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1.  INTRODUCTION 

Congressional apportionment is the process of determining how many seats in the United States 

House of Representatives each state gets.  The Congressional Apportionment Problem (CAP) 

provides fascinating insight on the joint influence of history, politics and mathematics to solve a 

real-world problem involving multi-faceted issues of fairness and power.  Factors such as House 

size, size of congressional districts, among others, provide material for debate. [1, 3, 9, 14]  This 

article highlights the evolution of the basic historical and mathematical concepts of congressional 

apportionment from the initial census of 1790 to the present in a manner appropriate for use in 

general or mathematics secondary education courses.  We conclude with suggestions for 

teaching apportionment based on a historical approach in such courses. 
 

1.1  Prelude 
A key to appreciating apportionment is to understand the concept of mean.  A mean of a set of 

numbers is an average computed from them in a way that preserves some rationale for those 

numbers.  The three most common means are the arithmetic mean (AM), geometric mean (GM), 

and harmonic mean (HM).  For a,b > 0, AM = (a + b)/2, GM = √𝑎𝑏, and HM = 2/(1/a + 1/b).  

Further, a ≤ HM ≤ GM ≤ AM ≤ b with two items equal if and only if a = b. 

 

1.2  Stating the CAP 
The CAP is easy to state 

and appreciate but 

difficult politically and 

mathematically to resolve: 

how many seats in the 

House of Representatives 

does each state get?  

Figure 1 displays an 

overview of the current 

situation with the number 

of seats each of the 50 

states was apportioned in 

the 435 member House 

based on the 2010 census.  

The number of people 

a congressperson 

represents is called the constituency.  One political issue is created by the reciprocal relationship 

between House size and constituency–as one decreases the other increases.  The House has 

remained at 435 for virtually the past century. 

 

1.3  The Constitution 
Article I, Section 1, of the U.S. Constitution states that all federal legislative powers shall be 

vested in Congress, which shall consist of a Senate and a House.  The basis for the composition 

of the House is described in Section 2: 
 

 members of the House shall be chosen every second year by the people of the several 

states; 

Figure 1.  The map shows the House apportionment based on the 
2010 census.  The apportionment population for 2010 is 309,183,463.  
Each congressman represents on average 710,767 people 
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 representatives shall be apportioned among the states according to their respective 

numbers; 

 the first enumeration shall be made within three years after the first meeting of 

Congress and subsequently every ten years; 

 the size of the House shall not exceed one representative for every 30000 people, but 

each state shall have at least one representative. 
 

Section 2 also specified the original House apportionment, established by the framers while 

creating the Constitution in Philadelphia, summer of 1787, using their guesstimates of the 

populations of the original 13 states.  Although population increases have made the 30000 figure 

moot in today’s world, thirtythousand.org is crusading to make 30000 the House constituency.  

This would lead to a House of 10283 representatives based on the 2010 census.  We leave it to 

your imagination how such a House would function, both practically and politically. 

 

2.  THE MATHEMATICAL CAP 
We now restate the CAP in mathematical language. 
 

 Let 𝒰 = {S1,S2,…,Ss} where s∊ℕ2  (ℕk = {n ∊ℕ | n ≥ k }). 

 Let pi = population of state Si, �⃑� = <p1,p2,…,ps>, and 𝑝 = ∑ 𝑝𝑖
𝑠
1 . 

 Determine �⃑� = <a1,a2,…,as> where ai∊ℕ. 
 

𝒰 represents the federal union of s states (s ≥ 2 to avoid trivial cases).  The vector �⃑� is the census 

and �⃑� is the apportionment vector.  Each state’s apportionment must be a natural number.  This 

constraint makes the CAP mathematically interesting.  Congress has never discussed fractional 

representation as an option for the House.  The House size is h = ∑ 𝑎𝑖
𝑠
1 .  The only constitutional 

constraint on h is that s ≤ h ≤ p/30000. 

 The 225 years of U.S. history has produced two general methods for resolving the CAP: 

divisor and quota.  Divisor methods are driven by the constituency question: how many people 

should a congressperson represent?  Quota methods are driven by the House size question: how 

many seats should the House have?  Further, two types of divisor methods have been used: basic 

and modified. 

 The three main apportionment methods of U.S. history (basic divisor, modified divisor, 

quota) can be distinguished by how they treat the House size, h.  In a basic divisor method, h 

appears only as a result of the process; h is never considered during the apportionment 

calculations.  In a modified divisor method, h is first established but is used only as the goal.  

Constituency, not h, plays the dominant role in the calculations.  In a quota method, h is 

considered as a resource and then distributed among the states.  House size plays the role of goal 

and is used as a dominant factor in the calculations.  Summarizing, in a basic divisor method, h is 

the result; in a modified divisor method, h is the goal; in a quota method, h is the resource for 

distribution. 

 A quota method contains three formal steps. 
 

 Step 1.  Let h ∊ ℕs.  (Each state gets at least one representative.) 

 Step 2.  Calculate Qi = h(pi/p).  Let ni = int(Qi). 

 Step 3.  Select ai ∊{ni,ni+1} so that h = ∑ 𝑎𝑖
𝑠
1 . 

 

Note how h figures in all three steps.  The method is illustrated in the next section using the 1790 

census. 
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 A basic divisor method (BDM) also has three steps. 
 

 Step 1.  Select d∊ℕ30000. 

 Step 2.  Calculate qi = pi/d.  Let ni = int(qi). 

 Step 3.  Select ai ∊{ni,ni+1}. 
 

Step 1 is initiated by the constituency question: how many people should a congressperson 

represent?  The answer, d, is called the divisor since, as indicated in Step 2, one divides each 

state’s population by d to determine how many representatives the state merits.  The result, qi, is 

called the state’s quotient.  Variations between BDMs occur in Step 3 where one decides how to 

round the decimal qi. 

 Note how a quota method is driven by h.  In contrast, a BDM is driven by d. 

 
3.  THE 1790 CENSUS 

The 1st Congress authorized the first census to begin 

in August 1790 under the supervision of Secretary of 

State Thomas Jefferson.  The 1st Congress also 

admitted Vermont as a new state.  The census took 

over a year and was submitted to the 2nd Congress on 

28 October 1791 (Figure 2: Census, Population).  The 

numbers next to each state are the number of 

representatives provisionally assigned to that state.   

 The House immediately went to work on 

reapportionment.  Driven by ratification debates 

freshly in mind, the House focused on the 30000 

constituency figure, applying a BDM with d = 30000 

(Figure 2: House Bill).  The resulting quotients were 

rounded down, yielding h = 112.  This process took 

the 67 member House (Kentucky was not yet 

admitted to the Union) just under a month.  The 

House bill was then sent to the Senate for 

concurrence.  After two weeks the Senate 

concurred except for d.  The Senate used d 

= 33000 within a BDM and truncated the 

decimal quotients, resulting in h = 105 

(Figure 2, Senate Bill, Seats). 

  With no agreement, an impasse 

ensued.  Federalists tested each bill by 

applying the quota method to each resulting 

h.  First, determine each state’s 

proportion, pi/p, which represents a state’s 

fair share of the House.  Then, multiply h 

by each state’s proportion to obtain each 

state’s quota, Qi (Figure 3).  An intuitive 

rule of fairness, the quota rule, is that ai 

must be Qi rounded either down or up. 

Figure 2.  The 1790 Census data with the first 
House and Senate apportionment bills. 

State Population d =  30000 Seats d  = 33000 Seats

CT   5 236841 7.90 7 7.18 7

DE   1 55540 1.85 1 1.68 1

GA   3 70835 2.36 2 2.15 2

KY   2 68705 2.29 2 2.08 2

MD   6 278514 9.28 9 8.44 8

MA   8 475327 15.84 15 14.40 14

NH   3 141822 4.73 4 4.30 4

NJ   4 179570 5.99 5 5.44 5

NY   6 331589 11.05 11 10.05 10

NC   5 353523 11.78 11 10.71 10

 PA    8 432879 14.43 14 13.12 13

RI    1 68446 2.28 2 2.07 2

SC    5 206236 6.88 6 6.25 6

VT    2 85533 2.85 2 2.59 2

VA  10 630560 21.02 21 19.11 19
US  67 3615920 120.53 112 109.57 105

Census House Bill Senate Bill

State Population d =30000 Seats Quota d =33000 Seats Quota

CT   5 236841 7.90 7 7.336 7.18 7 6.877

DE   1 55540 1.85 1 1.72 1.68 1 1.613

GA   3 70835 2.36 2 2.194 2.15 2 2.057

KY   2 68705 2.29 2 2.128 2.08 2 1.995

MD   6 278514 9.28 9 8.627 8.44 8 8.088

MA   8 475327 15.84 15 14.723 14.40 14 13.803

NH   3 141822 4.73 4 4.393 4.30 4 4.118

NJ   4 179570 5.99 5 5.562 5.44 5 5.214

NY   6 331589 11.05 11 10.271 10.05 10 9.629

NC   5 353523 11.78 11 10.95 10.71 10 10.266

 PA    8 432879 14.43 14 13.408 13.12 13 12.57

RI    1 68446 2.28 2 2.12 2.07 2 1.988

SC    5 206236 6.88 6 6.388 6.25 6 5.989

VT    2 85533 2.85 2 2.649 2.59 2 2.484

VA  10 630560 21.02 21 19.531 19.11 19 18.310
US  67 3615920 120.53 112 112 109.57 105 105

Senate BillCensus House Bill

Figure 3.  Quota Rule analysis of the first House and 
Senate apportionment bills. 
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 The analysis exposes a quota rule violation in the House bill for Virginia, whose fair share of 

112 seats is 19.531.  Hence, by quota Virginia merits either 19 or 20 seats; but, the House bill 

apportions 21 seats to Virginia. 

 The Senate bill, although satisfying the quota rule, displays an annoying feature in comparing 

the quotas and seats for Virginia and Delaware.  The Senate bill has h = 105.  Virginia’s quota of 

105 seats is 18.310 seats; Delaware’s, 1.613 seats.  Yet, the Senate bill awards Virginia 19 seats 

and Delaware 1 seat. 

 The BDM in which a state’s apportion is given by the quotient rounded down is called 

Jefferson’s method in today’s literature.  An application of Jefferson’s method may suffer two 

flaws: quota rule violations and favoritism of one state over another.  These flaws always favor 

large states over small states. 

 With the exposure of these two flaws, 

Congress went back to the drawing board and 

applied a quota method.  First, using d = 30000, 

compute p/d = 3615920/30000 = 120.53.  Then, 

apply the quota method with h = 120 (Figure 4).  

Each state’s quota is a decimal.  Assigning each 

state its lower quota distributes 111 seats.  But, the 

goal is h = 120; hence, there are 9 more seats to be 

distributed among the 15 states.  Congress gave 

these 9 seats to the 9 states with the largest 

fractional parts.  In today’s literature, this quota 

method is called Hamilton’s method.  In this case 

Hamilton’s method had the coincidental good 

fortune that each state given the upper quota had a 

fractional part exceeding 0.5 and each state given 

the lower quota had a fractional part under 0.5. 

 This resulted in the first apportionment bill 

passed by Congress.  On 26 March 1792, five 

months since Congress received the 1790 census, the bill was sent to President Washington for 

approval.  Washington vetoed the bill.  This veto is significant for three reasons: 
 

 it was the first presidential veto in U.S. history; 

 it was the only veto of Washington’s first administration; 

 Washington justified his veto based on his interpretation of the Constitution. 
 

The House size of 120 yields 3615920/120 = 30133 when applied to the U.S. population as a 

whole.  But, when applied to Connecticut, 236841/8 = 29605.  Washington insisted that the 

constitutional constraint that h shall “not exceed one for 

every thirty Thousand” must be satisfied by each state. 

 After Washington’s veto, Congress quickly passed the 

original Senate bill.  Jefferson’s method, used to create the 

Senate bill, set precedent and was used for the next five 

censuses (Figure 5). 

 Flaws with Jefferson’s method were evident from the 

start, but new quota rule violations demanded attention.  

Alternate proposals for rounding the decimal quotient 

1790:  s = 15, d = 33000  ⇒  h = 105 
1800:  s = 16, d = 33000  ⇒  h = 141 
1810:  s = 17, d = 35000  ⇒  h = 181 
1820:  s = 24, d = 40000  ⇒  h = 213 
1830:  s = 24, d = 47700  ⇒  h = 240 
1840:  s = 26, d = 70680  ⇒  h = 223 

Figure 5.  Jefferson’s method 
applied to the first six censuses. 

Figure 4.  The first apportionment bill passed 
by Congress. 

State Population h  = 120 Quota Lower Q Appt

CT   5 236841 7.86 7 8

DE   1 55540 1.84 1 2

GA   3 70835 2.35 2 2

KY   2 68705 2.28 2 2

MD   6 278514 9.24 9 9

MA   8 475327 15.77 15 16

NH   3 141822 4.71 4 5

NJ   4 179570 5.96 5 6

NY   6 331589 11.00 11 11

NC   5 353523 11.73 11 12

 PA    8 432879 14.37 14 14

RI    1 68446 2.27 2 2

SC    5 206236 6.84 6 7

VT    2 85533 2.84 2 3
VA  10 630560 20.93 20 21

US  67 3615920 120.531 120 111 120

Hamilton's MethodCensus



6 
 

surfaced.  During the 1830 census-based apportionment debates Daniel Webster, chair of the 

Senate apportionment committee, received letters from John Quincy Adams, a representative 

from Massachusetts, and James Dean, a mathematics professor at the University of Vermont.  

Thinking about alternatives proposed by Adams and Dean, Webster devised his own.  Thus, four 

variations of the BDM, all dealing with how to round a decimal, were available to Webster. 
 

 Jefferson: round down. 

 Adams: round up. 

 Dean: round down or up depending on which option gives a state’s constituency 

closer to the divisor. 

 Webster: round normally. 
 

Adam’s method was never seriously considered.  It suffered from the same flaws as Jefferson’s 

method; in particular, it was subject to quota rule violations and it could show bias.  The Adams 

bias was always in favor of small states over large states. 

 

4.  DEAN’S AND WEBSTER’S METHODS 
These methods are variations of the 3-step BDM: 
 

 Step 1. Select d∊ℕ30000. 
 

 Step 2. Calculate qi = pi/d.  Let ni = int(qi). 
 

 Step 3. Select ai ∊{ni,ni+1} where ai = ni+1 if and only if 
 

   Dean:  pi/(ni+1) is closer to d than pi/ni. 
 

   Webster:  qi > ni + 0.5. 
 

A numerical example clarifies Dean’s method.  Consider d = 50000.  In 1830, pVT = 280657.  So 

qVT = 280657/50000 = 5.6.  At this point Jefferson apportions Vermont 5 seats; Adams, 6 seats.  

With 5 seats, Vermont’s constituency is 280657/5 = 56131; with 6 seats, 280657/6 = 46776.  

Since 46776 is closer to the target d = 50000 than 56131, Dean awards Vermont 6 seats. 

 

 Think of d as the constituency target (Figure 6).  Now ni = int(qi) is the largest natural 

number such that pi/ni > d and ni+1 is the smallest natural number such that pi/(ni+1) < d.  With d 

as the target and apportionment as a natural number, pi/ni and pi/(ni+1) are the two best shots that 

a BDM can take at d.  Dean merely asks, which shot comes closer to the target? 

 

 

 

 

 

Hence, Dean’s criterion yields 
 

 ai = ni + 1  ⟺  𝑑 −
𝑝𝑖

𝑛𝑖+1
<

𝑝𝑖

𝑛𝑖
− 𝑑  ⟺  

2
1

𝑛𝑖
+

1

𝑛𝑖+1

<
𝑝𝑖

𝑑
  ⟺  HM(𝑛𝑖, 𝑛𝑖  + 1) < qi . 

 

Dean’s reasonable rounding criterion is mathematically equivalent to round up if and only if the 

quotient is greater than the harmonic mean of the options ni and ni+1. 

𝑝𝑖
𝑛𝑖 + 1

 𝑑 
𝑝𝑖
𝑛𝑖
  

Figure 6.  A graphic of 
Dean’s Method. 
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 Webster’s method (round normally) can be presented by remodeling Dean’s target range 

(Figure 6) with a reciprocal plan (see Figure 7).  Where Dean focuses on the representative 

(congressperson, how many people do you represent?), Webster focuses on the individual 

(citizen, how many representatives do you have?).  This can be seen from the units of the target: 
 

 d  people/representative (constituency) 

 1/d  representatives/person 

 

 

 

 

 

Hence, Webster’s criterion yields 

 

 ai = ni + 1  ⟺  
𝑛𝑖+1

𝑝𝑖
−

1

𝑑
<

1

𝑑
−

𝑛𝑖

𝑝𝑖
  ⟺  

𝑛𝑖+(𝑛𝑖+1)

2
<

𝑝𝑖

𝑑
  ⟺  AM(𝑛𝑖, 𝑛𝑖 + 1) < qi . 

 

The enlightening point here is that Webster’s reasonably sounding arithmetical rounding 

criterion is mathematically equivalent to round according to which option, ni or ni + 1, is closer 

to the targeted individual representation, in contrast to Dean’s targeted constituency.  Ironically, 

Dean, the mathematics professor, was unaware of the mathematical (harmonic mean) 

equivalency of his political proposal, while Webster, the consummate politician, was unaware of 

the political equivalency of his arithmetical proposal (round normally). 

 

5.  THE 1840 CENSUS 
Alternate proposals for rounding the decimal quotient during the 1830 census reapportionment 

debate were just ideas within a Senate committee.  The precedent Jefferson method was in effect 

for 50 years and Congress, as a whole, was not interested in new methods of apportionment.  The 

chair of the House apportionment committee, James K. Polk (Tennessee), brilliantly manipulated 

Jefferson method’s and steered the political action in Congress to passage of the 1830 census-

based apportionment bill that applied the intriguing divisor 47700.  Polk, who was good at 

mathematics, realized that the resulting quotient and applied divisor are inversely related to each 

other.  By decreasing the divisor, a state’s quotient may increase just enough to yield an extra 

congressperson.  For example, in 1830 the change of divisor from 48000 to 47700 changed 

Georgia’s quotient from 8.954 to 9.011.  In this manner Polk’s micromanagement resulted in an 

extra seat in the House for Georgia, Kentucky and New York, states politically important to 

President Andrew Jackson.  During Jackson’s second term Polk became Speaker of the House.  

Later, New York became the deciding state in the election of James K. Polk as eleventh president 

of the U.S.  To this day Polk is the only Speaker of the House subsequently elected President. 

 As the result of Polk’s manipulations became clear during the decade of 1830, congressmen 

prepared themselves.  The apportionment debate based on the 1840 census began with a political 

game of divisor.  On 2 April 1842 in the 242 member House, 59 motions were made to establish 

d.  Values ranged from 30000 to 141000 with the majority ranging from 50159 to 62172.  The 

House passed an apportionment bill using a BDM with d = 50179 resulting in h = 305.  The bill 

was then sent to the Senate for concurrence. 

 The bill would increase the House by 63 members, the largest increase ever.  Senators were 

already concerned that h = 242 was too large.  The press referred to the House as the “bear 

garden.”  A Senate committee blanked the House’s divisor and then engaged in its own divisor 

Figure 7.  A graphic of 
Webster’s Method. 𝑛𝑖

𝑝𝑖
 1

𝑑
 

𝑛𝑖 + 1

𝑝𝑖
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game.  On 26 May there were 27 motions for a divisor with values ranging from 49594 to 92000.  

All but two proposed a divisor greater than the House value.  Although motivated by House size, 

the Senate did not address the issue directly by specifying h, but chose to control h by specifying 

d.  After two weeks the Senate agreed to 70680, a divisor proposed by James Buchanan (later 

elected 15th President of the U.S.). 

 Apportionment based on the 1840 census used a BDM with d = 70680 resulting in h = 233 

and, for the first time in U.S. history, Webster’s method of rounding.  This is the only time in 

U.S. history that h decreased as a result of the decennial census-based reapportionment process. 

 

6.  THE 1850 CENSUS 
Representative Samuel Vinton (Whig, Ohio) wanted to remove partisan wrangling by 

establishing an apportionment procedure before the census was taken.  The Vinton Act of 1850 

was a major step in the evolution of apportionment history.  The act addressed the issue of House 

size directly, specifying h = 233 seats apportioned by Hamilton’s method.  The method was 

nominally used for the next 60 years—nominal since Congress enacted supplements which 

countered Hamilton’s method.  Such alterations were significant, possibly resulting in the 

selection of Rutherford B. Hayes as the 19th president over Samuel Tilden.  Even though Tilden 

won the popular vote, Hayes won the electoral vote 185-184.  If the Vinton Act were followed, 

Tilden would have won the electoral vote.  Perhaps not surprisingly, Hayes was known during 

his single term as “Rutherfraud” Hayes.  But experience from history exposed deeper problems 

that doomed the quota method. 

 The quota method displayed counter-intuitive paradoxes, especially the Alabama paradox 

that became prominent after the 1880 census: when h is increased, a state’s apportion may 

decrease.  The results for the 1900 census doomed Hamilton’s method.  In particular, Maine’s 

apportion oscillated wildly: 3 seats for h = 350-382, 386, 389-390 but 4 seats for h = 383-385, 

387-388, 391-400.  Colorado received 3 seats in each case except h = 357 where Colorado 

received 2 seats.  Other paradoxes, such as the population growth paradox and the new states 

paradox, also surfaced.  The population growth paradox states that a faster growing state may 

lose a seat to a slower growing state; at worst, a state that grows in population may lose a seat to 

a state that declines.  The new states paradox states that if a new state is added to the union and 

given its share of representatives, then upon recalculation based on the new House size, 

apportionments of other states may change.  These unintuitive paradoxes can only be appreciated 

by looking at numerical examples (see references for resources). 

 Congress coped with such emerging problems after the 1880 and 1890 censuses by choosing 

a House size in which no state would lose a seat and for which Hamilton’s and Webster’s 

methods agreed.  The result yielded h = 325 in 1880 and h = 356 in 1890. 

 

7.  MODIFIED DIVISOR METHODS 
Apportionment based on the 1900 census came from combining methodologies.  Congress 

started with Hamilton’s method for h = 384, then rounded up all quotas whose fractional 

remainder was greater than .5.  Hence, Hamilton’s method initiated the process; but, Webster’s 

rounding method completed it resulting in h = 386. 

 In 1910 Congress abandoned the quota method.  For the first time in U.S. history a modified 

divisor method (MDM) was explicitly used.  An MDM uses five steps: 
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Step 1. Select h ∊ ℕs. 
 

 Step 2. Select d∊ℕ30000. 
 

 Step 3. Calculate qi = pi/d.  Let ni = int(qi). 
 

 Step 4. Let ai = round(qi) ∊{ni,ni+1}. 
 

 Step 5. If ∑ 𝑎𝑖
𝑠
1 = ℎ, then DONE; ELSE, modify d and GO TO Step 3. 

 

Although one selects h in Step 1, h is used only as the goal in Step 5.  The actual calculations are 

based on the divisor selected in Step 2.  Variations to the MDM occur in Step 4 where one 

chooses a method for rounding (e.g., Jefferson, Adams, Dean, or Webster). 

 Based on the 1910 census, Congress specified h = 433 (the smallest house size for which no 

state lost a seat) and used Webster’s method of rounding.  Further, Congress stipulated one seat 

each for Arizona and New Mexico upon admission to the Union, which happened in 1912. 

 However, there was so much confusion and gridlock politics from the 1920 census that for 

the only decade in U.S. history no census-based reapportionment was made.  Congress could not 

agree on a method for apportionment; in particular, how to round the decimal quotients.  

Gridlock politics centered on prohibition—the dries, favoring retention, would not agree to 

anything that gave the wets, favoring abolition, more power. 

 In response to the non-reapportionment from the 1920 census, newly elected President 

Herbert Hoover called a special session of Congress.  The result was the Apportionment Act of 

1929 which froze the House size at 435.  In response to the 1930 census, Congress used h = 435 

and applied the Webster MDM (which fortunately agreed with a competing method). 

 The method currently in use is described in Title 2 of the U.S. Code consisting of the 

Apportionment Act of 1929 along with its 1940 and 1941 amendments.  The 1941 amendment, 

signed by President Franklin Roosevelt, fixed Huntington-Hill as the apportionment method.  

Important features of Title 2 include that h = 435 and the Huntington-Hill method will be used in 

the future until changed by Congress. 

As an MDM, Huntington-Hill is a 5-step method. 
 

 Step 1. h = 435. 
 

 Step 2. Select d. 
 

 Step 3. Calculate qi = pi/d.  Let ni = int(qi). 
 

 Step 4. Select ai ∊{ni,ni+1} where ai = ni + 1 if and only if qi > GM(ni, ni + 1). 
 

 Step 5. If ∑ 𝑎𝑖
𝑠
1 = ℎ, then DONE; ELSE, modify d and GO TO Step 3. 

 

To understand the thinking behind the rounding method, review the graphic of Dean’s method 

(Figure 6).  Recall that Webster’s method may be understood as the reciprocal remodel of Dean’s 

(see Figure 7).  For Huntington-Hill we construct another remodel of Dean’s graphic: divide 

Dean’s quantities by d, yielding a dimensionless target of 1 (Figure 8). 

 

0 

Figure 8.  A graphic of the 
Huntington and Hill method. 

 
𝑝𝑖
𝑛𝑖
 

𝑑
 

 
𝑝𝑖

𝑛𝑖 + 1 

𝑑
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 If we measure which option is closer by using the linear distance measure used for Dean and 

Webster, we only reinvent Dean’s method.  Recall: if 0 < x < 1, then 1 < 1/x.  Then round the 

quotient up if and only if the reciprocal of the left fraction is less than the right fraction; hence, 
 

 ai = ni + 1  ⟺  
𝑑

(
𝑝𝑖

𝑛𝑖+1
)
 < 

(
𝑝𝑖
𝑛𝑖
)

𝑑
  ⟺  √𝑛𝑖(𝑛𝑖 + 1) < qi  ⟺  GM(ni, ni + 1) < qi

 . 

 

The enlightening point here is that the Huntington-Hill rounding procedure is equivalent to round 

the quotient according to which shot is “closer” on a dimensionless shooting range. 

 

8.  AFTERMATH 
In 1982 Balinski and Young proved that there are no problem-free apportionment methods.  Any 

quota method is subject to the Alabama paradox and any divisor method can violate the quota 

rule.  Although perfection is not possible, improvement is. 

 The Wyoming Rule, a recent reform proposal, is a BDM in which the divisor is the 

population of the least populous state (currently Wyoming; hence, the name).  The average 

constituency of a congressperson based on the 2010 census is 710767.  Wyoming has an 

apportionment population of 568300 and 1 congressman.  California has an apportionment 

population 66 times that of Wyoming and 53 representatives.  The Wyoming Rule corrects this 

discrepancy.  However, being a BDM, House size fluctuates.  Using Hill’s rounding method, 

based on the 2000 census the Wyoming Rule produces h = 568; on the 2010 census, h = 542. 

 Apportionment is one concern in the general topic of representation.  Usually other topics 

appear more pressing; e.g., gerrymandering, the census (who is enumerated), suffrage (who may 

vote), or the structure of the ballot.  Despite these other justified issues, apportionment is a basic 

concern of fairness.  The struggle between fairness and power is a major component of political 

activity affecting apportionment decisions.  Accordingly, apportionment will remain a topic for 

mathematical, historical and political analysis. 

 

8.1  Priority Techniques 
The Census Bureau uses a different calculation technique than this paper.  The Bureau first 

assigns one seat to each state.  Then priority numbers are calculated for each state to determine 

who gets the next seat.  For example, in the Huntington-Hill method, the priority number for a 

state to receive a 2nd seat is obtained by dividing the state’s population by GM(1,2); for a 3rd seat, 

GM(2,3); for an nth seat, GM(n-1,n).  Similarly, priority numbers using Dean’s method are 

obtained by dividing a state’s population by the corresponding harmonic mean; Webster’s 

method, the corresponding arithmetic mean.  However, priority methods are mathematically 

equivalent to those presented in this paper. 

 

9.  CLASSROOM CONNECTIONS 
The CAP provides undergraduate students in general and secondary education classes with a 

phenomenal opportunity to view the historical development of congressional representation 

through a mathematical lens.  Although a seemingly straightforward mathematical task, 

apportionment becomes complex once one considers potential divisors, House sizes, and 

rounding methods (let alone issues related to politics, power and fairness)! 

 When presenting this problem to undergraduate students, we found that at least two periods 

of instruction work best.  This allows the instructor to provide the historical context for this 
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problem in Day 1 and promote active student engagement with apportionment throughout Day 2.  

We have done these lessons within both 50-minute and 75-minute class periods. 

 

9.1  Day 1 
To introduce this problem, students are provided with a brief reminder of mean and the various 

methods for computing and thinking about mean.  In general terms, selecting AM, GM or HM is 

determined by the problem situation and some rationale of the numbers that one wants to 

preserve.  Whereas AM is an additive mean, GM is multiplicative and HM is composite since 

HM = (GM)2/AM.  Providing students with an example of each is beneficial.  Though at first this 

decontextualized reminder of mean may seem contrived, it provides students with a similar 

starting point and foundation for the entire CAP situation.  Additionally, the historical narrative 

is much more engaging and effective once the mathematical framework has been set! 

 As a transition into the historical framework for this problem, students are then encouraged 

to keep the following perspectives in mind: 
 

• What was it like to live back then? 

• How did we get from then to now? 
 

To appreciate a topic in history, students must resist the temptation to take today’s values and 

norms and project them into the past.  Judgments and assumptions related to race, culture, 

society and social norms will cloud students’ ability to predict history and engage apportionment 

with a historical perspective. 

Then the instructor introduces the CAP and its historical basis in Article I, Sections 1 and 2, 

of the U.S. Constitution.  Connections to the most recent census provide students with a real-

world context that highlight p, d and h.  Initial discussions of the CAP include a description of 

provisional apportionment for the Second Congress and subsequent national and state 

populations determined during the first census.  Without providing any type of introduction to 

either divisor or quota methods, students are reminded of constitutional guidelines and shown the 

population of the first 15 states (see Figure 2, Census). 

 Names of all congressmen from 1792 are placed on individual slips of paper and put into a 

hat (a complete listing of representatives from 1792 can be found online).  A student draws a 

name and then takes on the role of that congressman to determine an apportionment plan for the 

next Congress.  Their homework assignment includes briefly investigating the life of their 

congressman and drafting an apportionment plan while keeping in mind “What was it like to live 

back then?” (Figure 9). 

 

9.2  Day 2 
In a whole class discussion, students are asked to share the various House sizes they came up 

with as part of their apportionment proposals.  Based on past experience with these 

materials,proposed values of h ranged from the low 50s to 130 and beyond.  The instructor 

should record student responses on the board and use the visible discrepancies to prompt the 

creation of congressional committees.  With the 1790 population table projected (see Figure 2) 

students self-select into groups of 3 or 4 and are instructed to reconcile their individual bills from 

each committee member into one bill.  A committee chairperson is selected and, after about 10 

minutes of negotiation, each chairperson reports the House size of the reconciled bill.  Their 

proposed House size should also include a brief description of their apportionment process. 
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Put yourself in the shoes of the congressman whose name you drew.   Activate the buttons “What was is 
like to live back then,” and “How did we get from then to now?”  Feel free to use the internet to 
research your congressman and information relevant to his decision making process using websites such 
as:  http://bioguide.congress.gov/biosearch/biosearch.asp  or 
http://en.wikipedia.org/wiki/2nd_United_States_Congress.  However, DO NOT look up the final method 
used after the 1790 census (or any method since then)! 
Submit a paragraph about yourself (i.e., the congressman: who you are, where you are from, your 
political leanings and any other relevant information).  Then, use the guidelines in the Constitution, the 
only guidelines available, construct an apportionment bill to propose in Congress.   That is, how should 
the seats in the House of Representatives be (re)allocated?  How many seats does each state get?  How 
many seats does your state get?  What is the total number of seats in the House based on your 
apportionment plan?  How does the power associated with your apportionment proposal balance with 
the power structure of the Congress? 

Figure 9.  CAP homework instructions for students 

 

Previous use of these materials has repeatedly demonstrated that: 
 

 different apportionment committees will offer different bills; 

 students become actively involved in the apportionment process through the 

development of their own proposal and subsequent negotiation with other committee 

members; 

 students take to heart the directives to put themselves in their congressman’s shoes 

and evaluate this problem from a historical context; 

 this active problem solving process effectively illustrates the depth of the 

apportionment problem to the students in the class; and 

 as with most interesting mathematical problems, there are a wide variety of different 

solutions to the same problem. 
 

This activity naturally leads into a discussion on how the first Congress solved the problem.  

The instructor highlights the mathematical development of the House and Senate Bills of 1792 

(Figure 3), Jefferson’s Method, Hamilton’s Method (Figure 4), and Washington’s subsequent 

veto.  While going through these processes, it is worthwhile to stop and ask students for 

similarities they see between their own apportionment proposals, their subcommittee proposal, 

and the various historical methods developed. 

 We have found that students’ investigations into apportionment, as part of their Day 1 

homework, naturally lead into the mathematical development of other methods (e.g., Dean’s and 

Webster’s) and potential paradoxes (e.g., Alabama).  Additionally, students are intrigued by the 

political manipulations of Polk and the remedies of the Vinton Act and Huntington-Hill Method.  

The activity proposed in this article has been developed in a way that instructors can adapt the 

historical narrative provided above to develop a classroom ready presentation that builds on 

students’ work and is rich in both history and mathematics.  For additional support, please feel 

free to contact the authors or refer to Balinski and Young’s seminal text. 

 

9.3  Common Student Solutions 
Over the course of several implementations of the CAP in undergraduate general and 

mathematics secondary education courses, patterns in student responses have arisen.  So far in 

our experience, every student applied a basic divisor method to construct an apportionment 

http://bioguide.congress.gov/biosearch/biosearch.asp
http://en.wikipedia.org/wiki/2nd_United_States_Congress
http://en.wikipedia.org/wiki/2nd_United_States_Congress
http://en.wikipedia.org/wiki/2nd_United_States_Congress
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proposal.  Common divisors are d = 30000 or d = 55540.  The divisor 55540 is the 

apportionment population of Delaware, the smallest state in the 1790 census.  This anticipates 

the Wyoming Rule.  Students like it when the professor relates later apportionment methods to 

the work they did in their assignment. 

 Students quickly find that there are issues with the decimal portion of the quotient and with 

fair representation.  To resolve the decimal issue, students round normally (Webster), up 

(Adams), or down (Jefferson).  Students whose apportionment proposals are concerned with 

“fairness” are usually motivated by political concerns.  Most of these students drew a 

congressman from a small state and were concerned that their small state not be overwhelmed by 

large states.  Such concerns duplicate those debated in the Constitutional Convention in which 

the Great Compromise leading to our bicameral legislature was formulated. 

 Students also invent unique interpretations and formulate challenging questions.  Unique 

interpretations of the 30000 constitutional constraint on the size of the House are common in 

student apportionment proposals for the 1790 census.  These interpretations form a reference 

point in discussing President Washington’s veto of the first apportionment bill.  Some questions 

defy satisfactory answers; for example, why is the House size of 415 used today? 

 

10.  CLOSING REMARKS 
The Congressional Apportionment Problem (CAP) deals with the equitable distribution of 

congressional seats following each U.S. census.  While this problem represents a fascinating 

historical topic in its own right, the underlying mathematics of the CAP provides an intriguing 

investigation into the mathematical implications of political and historical factors such as size of 

the House of Representatives, size of representational constituency, number of states, states’ 

populations, politics, power, and fairness.  The resulting problem solving and mathematical 

modeling provide fertile ground on which to develop undergraduate mathematics students’ sense 

of what it means to “do” mathematics, why and how we use mathematics to solve real-world 

problems and the historical contexts of mathematical connections to their everyday lives. 
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