Cal Poly Humboldt

Digital Commons @ Cal Poly Humboldt

IdeaFest 2023

2023

Bird Diversity in Arcata, California: A Study on Urban Influence

Brittany Ocheltree *Cal Poly Humboldt*, bmo28@humboldt.edu

Follow this and additional works at: https://digitalcommons.humboldt.edu/ideafest2023

Recommended Citation

Ocheltree, Brittany, "Bird Diversity in Arcata, California: A Study on Urban Influence" (2023). *IdeaFest 2023*. 122.

https://digitalcommons.humboldt.edu/ideafest2023/122

This Article is brought to you for free and open access by Digital Commons @ Cal Poly Humboldt. It has been accepted for inclusion in IdeaFest 2023 by an authorized administrator of Digital Commons @ Cal Poly Humboldt. For more information, please contact kyle.morgan@humboldt.edu.

Bird Diversity in Arcata, California: A Study on Urban Influence

Brittany Ocheltree bmo28@humboldt.edu Department of Wildlife, Cal Poly Humboldt, I Harpst Street, Arcata, CA 95521, USA

Introduction

- Urbanization is a primary driver of native species loss [1].
- In the past 50 years, the U.S. alone has seen a 29% decline in bird abundance [2].
- This study aimed to assess how building density influences urban bird communities within Arcata.
- Hypothesis: As building density increases, nonnative species abundance will increase. Overall bird diversity will also decrease with increased building density.

Study Area

- Arcata is wedged between a vast coastal redwood forest, and a narrow range of pastureland, with the Arcata Marsh and Humboldt Bay in the southwest [3].
- Common species: Gulls, Crows, Ravens, Steller's Jay, House Sparrows, European Starlings, Rubycrowned Kinglet, Wrentit, Winter Wren, Yellowrumped Warbler, Bushtit, and American Robin.

Methods

- Fixed radius 75m point counts for 10 mins, within 30 randomly selected study sites, using ArcGIS.
- Recorded bird species, abundance of birds, and building density by counting the number in all cardinal directions.
- To determine if there is a relationship between building density and bird species native and nonnative status, I used a chi-squared formula [4].
- A linear regression model was used to compare Shannon diversity to building density (n = 30) [5].

Survey Sites, Arcata, California

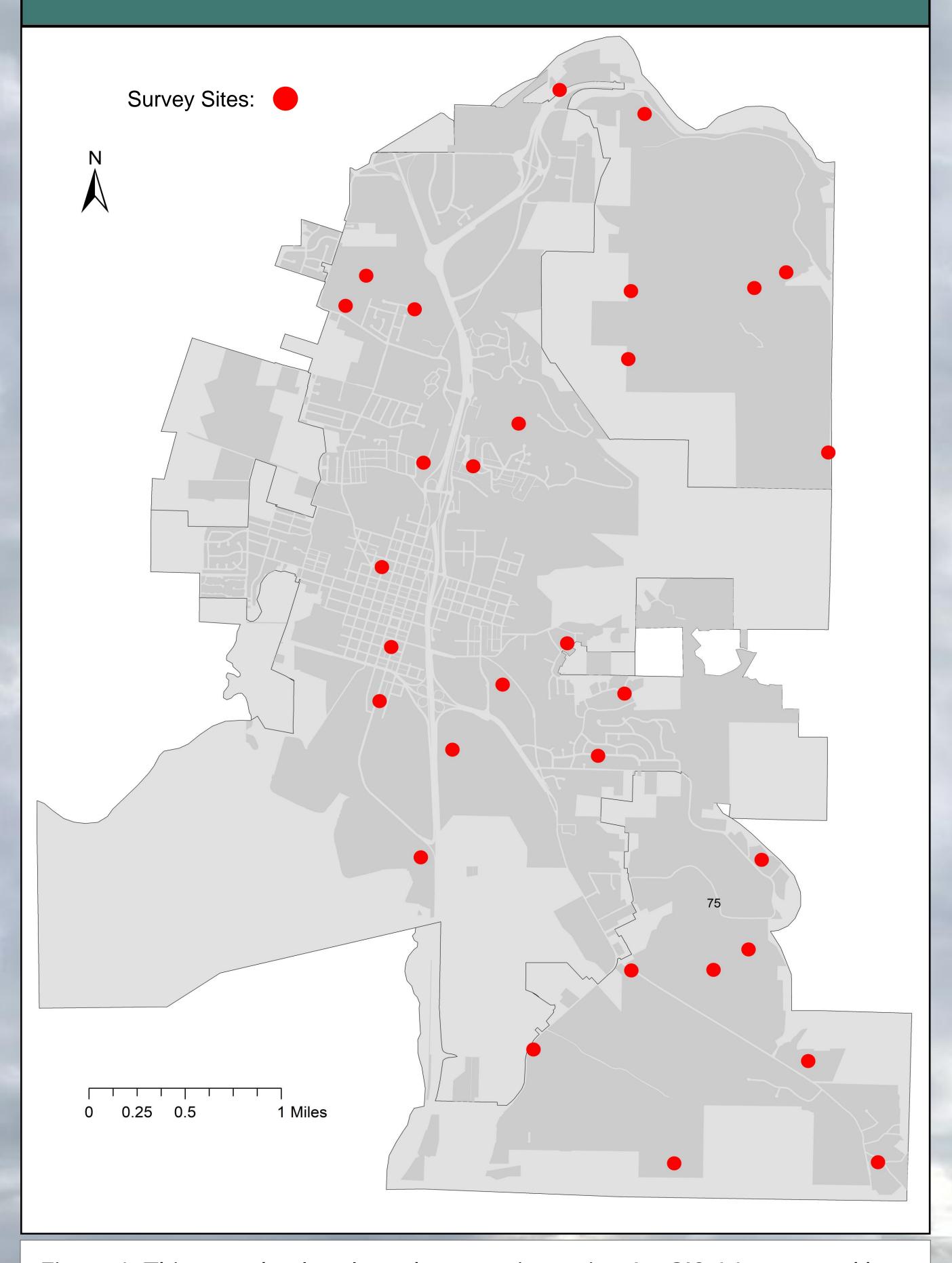


Figure 1. Thirty randomly selected survey sites using ArcGIS. Map created by Brittany Ocheltree using data from the Humboldt County GIS database 2023.

Citation

[1] McKinney, M. L. 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems 11:161-176. [2] Haas, A. R., S. M. Kross, and J. M. Kneitel. 2002. Avian community composition, but not richness, differs between urban and exurban

[3] Kalinowski, R. S., and M. D. Johnson. 2010. Influence of suburban habitat on a wintering bird community in coastal Northern California. [4] Pearson, K. 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is

such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50:157–175. [5] Shannon, C. E., and W. Weaver. 1963. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois, USA.

Aknowledgements:

A special thank you to Dr. David Sinn, Rob Blenk, and Dr. Barbara Clucas for their consistent assistance with the execution and anaylsis of the study. A permit was attained from the city of Arcata. The study was purely observational, and no Humboldt.

animals were harmed during the course of the study.

Results

Table 1. Average bird presence categorized by their native or non- native status, compared to building density (n = 138).

Build Density	Total Sites	Native Bird Average	Non-Native Bird Average
0	n = 3	7.33	0
1	n = 7	5	1
2	n = 5	4.6	0
3	n = 2	6.5	0
4	n = 2	13	0
5	n = 2	6.5	3
6	n = 3	8.67	3
<u>7</u> +	n = 6	4.5	4.33

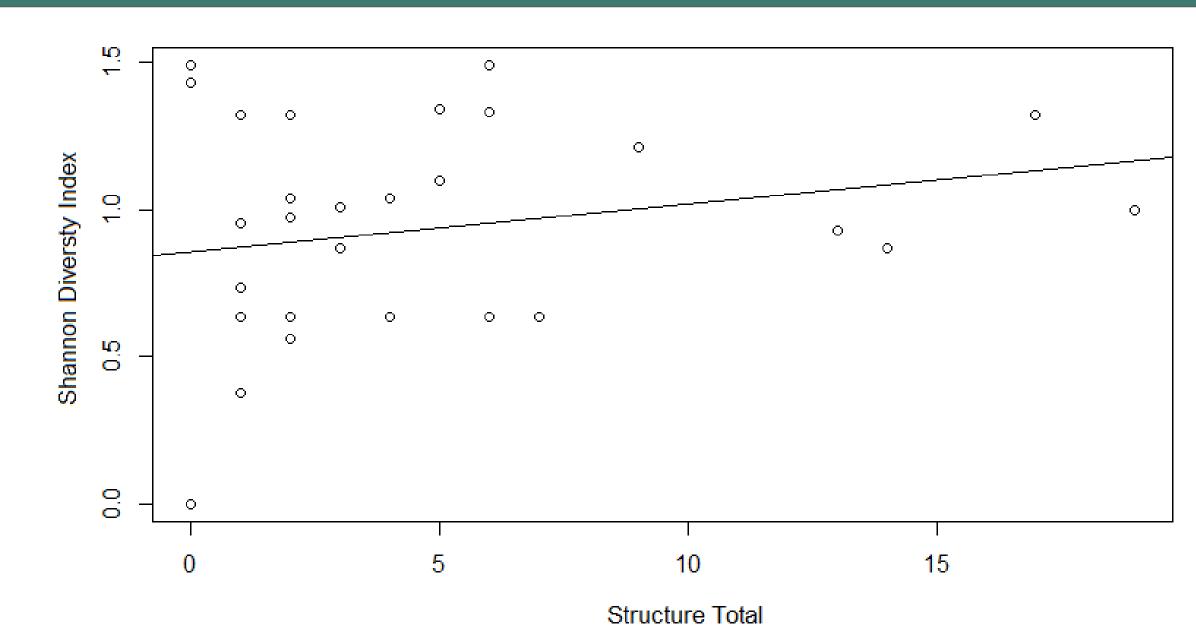


Figure 2. Linear regression model comparison of building total versus Shannon Diversity Index, in Arcata, California (n = 30).

- Chi-squared: Significant difference in the frequency of distribution of non-native species among increased building density ($\chi^2 = 8.60$, df = 3, P = 0.03).
- Linear regression model: There was no significance between species diversity and building density (R² = 0.01, df = 28, P = 0.24).

Discussion

- Results indicated that non-native species increased with building density (Table 1.)
- There was no correlation between building density and species diversity (Fig. 2).