the maximum power point.
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Figure E - 1: Scilab curve for test "a" of module 026
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Figure E - 2: Scilab IV curve for test "b" of module 026
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Figure E - 3: Scilab IV curve for test "a" of module 064
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Figure E - 4: Scilab IV curve for test "b" of module 064
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Appendix F: Excel Analysis For Pooly Performing

The Scilab code produced such poor IV curves for five modules (seven tests, not
including the one bad test of module 118 without its diodes) throughout the 2016 testing
(tests 023a, 044a&b, 051a, 078a&b, and 111a) that an Excel model was created to
attempt to retrieve better data for the analysis of those modules. The “Solver” tool in
Excel is used to adjust the five IV curve parameters to minimize the residuals, or
differences, between the current-voltage data from the regression file and the Excel
model’s new estimations. As an example of this spreadsheet analysis, Table F - 1 and
Figure F - 1 are the two primary results from this Excel model for test “a” on module
023. The model is a five-parameter model and, therefore, only models the main IV curve,
not the second knee that is present in the curve below 5 V. This is done to match the way
the Scilab code approached the 1V curve modeling. Table F - 1 shows the results of the
Excel model after the Solver has minimized the residuals, complete with parameter
estimates, the standard deviations, the t-value (estimate divided by the standard
deviation), and the upper (UL) and lower (LL) limits based on a 95% confidence interval.
Figure F - 1 shows the IV curve that the model produces, highlighting how accurate it is.
The R-squared value, where 1.0 is perfect, is also used in this model to confirm the
accuracy, and for this test that value is 0.9904. The rest of this IV curve Excel model for

this test, as well as the other seven tests, will be digitally submitted with this paper.
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Table F - 1: IV curve parameter results from Excel model for module 023

Parameter Estimate St Dev t=est/SD LL 95% UL 95%
IL(A) 2.464263443 | 0.031776393 77.55 2.402 2.527
Voc (V) 17.98242447 | 0.170024117 105.76 17.647 18.318
ekT (1/V) 2.626641276 | 0.475413317 5.52 1.688 3.565
Rs (Ohm) 2.320528198 | 0.148687329 15.61 2.027 2.614
Rp (Ohm) 149.1094855 | 51.69903866 2.88 47 251.160
3.0
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2.0
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Figure F - 1:

Excel-modeled IV curve for module 023a that Scilab couldn't model |
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Appendix G: Extra Figures For Results
This section contains additional graphs that were created for analysis but were not
pertinent to the focus of the thesis (Figure G - 1 to Figure G - 16). These first graphs are
probability curves for Vo (Figure G - 1), Isc (Figure G - 2), Vmp (Figure G - 3), and Imp
(Figure G - 4) over the course of the project. The voltages hardly changed, while the

current in the modules saw much more dramatic changes over time.
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Figure G - 1: Probability distribution curves for Vo from all four testing cycles
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Figure G - 2: Probability distribution curves for Isc from all four testing cycles
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Figure G - 4: Probability distribution curves for Imp from all four testing cycles

These next graphs are histograms for Vmp (Figure G - 5 to Figure G - 8) and Imp
(Figure G - 9 to Figure G - 12) for the modules from each test cycle, and their trends are
similar to those seen in the report with Voc and Isc, respectively. The four sets of IV
curves following the histograms are for the other four of the six modules with removed
bypass diodes that were not included in the body of the report. The two included in the
report (module 184 as Figure 73 and module 124 as Figure 74) showed the largest and
smallest effects of the removal of the diodes, and these graphs (Figure G - 13 to Figure G
- 16) show the effects between those two extremes witnessed in this small module

sample.
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Figure G - 5: 1990 Vmp histogram
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Figure G - 6: 2001 Vp histogram with slightly larger spread
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Figure G - 7: 2010 Vmp histogram with growing variability
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Figure G - 8: 2016 Vmp histogram with largest variability
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Figure G - 9: 1990 Imp histogram
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Figure G - 10: 2001 Imp histogram starting to spread out
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Figure G - 11: 2010 Imp histogram with larger spread
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Figure G - 12: 2016 Imp histogram showing collective drop after 26 years
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Figure G - 13: Module 028 IV curves from all four cycles and without bypass diodes
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Figure G - 14: Module 043 IV curves from all four cycles and without bypass diodes
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Figure G - 15: Module 110 IV curves from all four cycles and without bypass diodes
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Figure G - 16: Module 118 IV curves from all four cycles and without bypass diodes
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Appendix H: Regression Tables for Sensitivity Analysis
The report included a comparison of the correction coefficients of the solar

insolation and module temperature for Voc from the 1990 data to the 2016 results in Table
15. Table H - 1 shows the complete multiple linear regression analysis from the 1990
data, and Table H - 2 shows the same for the 2016 testing cycle. The 1990 multiple linear
regression model had an r? value of 0.9383 and a standard error of 0.109 V. The 2016
model r? value was 0.9922, and its standard error was calculated to be 0.0687 V.

Table H - 1: 1990 V. multiple linear regression results

Variable Estimate Standard Error 95% CI LL 95% Cl UL
Intercept (V) 18.2 0.03 18.14 18.25
T-47°C (V/K) -0.0603 0.0021 -0.0644 -0.0562

Insol - 1000W/m?2
0.00093 0.000198 0.000534 0.001326
(V/(W/m2))
Table H - 2: 2016 V. multiple linear regression results
Variable Estimate Standard Error 95% CI LL 95% Cl UL
Intercept (V) 18.1 0.1007 18.32 17.91
T-47°C (V/K) -0.0654 0.0018 -0.0618 -0.0690
Insol - 1000W/m?

0.00621 0.0024 0.0112 0.001244

(V/(W/m?))




